/* * Copyright (c) 2020-2024, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spmd_private.h" /******************************************************************************* * SPM Core context information. ******************************************************************************/ static spmd_spm_core_context_t spm_core_context[PLATFORM_CORE_COUNT]; /******************************************************************************* * SPM Core attribute information is read from its manifest if the SPMC is not * at EL3. Else, it is populated from the SPMC directly. ******************************************************************************/ static spmc_manifest_attribute_t spmc_attrs; /******************************************************************************* * SPM Core entry point information. Discovered on the primary core and reused * on secondary cores. ******************************************************************************/ static entry_point_info_t *spmc_ep_info; /******************************************************************************* * SPM Core context on current CPU get helper. ******************************************************************************/ spmd_spm_core_context_t *spmd_get_context(void) { return &spm_core_context[plat_my_core_pos()]; } /******************************************************************************* * SPM Core ID getter. ******************************************************************************/ uint16_t spmd_spmc_id_get(void) { return spmc_attrs.spmc_id; } /******************************************************************************* * Static function declaration. ******************************************************************************/ static int32_t spmd_init(void); static int spmd_spmc_init(void *pm_addr); static uint64_t spmd_smc_forward(uint32_t smc_fid, bool secure_origin, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags); /****************************************************************************** * Builds an SPMD to SPMC direct message request. *****************************************************************************/ void spmd_build_spmc_message(gp_regs_t *gpregs, uint8_t target_func, unsigned long long message) { write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_MSG_SEND_DIRECT_REQ_SMC32); write_ctx_reg(gpregs, CTX_GPREG_X1, (SPMD_DIRECT_MSG_ENDPOINT_ID << FFA_DIRECT_MSG_SOURCE_SHIFT) | spmd_spmc_id_get()); write_ctx_reg(gpregs, CTX_GPREG_X2, BIT(31) | target_func); write_ctx_reg(gpregs, CTX_GPREG_X3, message); /* Zero out x4-x7 for the direct request emitted towards the SPMC. */ write_ctx_reg(gpregs, CTX_GPREG_X4, 0); write_ctx_reg(gpregs, CTX_GPREG_X5, 0); write_ctx_reg(gpregs, CTX_GPREG_X6, 0); write_ctx_reg(gpregs, CTX_GPREG_X7, 0); } /******************************************************************************* * This function takes an SPMC context pointer and performs a synchronous * SPMC entry. ******************************************************************************/ uint64_t spmd_spm_core_sync_entry(spmd_spm_core_context_t *spmc_ctx) { uint64_t rc; assert(spmc_ctx != NULL); cm_set_context(&(spmc_ctx->cpu_ctx), SECURE); /* Restore the context assigned above */ #if SPMD_SPM_AT_SEL2 cm_el2_sysregs_context_restore(SECURE); #else cm_el1_sysregs_context_restore(SECURE); #endif cm_set_next_eret_context(SECURE); /* Enter SPMC */ rc = spmd_spm_core_enter(&spmc_ctx->c_rt_ctx); /* Save secure state */ #if SPMD_SPM_AT_SEL2 cm_el2_sysregs_context_save(SECURE); #else cm_el1_sysregs_context_save(SECURE); #endif return rc; } /******************************************************************************* * This function returns to the place where spmd_spm_core_sync_entry() was * called originally. ******************************************************************************/ __dead2 void spmd_spm_core_sync_exit(uint64_t rc) { spmd_spm_core_context_t *ctx = spmd_get_context(); /* Get current CPU context from SPMC context */ assert(cm_get_context(SECURE) == &(ctx->cpu_ctx)); /* * The SPMD must have initiated the original request through a * synchronous entry into SPMC. Jump back to the original C runtime * context with the value of rc in x0; */ spmd_spm_core_exit(ctx->c_rt_ctx, rc); panic(); } /******************************************************************************* * Jump to the SPM Core for the first time. ******************************************************************************/ static int32_t spmd_init(void) { spmd_spm_core_context_t *ctx = spmd_get_context(); uint64_t rc; VERBOSE("SPM Core init start.\n"); /* Primary boot core enters the SPMC for initialization. */ ctx->state = SPMC_STATE_ON_PENDING; rc = spmd_spm_core_sync_entry(ctx); if (rc != 0ULL) { ERROR("SPMC initialisation failed 0x%" PRIx64 "\n", rc); return 0; } ctx->state = SPMC_STATE_ON; VERBOSE("SPM Core init end.\n"); spmd_logical_sp_set_spmc_initialized(); rc = spmd_logical_sp_init(); if (rc != 0) { WARN("SPMD Logical partitions failed init.\n"); } return 1; } /******************************************************************************* * spmd_secure_interrupt_handler * Enter the SPMC for further handling of the secure interrupt by the SPMC * itself or a Secure Partition. ******************************************************************************/ static uint64_t spmd_secure_interrupt_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { spmd_spm_core_context_t *ctx = spmd_get_context(); gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx); int64_t rc; /* Sanity check the security state when the exception was generated */ assert(get_interrupt_src_ss(flags) == NON_SECURE); /* Sanity check the pointer to this cpu's context */ assert(handle == cm_get_context(NON_SECURE)); /* Save the non-secure context before entering SPMC */ #if SPMD_SPM_AT_SEL2 cm_el2_sysregs_context_save(NON_SECURE); #else cm_el1_sysregs_context_save(NON_SECURE); #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS /* * The hint bit denoting absence of SVE live state is effectively false * in this scenario where execution was trapped to EL3 due to FIQ. */ simd_ctx_save(NON_SECURE, false); #endif #endif /* Convey the event to the SPMC through the FFA_INTERRUPT interface. */ write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_INTERRUPT); write_ctx_reg(gpregs, CTX_GPREG_X1, 0); write_ctx_reg(gpregs, CTX_GPREG_X2, 0); write_ctx_reg(gpregs, CTX_GPREG_X3, 0); write_ctx_reg(gpregs, CTX_GPREG_X4, 0); write_ctx_reg(gpregs, CTX_GPREG_X5, 0); write_ctx_reg(gpregs, CTX_GPREG_X6, 0); write_ctx_reg(gpregs, CTX_GPREG_X7, 0); /* Mark current core as handling a secure interrupt. */ ctx->secure_interrupt_ongoing = true; #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS simd_ctx_restore(SECURE); #endif rc = spmd_spm_core_sync_entry(ctx); #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS simd_ctx_save(SECURE, false); #endif if (rc != 0ULL) { ERROR("%s failed (%" PRId64 ") on CPU%u\n", __func__, rc, plat_my_core_pos()); } ctx->secure_interrupt_ongoing = false; #if SPMD_SPM_AT_SEL2 cm_el2_sysregs_context_restore(NON_SECURE); #else cm_el1_sysregs_context_restore(NON_SECURE); #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS simd_ctx_restore(NON_SECURE); #endif #endif cm_set_next_eret_context(NON_SECURE); SMC_RET0(&ctx->cpu_ctx); } #if (EL3_EXCEPTION_HANDLING == 0) /******************************************************************************* * spmd_group0_interrupt_handler_nwd * Group0 secure interrupt in the normal world are trapped to EL3. Delegate the * handling of the interrupt to the platform handler, and return only upon * successfully handling the Group0 interrupt. ******************************************************************************/ static uint64_t spmd_group0_interrupt_handler_nwd(uint32_t id, uint32_t flags, void *handle, void *cookie) { uint32_t intid; /* Sanity check the security state when the exception was generated. */ assert(get_interrupt_src_ss(flags) == NON_SECURE); /* Sanity check the pointer to this cpu's context. */ assert(handle == cm_get_context(NON_SECURE)); assert(id == INTR_ID_UNAVAILABLE); assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3); intid = plat_ic_acknowledge_interrupt(); if (plat_spmd_handle_group0_interrupt(intid) < 0) { ERROR("Group0 interrupt %u not handled\n", intid); panic(); } /* Deactivate the corresponding Group0 interrupt. */ plat_ic_end_of_interrupt(intid); return 0U; } #endif /******************************************************************************* * spmd_handle_group0_intr_swd * SPMC delegates handling of Group0 secure interrupt to EL3 firmware using * FFA_EL3_INTR_HANDLE SMC call. Further, SPMD delegates the handling of the * interrupt to the platform handler, and returns only upon successfully * handling the Group0 interrupt. ******************************************************************************/ static uint64_t spmd_handle_group0_intr_swd(void *handle) { uint32_t intid; /* Sanity check the pointer to this cpu's context */ assert(handle == cm_get_context(SECURE)); assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3); intid = plat_ic_acknowledge_interrupt(); /* * TODO: Currently due to a limitation in SPMD implementation, the * platform handler is expected to not delegate handling to NWd while * processing Group0 secure interrupt. */ if (plat_spmd_handle_group0_interrupt(intid) < 0) { /* Group0 interrupt was not handled by the platform. */ ERROR("Group0 interrupt %u not handled\n", intid); panic(); } /* Deactivate the corresponding Group0 interrupt. */ plat_ic_end_of_interrupt(intid); /* Return success. */ SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); } #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 static int spmd_dynamic_map_mem(uintptr_t base_addr, size_t size, unsigned int attr, uintptr_t *align_addr, size_t *align_size) { uintptr_t base_addr_align; size_t mapped_size_align; int rc; /* Page aligned address and size if necessary */ base_addr_align = page_align(base_addr, DOWN); mapped_size_align = page_align(size, UP); if ((base_addr != base_addr_align) && (size == mapped_size_align)) { mapped_size_align += PAGE_SIZE; } /* * Map dynamically given region with its aligned base address and * size */ rc = mmap_add_dynamic_region((unsigned long long)base_addr_align, base_addr_align, mapped_size_align, attr); if (rc == 0) { *align_addr = base_addr_align; *align_size = mapped_size_align; } return rc; } static void spmd_do_sec_cpy(uintptr_t root_base_addr, uintptr_t sec_base_addr, size_t size) { uintptr_t root_base_addr_align, sec_base_addr_align; size_t root_mapped_size_align, sec_mapped_size_align; int rc; assert(root_base_addr != 0UL); assert(sec_base_addr != 0UL); assert(size != 0UL); /* Map the memory with required attributes */ rc = spmd_dynamic_map_mem(root_base_addr, size, MT_RO_DATA | MT_ROOT, &root_base_addr_align, &root_mapped_size_align); if (rc != 0) { ERROR("%s %s %lu (%d)\n", "Error while mapping", "root region", root_base_addr, rc); panic(); } rc = spmd_dynamic_map_mem(sec_base_addr, size, MT_RW_DATA | MT_SECURE, &sec_base_addr_align, &sec_mapped_size_align); if (rc != 0) { ERROR("%s %s %lu (%d)\n", "Error while mapping", "secure region", sec_base_addr, rc); panic(); } /* Do copy operation */ (void)memcpy((void *)sec_base_addr, (void *)root_base_addr, size); /* Unmap root memory region */ rc = mmap_remove_dynamic_region(root_base_addr_align, root_mapped_size_align); if (rc != 0) { ERROR("%s %s %lu (%d)\n", "Error while unmapping", "root region", root_base_addr_align, rc); panic(); } /* Unmap secure memory region */ rc = mmap_remove_dynamic_region(sec_base_addr_align, sec_mapped_size_align); if (rc != 0) { ERROR("%s %s %lu (%d)\n", "Error while unmapping", "secure region", sec_base_addr_align, rc); panic(); } } #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */ /******************************************************************************* * Loads SPMC manifest and inits SPMC. ******************************************************************************/ static int spmd_spmc_init(void *pm_addr) { cpu_context_t *cpu_ctx; unsigned int core_id; uint32_t ep_attr, flags; int rc; const struct dyn_cfg_dtb_info_t *image_info __unused; /* Load the SPM Core manifest */ rc = plat_spm_core_manifest_load(&spmc_attrs, pm_addr); if (rc != 0) { WARN("No or invalid SPM Core manifest image provided by BL2\n"); return rc; } /* * Ensure that the SPM Core version is compatible with the SPM * Dispatcher version. */ if ((spmc_attrs.major_version != FFA_VERSION_MAJOR) || (spmc_attrs.minor_version > FFA_VERSION_MINOR)) { WARN("Unsupported FFA version (%u.%u)\n", spmc_attrs.major_version, spmc_attrs.minor_version); return -EINVAL; } VERBOSE("FFA version (%u.%u)\n", spmc_attrs.major_version, spmc_attrs.minor_version); VERBOSE("SPM Core run time EL%x.\n", SPMD_SPM_AT_SEL2 ? MODE_EL2 : MODE_EL1); /* Validate the SPMC ID, Ensure high bit is set */ if (((spmc_attrs.spmc_id >> SPMC_SECURE_ID_SHIFT) & SPMC_SECURE_ID_MASK) == 0U) { WARN("Invalid ID (0x%x) for SPMC.\n", spmc_attrs.spmc_id); return -EINVAL; } /* Validate the SPM Core execution state */ if ((spmc_attrs.exec_state != MODE_RW_64) && (spmc_attrs.exec_state != MODE_RW_32)) { WARN("Unsupported %s%x.\n", "SPM Core execution state 0x", spmc_attrs.exec_state); return -EINVAL; } VERBOSE("%s%x.\n", "SPM Core execution state 0x", spmc_attrs.exec_state); #if SPMD_SPM_AT_SEL2 /* Ensure manifest has not requested AArch32 state in S-EL2 */ if (spmc_attrs.exec_state == MODE_RW_32) { WARN("AArch32 state at S-EL2 is not supported.\n"); return -EINVAL; } /* * Check if S-EL2 is supported on this system if S-EL2 * is required for SPM */ if (!is_feat_sel2_supported()) { WARN("SPM Core run time S-EL2 is not supported.\n"); return -EINVAL; } #endif /* SPMD_SPM_AT_SEL2 */ /* Initialise an entrypoint to set up the CPU context */ ep_attr = SECURE | EP_ST_ENABLE; if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0ULL) { ep_attr |= EP_EE_BIG; } SET_PARAM_HEAD(spmc_ep_info, PARAM_EP, VERSION_1, ep_attr); /* * Populate SPSR for SPM Core based upon validated parameters from the * manifest. */ if (spmc_attrs.exec_state == MODE_RW_32) { spmc_ep_info->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM, SPSR_E_LITTLE, DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT); } else { #if SPMD_SPM_AT_SEL2 static const uint32_t runtime_el = MODE_EL2; #else static const uint32_t runtime_el = MODE_EL1; #endif spmc_ep_info->spsr = SPSR_64(runtime_el, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); } #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 image_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, TOS_FW_CONFIG_ID); assert(image_info != NULL); if ((image_info->config_addr == 0UL) || (image_info->secondary_config_addr == 0UL) || (image_info->config_max_size == 0UL)) { return -EINVAL; } /* Copy manifest from root->secure region */ spmd_do_sec_cpy(image_info->config_addr, image_info->secondary_config_addr, image_info->config_max_size); /* Update ep info of BL32 */ assert(spmc_ep_info != NULL); spmc_ep_info->args.arg0 = image_info->secondary_config_addr; #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */ /* Set an initial SPMC context state for all cores. */ for (core_id = 0U; core_id < PLATFORM_CORE_COUNT; core_id++) { spm_core_context[core_id].state = SPMC_STATE_OFF; /* Setup an initial cpu context for the SPMC. */ cpu_ctx = &spm_core_context[core_id].cpu_ctx; cm_setup_context(cpu_ctx, spmc_ep_info); /* * Pass the core linear ID to the SPMC through x4. * (TF-A implementation defined behavior helping * a legacy TOS migration to adopt FF-A). */ write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X4, core_id); } /* Register power management hooks with PSCI */ psci_register_spd_pm_hook(&spmd_pm); /* Register init function for deferred init. */ bl31_register_bl32_init(&spmd_init); INFO("SPM Core setup done.\n"); /* * Register an interrupt handler routing secure interrupts to SPMD * while the NWd is running. */ flags = 0; set_interrupt_rm_flag(flags, NON_SECURE); rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, spmd_secure_interrupt_handler, flags); if (rc != 0) { panic(); } /* * Permit configurations where the SPM resides at S-EL1/2 and upon a * Group0 interrupt triggering while the normal world runs, the * interrupt is routed either through the EHF or directly to the SPMD: * * EL3_EXCEPTION_HANDLING=0: the Group0 interrupt is routed to the SPMD * for handling by spmd_group0_interrupt_handler_nwd. * * EL3_EXCEPTION_HANDLING=1: the Group0 interrupt is routed to the EHF. * */ #if (EL3_EXCEPTION_HANDLING == 0) /* * If EL3 interrupts are supported by the platform, register an * interrupt handler routing Group0 interrupts to SPMD while the NWd is * running. */ if (plat_ic_has_interrupt_type(INTR_TYPE_EL3)) { rc = register_interrupt_type_handler(INTR_TYPE_EL3, spmd_group0_interrupt_handler_nwd, flags); if (rc != 0) { panic(); } } #endif return 0; } /******************************************************************************* * Initialize context of SPM Core. ******************************************************************************/ int spmd_setup(void) { int rc; void *spmc_manifest; /* * If the SPMC is at EL3, then just initialise it directly. The * shenanigans of when it is at a lower EL are not needed. */ if (is_spmc_at_el3()) { /* Allow the SPMC to populate its attributes directly. */ spmc_populate_attrs(&spmc_attrs); rc = spmc_setup(); if (rc != 0) { WARN("SPMC initialisation failed 0x%x.\n", rc); } return 0; } spmc_ep_info = bl31_plat_get_next_image_ep_info(SECURE); if (spmc_ep_info == NULL) { WARN("No SPM Core image provided by BL2 boot loader.\n"); return 0; } /* Under no circumstances will this parameter be 0 */ assert(spmc_ep_info->pc != 0ULL); /* * Check if BL32 ep_info has a reference to 'tos_fw_config'. This will * be used as a manifest for the SPM Core at the next lower EL/mode. */ spmc_manifest = (void *)spmc_ep_info->args.arg0; if (spmc_manifest == NULL) { WARN("Invalid or absent SPM Core manifest.\n"); return 0; } /* Load manifest, init SPMC */ rc = spmd_spmc_init(spmc_manifest); if (rc != 0) { WARN("Booting device without SPM initialization.\n"); } return 0; } /******************************************************************************* * Forward FF-A SMCs to the other security state. ******************************************************************************/ uint64_t spmd_smc_switch_state(uint32_t smc_fid, bool secure_origin, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *handle, uint64_t flags) { unsigned int secure_state_in = (secure_origin) ? SECURE : NON_SECURE; unsigned int secure_state_out = (!secure_origin) ? SECURE : NON_SECURE; void *ctx_out; #if SPMD_SPM_AT_SEL2 if ((secure_state_out == SECURE) && (is_sve_hint_set(flags) == true)) { /* * Set the SVE hint bit in x0 and pass to the lower secure EL, * if it was set by the caller. */ smc_fid |= (FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT); } #endif /* Save incoming security state */ #if SPMD_SPM_AT_SEL2 cm_el2_sysregs_context_save(secure_state_in); #else cm_el1_sysregs_context_save(secure_state_in); #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS /* Forward the hint bit denoting the absence of SVE live state. */ simd_ctx_save(secure_state_in, (!secure_origin && (is_sve_hint_set(flags) == true))); #endif #endif /* Restore outgoing security state */ #if SPMD_SPM_AT_SEL2 cm_el2_sysregs_context_restore(secure_state_out); #else cm_el1_sysregs_context_restore(secure_state_out); #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS simd_ctx_restore(secure_state_out); #endif #endif cm_set_next_eret_context(secure_state_out); ctx_out = cm_get_context(secure_state_out); #if SPMD_SPM_AT_SEL2 /* * If SPMC is at SEL2, save additional registers x8-x17, which may * be used in FF-A calls such as FFA_PARTITION_INFO_GET_REGS. * Note that technically, all SPMCs can support this, but this code is * under ifdef to minimize breakage in case other SPMCs do not save * and restore x8-x17. * We also need to pass through these registers since not all FF-A ABIs * modify x8-x17, in which case, SMCCC requires that these registers be * preserved, so the SPMD passes through these registers and expects the * SPMC to save and restore (potentially also modify) them. */ SMC_RET18(ctx_out, smc_fid, x1, x2, x3, x4, SMC_GET_GP(handle, CTX_GPREG_X5), SMC_GET_GP(handle, CTX_GPREG_X6), SMC_GET_GP(handle, CTX_GPREG_X7), SMC_GET_GP(handle, CTX_GPREG_X8), SMC_GET_GP(handle, CTX_GPREG_X9), SMC_GET_GP(handle, CTX_GPREG_X10), SMC_GET_GP(handle, CTX_GPREG_X11), SMC_GET_GP(handle, CTX_GPREG_X12), SMC_GET_GP(handle, CTX_GPREG_X13), SMC_GET_GP(handle, CTX_GPREG_X14), SMC_GET_GP(handle, CTX_GPREG_X15), SMC_GET_GP(handle, CTX_GPREG_X16), SMC_GET_GP(handle, CTX_GPREG_X17) ); #else SMC_RET8(ctx_out, smc_fid, x1, x2, x3, x4, SMC_GET_GP(handle, CTX_GPREG_X5), SMC_GET_GP(handle, CTX_GPREG_X6), SMC_GET_GP(handle, CTX_GPREG_X7)); #endif } /******************************************************************************* * Forward SMCs to the other security state. ******************************************************************************/ static uint64_t spmd_smc_forward(uint32_t smc_fid, bool secure_origin, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { if (is_spmc_at_el3() && !secure_origin) { return spmc_smc_handler(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); } return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, x3, x4, handle, flags); } /******************************************************************************* * Return FFA_ERROR with specified error code ******************************************************************************/ uint64_t spmd_ffa_error_return(void *handle, int error_code) { SMC_RET8(handle, (uint32_t) FFA_ERROR, FFA_TARGET_INFO_MBZ, (uint32_t)error_code, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); } /******************************************************************************* * spmd_check_address_in_binary_image ******************************************************************************/ bool spmd_check_address_in_binary_image(uint64_t address) { assert(!check_uptr_overflow(spmc_attrs.load_address, spmc_attrs.binary_size)); return ((address >= spmc_attrs.load_address) && (address < (spmc_attrs.load_address + spmc_attrs.binary_size))); } /****************************************************************************** * spmd_is_spmc_message *****************************************************************************/ static bool spmd_is_spmc_message(unsigned int ep) { if (is_spmc_at_el3()) { return false; } return ((ffa_endpoint_destination(ep) == SPMD_DIRECT_MSG_ENDPOINT_ID) && (ffa_endpoint_source(ep) == spmc_attrs.spmc_id)); } /******************************************************************************* * This function forwards FF-A SMCs to either the main SPMD handler or the * SPMC at EL3, depending on the origin security state, if enabled. ******************************************************************************/ uint64_t spmd_ffa_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { if (is_spmc_at_el3()) { /* * If we have an SPMC at EL3 allow handling of the SMC first. * The SPMC will call back through to SPMD handler if required. */ if (is_caller_secure(flags)) { return spmc_smc_handler(smc_fid, is_caller_secure(flags), x1, x2, x3, x4, cookie, handle, flags); } } return spmd_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); } /******************************************************************************* * This function handles all SMCs in the range reserved for FFA. Each call is * either forwarded to the other security state or handled by the SPM dispatcher ******************************************************************************/ uint64_t spmd_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { spmd_spm_core_context_t *ctx = spmd_get_context(); bool secure_origin; int ret; uint32_t input_version; /* Determine which security state this SMC originated from */ secure_origin = is_caller_secure(flags); VERBOSE("SPM(%u): 0x%x 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 "\n", plat_my_core_pos(), smc_fid, x1, x2, x3, x4, SMC_GET_GP(handle, CTX_GPREG_X5), SMC_GET_GP(handle, CTX_GPREG_X6), SMC_GET_GP(handle, CTX_GPREG_X7)); /* * If there is an on-going info regs from EL3 SPMD LP, unconditionally * return, we don't expect any other FF-A ABIs to be called between * calls to FFA_PARTITION_INFO_GET_REGS. */ if (is_spmd_logical_sp_info_regs_req_in_progress(ctx)) { assert(secure_origin); spmd_spm_core_sync_exit(0ULL); } switch (smc_fid) { case FFA_ERROR: /* * Check if this is the first invocation of this interface on * this CPU. If so, then indicate that the SPM Core initialised * unsuccessfully. */ if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) { spmd_spm_core_sync_exit(x2); } /* * If there was an SPMD logical partition direct request on-going, * return back to the SPMD logical partition so the error can be * consumed. */ if (is_spmd_logical_sp_dir_req_in_progress(ctx)) { assert(secure_origin); spmd_spm_core_sync_exit(0ULL); } return spmd_smc_forward(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); break; /* not reached */ case FFA_VERSION: input_version = (uint32_t)(0xFFFFFFFF & x1); /* * If caller is secure and SPMC was initialized, * return FFA_VERSION of SPMD. * If caller is non secure and SPMC was initialized, * forward to the EL3 SPMC if enabled, otherwise return * the SPMC version if implemented at a lower EL. * Sanity check to "input_version". * If the EL3 SPMC is enabled, ignore the SPMC state as * this is not used. */ if ((input_version & FFA_VERSION_BIT31_MASK) || (!is_spmc_at_el3() && (ctx->state == SPMC_STATE_RESET))) { ret = FFA_ERROR_NOT_SUPPORTED; } else if (!secure_origin) { if (is_spmc_at_el3()) { /* * Forward the call directly to the EL3 SPMC, if * enabled, as we don't need to wrap the call in * a direct request. */ return spmd_smc_forward(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); } gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx); uint64_t rc; if (spmc_attrs.major_version == 1 && spmc_attrs.minor_version == 0) { ret = MAKE_FFA_VERSION(spmc_attrs.major_version, spmc_attrs.minor_version); SMC_RET8(handle, (uint32_t)ret, FFA_TARGET_INFO_MBZ, FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); break; } /* Save non-secure system registers context */ #if SPMD_SPM_AT_SEL2 cm_el2_sysregs_context_save(NON_SECURE); #else cm_el1_sysregs_context_save(NON_SECURE); #endif /* * The incoming request has FFA_VERSION as X0 smc_fid * and requested version in x1. Prepare a direct request * from SPMD to SPMC with FFA_VERSION framework function * identifier in X2 and requested version in X3. */ spmd_build_spmc_message(gpregs, SPMD_FWK_MSG_FFA_VERSION_REQ, input_version); /* * Ensure x8-x17 NS GP register values are untouched when returning * from the SPMC. */ write_ctx_reg(gpregs, CTX_GPREG_X8, SMC_GET_GP(handle, CTX_GPREG_X8)); write_ctx_reg(gpregs, CTX_GPREG_X9, SMC_GET_GP(handle, CTX_GPREG_X9)); write_ctx_reg(gpregs, CTX_GPREG_X10, SMC_GET_GP(handle, CTX_GPREG_X10)); write_ctx_reg(gpregs, CTX_GPREG_X11, SMC_GET_GP(handle, CTX_GPREG_X11)); write_ctx_reg(gpregs, CTX_GPREG_X12, SMC_GET_GP(handle, CTX_GPREG_X12)); write_ctx_reg(gpregs, CTX_GPREG_X13, SMC_GET_GP(handle, CTX_GPREG_X13)); write_ctx_reg(gpregs, CTX_GPREG_X14, SMC_GET_GP(handle, CTX_GPREG_X14)); write_ctx_reg(gpregs, CTX_GPREG_X15, SMC_GET_GP(handle, CTX_GPREG_X15)); write_ctx_reg(gpregs, CTX_GPREG_X16, SMC_GET_GP(handle, CTX_GPREG_X16)); write_ctx_reg(gpregs, CTX_GPREG_X17, SMC_GET_GP(handle, CTX_GPREG_X17)); rc = spmd_spm_core_sync_entry(ctx); if ((rc != 0ULL) || (SMC_GET_GP(gpregs, CTX_GPREG_X0) != FFA_MSG_SEND_DIRECT_RESP_SMC32) || (SMC_GET_GP(gpregs, CTX_GPREG_X2) != (FFA_FWK_MSG_BIT | SPMD_FWK_MSG_FFA_VERSION_RESP))) { ERROR("Failed to forward FFA_VERSION\n"); ret = FFA_ERROR_NOT_SUPPORTED; } else { ret = SMC_GET_GP(gpregs, CTX_GPREG_X3); } /* * x0-x4 are updated by spmd_smc_forward below. * Zero out x5-x7 in the FFA_VERSION response. */ write_ctx_reg(gpregs, CTX_GPREG_X5, 0); write_ctx_reg(gpregs, CTX_GPREG_X6, 0); write_ctx_reg(gpregs, CTX_GPREG_X7, 0); /* * Return here after SPMC has handled FFA_VERSION. * The returned SPMC version is held in X3. * Forward this version in X0 to the non-secure caller. */ return spmd_smc_forward(ret, true, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, cookie, gpregs, flags); } else { ret = MAKE_FFA_VERSION(FFA_VERSION_MAJOR, FFA_VERSION_MINOR); } SMC_RET8(handle, (uint32_t)ret, FFA_TARGET_INFO_MBZ, FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); break; /* not reached */ case FFA_FEATURES: /* * This is an optional interface. Do the minimal checks and * forward to SPM Core which will handle it if implemented. */ /* Forward SMC from Normal world to the SPM Core */ if (!secure_origin) { return spmd_smc_forward(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); } /* * Return success if call was from secure world i.e. all * FFA functions are supported. This is essentially a * nop. */ SMC_RET8(handle, FFA_SUCCESS_SMC32, x1, x2, x3, x4, SMC_GET_GP(handle, CTX_GPREG_X5), SMC_GET_GP(handle, CTX_GPREG_X6), SMC_GET_GP(handle, CTX_GPREG_X7)); break; /* not reached */ case FFA_ID_GET: /* * Returns the ID of the calling FFA component. */ if (!secure_origin) { SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_TARGET_INFO_MBZ, FFA_NS_ENDPOINT_ID, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); } SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); break; /* not reached */ case FFA_SECONDARY_EP_REGISTER_SMC64: if (secure_origin) { ret = spmd_pm_secondary_ep_register(x1); if (ret < 0) { SMC_RET8(handle, FFA_ERROR_SMC64, FFA_TARGET_INFO_MBZ, ret, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); } else { SMC_RET8(handle, FFA_SUCCESS_SMC64, FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); } } return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); break; /* Not reached */ case FFA_SPM_ID_GET: if (MAKE_FFA_VERSION(1, 1) > FFA_VERSION_COMPILED) { return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); } /* * Returns the ID of the SPMC or SPMD depending on the FF-A * instance where this function is invoked */ if (!secure_origin) { SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); } SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_TARGET_INFO_MBZ, SPMD_DIRECT_MSG_ENDPOINT_ID, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); break; /* not reached */ case FFA_MSG_SEND_DIRECT_REQ_SMC32: case FFA_MSG_SEND_DIRECT_REQ_SMC64: case FFA_MSG_SEND_DIRECT_REQ2_SMC64: /* * Regardless of secure_origin, SPMD logical partitions cannot * handle direct messages. They can only initiate direct * messages and consume direct responses or errors. */ if (is_spmd_lp_id(ffa_endpoint_source(x1)) || is_spmd_lp_id(ffa_endpoint_destination(x1))) { return spmd_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER ); } /* * When there is an ongoing SPMD logical partition direct * request, there cannot be another direct request. Return * error in this case. Panic'ing is an option but that does * not provide the opportunity for caller to abort based on * error codes. */ if (is_spmd_logical_sp_dir_req_in_progress(ctx)) { assert(secure_origin); return spmd_ffa_error_return(handle, FFA_ERROR_DENIED); } if (!secure_origin) { /* Validate source endpoint is non-secure for non-secure caller. */ if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) { return spmd_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } } if (secure_origin && spmd_is_spmc_message(x1)) { return spmd_ffa_error_return(handle, FFA_ERROR_DENIED); } else { /* Forward direct message to the other world */ return spmd_smc_forward(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); } break; /* Not reached */ case FFA_MSG_SEND_DIRECT_RESP_SMC32: case FFA_MSG_SEND_DIRECT_RESP_SMC64: case FFA_MSG_SEND_DIRECT_RESP2_SMC64: if (secure_origin && (spmd_is_spmc_message(x1) || is_spmd_logical_sp_dir_req_in_progress(ctx))) { spmd_spm_core_sync_exit(0ULL); } else { /* Forward direct message to the other world */ return spmd_smc_forward(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); } break; /* Not reached */ case FFA_RX_RELEASE: case FFA_RXTX_MAP_SMC32: case FFA_RXTX_MAP_SMC64: case FFA_RXTX_UNMAP: case FFA_PARTITION_INFO_GET: #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED case FFA_NOTIFICATION_BITMAP_CREATE: case FFA_NOTIFICATION_BITMAP_DESTROY: case FFA_NOTIFICATION_BIND: case FFA_NOTIFICATION_UNBIND: case FFA_NOTIFICATION_SET: case FFA_NOTIFICATION_GET: case FFA_NOTIFICATION_INFO_GET: case FFA_NOTIFICATION_INFO_GET_SMC64: case FFA_MSG_SEND2: case FFA_RX_ACQUIRE: #endif case FFA_MSG_RUN: /* * Above calls should be invoked only by the Normal world and * must not be forwarded from Secure world to Normal world. */ if (secure_origin) { return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); } /* Forward the call to the other world */ /* fallthrough */ case FFA_MSG_SEND: case FFA_MEM_DONATE_SMC32: case FFA_MEM_DONATE_SMC64: case FFA_MEM_LEND_SMC32: case FFA_MEM_LEND_SMC64: case FFA_MEM_SHARE_SMC32: case FFA_MEM_SHARE_SMC64: case FFA_MEM_RETRIEVE_REQ_SMC32: case FFA_MEM_RETRIEVE_REQ_SMC64: case FFA_MEM_RETRIEVE_RESP: case FFA_MEM_RELINQUISH: case FFA_MEM_RECLAIM: case FFA_MEM_FRAG_TX: case FFA_MEM_FRAG_RX: case FFA_SUCCESS_SMC32: case FFA_SUCCESS_SMC64: /* * If there is an ongoing direct request from an SPMD logical * partition, return an error. */ if (is_spmd_logical_sp_dir_req_in_progress(ctx)) { assert(secure_origin); return spmd_ffa_error_return(handle, FFA_ERROR_DENIED); } return spmd_smc_forward(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); break; /* not reached */ case FFA_MSG_WAIT: /* * Check if this is the first invocation of this interface on * this CPU from the Secure world. If so, then indicate that the * SPM Core initialised successfully. */ if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) { spmd_spm_core_sync_exit(0ULL); } /* Forward the call to the other world */ /* fallthrough */ case FFA_INTERRUPT: case FFA_MSG_YIELD: /* This interface must be invoked only by the Secure world */ if (!secure_origin) { return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); } if (is_spmd_logical_sp_dir_req_in_progress(ctx)) { assert(secure_origin); return spmd_ffa_error_return(handle, FFA_ERROR_DENIED); } return spmd_smc_forward(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); break; /* not reached */ case FFA_NORMAL_WORLD_RESUME: if (secure_origin && ctx->secure_interrupt_ongoing) { spmd_spm_core_sync_exit(0ULL); } else { return spmd_ffa_error_return(handle, FFA_ERROR_DENIED); } break; /* Not reached */ #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED case FFA_PARTITION_INFO_GET_REGS_SMC64: if (secure_origin) { return spmd_el3_populate_logical_partition_info(handle, x1, x2, x3); } /* Call only supported with SMCCC 1.2+ */ if (MAKE_SMCCC_VERSION(SMCCC_MAJOR_VERSION, SMCCC_MINOR_VERSION) < 0x10002) { return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); } return spmd_smc_forward(smc_fid, secure_origin, x1, x2, x3, x4, cookie, handle, flags); break; /* Not reached */ #endif case FFA_CONSOLE_LOG_SMC32: case FFA_CONSOLE_LOG_SMC64: /* This interface must not be forwarded to other worlds. */ return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); break; /* not reached */ case FFA_EL3_INTR_HANDLE: if (secure_origin) { return spmd_handle_group0_intr_swd(handle); } else { return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); } default: WARN("SPM: Unsupported call 0x%08x\n", smc_fid); return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); } }