/* * Copyright (c) 2017-2024, STMicroelectronics - All Rights Reserved * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include /* * Get the frequency of an oscillator from its name in device tree. * @param name: oscillator name * @param freq: stores the frequency of the oscillator * @return: 0 on success, and a negative FDT/ERRNO error code on failure. */ int fdt_osc_read_freq(const char *name, uint32_t *freq) { int node, subnode; void *fdt; if (fdt_get_address(&fdt) == 0) { return -ENOENT; } node = fdt_path_offset(fdt, "/clocks"); if (node < 0) { return -FDT_ERR_NOTFOUND; } fdt_for_each_subnode(subnode, fdt, node) { const char *cchar; int ret; cchar = fdt_get_name(fdt, subnode, &ret); if (cchar == NULL) { return ret; } if ((strncmp(cchar, name, (size_t)ret) == 0) && (fdt_get_status(subnode) != DT_DISABLED)) { const fdt32_t *cuint; cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret); if (cuint == NULL) { return ret; } *freq = fdt32_to_cpu(*cuint); return 0; } } /* Oscillator not found, freq=0 */ *freq = 0; return 0; } /* * Check the presence of an oscillator property from its id. * @param node_label: clock node name * @param prop_name: property name * @return: true/false regarding search result. */ bool fdt_clk_read_bool(const char *node_label, const char *prop_name) { int node, subnode; void *fdt; if (fdt_get_address(&fdt) == 0) { return false; } node = fdt_path_offset(fdt, "/clocks"); if (node < 0) { return false; } fdt_for_each_subnode(subnode, fdt, node) { const char *cchar; int ret; cchar = fdt_get_name(fdt, subnode, &ret); if (cchar == NULL) { return false; } if (strncmp(cchar, node_label, (size_t)ret) != 0) { continue; } if (fdt_getprop(fdt, subnode, prop_name, NULL) != NULL) { return true; } } return false; } /* * Get the value of a oscillator property from its name. * @param node_label: oscillator name * @param prop_name: property name * @param dflt_value: default value * @return oscillator value on success, default value if property not found. */ uint32_t fdt_clk_read_uint32_default(const char *node_label, const char *prop_name, uint32_t dflt_value) { int node, subnode; void *fdt; if (fdt_get_address(&fdt) == 0) { return dflt_value; } node = fdt_path_offset(fdt, "/clocks"); if (node < 0) { return dflt_value; } fdt_for_each_subnode(subnode, fdt, node) { const char *cchar; int ret; cchar = fdt_get_name(fdt, subnode, &ret); if (cchar == NULL) { return dflt_value; } if (strncmp(cchar, node_label, (size_t)ret) != 0) { continue; } return fdt_read_uint32_default(fdt, subnode, prop_name, dflt_value); } return dflt_value; } /* * Get the RCC node offset from the device tree * @param fdt: Device tree reference * @return: Node offset or a negative value on error */ static int fdt_get_rcc_node(void *fdt) { static int node; if (node <= 0) { node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT); } return node; } /* * Read a series of parameters in rcc-clk section in device tree * @param prop_name: Name of the RCC property to be read * @param array: the array to store the property parameters * @param count: number of parameters to be read * @return: 0 on succes or a negative value on error */ int fdt_rcc_read_uint32_array(const char *prop_name, uint32_t count, uint32_t *array) { int node; void *fdt; if (fdt_get_address(&fdt) == 0) { return -ENOENT; } node = fdt_get_rcc_node(fdt); if (node < 0) { return -FDT_ERR_NOTFOUND; } return fdt_read_uint32_array(fdt, node, prop_name, count, array); } /* * Get the subnode offset in rcc-clk section from its name in device tree * @param name: name of the RCC property * @return: offset on success, and a negative FDT/ERRNO error code on failure. */ int fdt_rcc_subnode_offset(const char *name) { int node, subnode; void *fdt; if (fdt_get_address(&fdt) == 0) { return -ENOENT; } node = fdt_get_rcc_node(fdt); if (node < 0) { return -FDT_ERR_NOTFOUND; } subnode = fdt_subnode_offset(fdt, node, name); if (subnode <= 0) { return -FDT_ERR_NOTFOUND; } return subnode; } /* * Get the pointer to a rcc-clk property from its name. * @param name: name of the RCC property * @param lenp: stores the length of the property. * @return: pointer to the property on success, and NULL value on failure. */ const fdt32_t *fdt_rcc_read_prop(const char *prop_name, int *lenp) { const fdt32_t *cuint; int node, len; void *fdt; if (fdt_get_address(&fdt) == 0) { return NULL; } node = fdt_get_rcc_node(fdt); if (node < 0) { return NULL; } cuint = fdt_getprop(fdt, node, prop_name, &len); if (cuint == NULL) { return NULL; } *lenp = len; return cuint; } #if defined(IMAGE_BL32) /* * Get the secure state for rcc node in device tree. * @return: true if rcc is configured for secure world access, false if not. */ bool fdt_get_rcc_secure_state(void) { void *fdt; if (fdt_get_address(&fdt) == 0) { return false; } if (fdt_node_offset_by_compatible(fdt, -1, DT_RCC_SEC_CLK_COMPAT) < 0) { return false; } return true; } #endif /* * Get the clock ID of the given node in device tree. * @param node: node offset * @return: Clock ID on success, and a negative FDT/ERRNO error code on failure. */ int fdt_get_clock_id(int node) { const fdt32_t *cuint; void *fdt; if (fdt_get_address(&fdt) == 0) { return -ENOENT; } cuint = fdt_getprop(fdt, node, "clocks", NULL); if (cuint == NULL) { return -FDT_ERR_NOTFOUND; } cuint++; return (int)fdt32_to_cpu(*cuint); } /* * Get the frequency of the specified UART instance. * @param instance: UART interface registers base address. * @return: clock frequency on success, 0 value on failure. */ unsigned long fdt_get_uart_clock_freq(uintptr_t instance) { void *fdt; int node; int clk_id; if (fdt_get_address(&fdt) == 0) { return 0UL; } /* Check for UART nodes */ node = dt_match_instance_by_compatible(DT_UART_COMPAT, instance); if (node < 0) { return 0UL; } clk_id = fdt_get_clock_id(node); if (clk_id < 0) { return 0UL; } return clk_get_rate((unsigned long)clk_id); } /******************************************************************************* * This function sets the STGEN counter value. ******************************************************************************/ static void stgen_set_counter(unsigned long long counter) { #ifdef __aarch64__ mmio_write_64(STGEN_BASE + CNTCV_OFF, counter); #else mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)counter); mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(counter >> 32)); #endif } /******************************************************************************* * This function returns the STGEN counter value. ******************************************************************************/ static unsigned long long stm32mp_stgen_get_counter(void) { #ifdef __aarch64__ return mmio_read_64(STGEN_BASE + CNTCV_OFF); #else return (((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF) << 32) | mmio_read_32(STGEN_BASE + CNTCVL_OFF)); #endif } /******************************************************************************* * This function configures and restores the STGEN counter depending on the * connected clock. ******************************************************************************/ void stm32mp_stgen_config(unsigned long rate) { uint32_t cntfid0; unsigned long long counter; cntfid0 = mmio_read_32(STGEN_BASE + CNTFID_OFF); if (cntfid0 == rate) { return; } mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); if (cntfid0 != 0U) { counter = stm32mp_stgen_get_counter() * rate / cntfid0; stgen_set_counter(counter); } mmio_write_32(STGEN_BASE + CNTFID_OFF, rate); mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); write_cntfrq_el0(rate); /* Need to update timer with new frequency */ generic_delay_timer_init(); } /******************************************************************************* * This function restores CPU generic timer rate from the STGEN clock rate. ******************************************************************************/ void stm32mp_stgen_restore_rate(void) { unsigned long rate; rate = mmio_read_32(STGEN_BASE + CNTFID_OFF); write_cntfrq_el0((u_register_t)rate); }