/* * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include "psci_private.h" /******************************************************************************* * PSCI frontend api for servicing SMCs. Described in the PSCI spec. ******************************************************************************/ int psci_cpu_on(u_register_t target_cpu, uintptr_t entrypoint, u_register_t context_id) { int rc; entry_point_info_t ep; /* Validate the target CPU */ if (!is_valid_mpidr(target_cpu)) return PSCI_E_INVALID_PARAMS; /* Validate the entry point and get the entry_point_info */ rc = psci_validate_entry_point(&ep, entrypoint, context_id); if (rc != PSCI_E_SUCCESS) return rc; /* * To turn this cpu on, specify which power * levels need to be turned on */ return psci_cpu_on_start(target_cpu, &ep); } unsigned int psci_version(void) { return PSCI_MAJOR_VER | PSCI_MINOR_VER; } int psci_cpu_suspend(unsigned int power_state, uintptr_t entrypoint, u_register_t context_id) { int rc; unsigned int target_pwrlvl, is_power_down_state; entry_point_info_t ep; psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; plat_local_state_t cpu_pd_state; #if PSCI_OS_INIT_MODE unsigned int cpu_idx = plat_my_core_pos(); plat_local_state_t prev[PLAT_MAX_PWR_LVL]; #endif /* Validate the power_state parameter */ rc = psci_validate_power_state(power_state, &state_info); if (rc != PSCI_E_SUCCESS) { assert(rc == PSCI_E_INVALID_PARAMS); return rc; } /* * Get the value of the state type bit from the power state parameter. */ is_power_down_state = psci_get_pstate_type(power_state); /* Sanity check the requested suspend levels */ assert(psci_validate_suspend_req(&state_info, is_power_down_state) == PSCI_E_SUCCESS); target_pwrlvl = psci_find_target_suspend_lvl(&state_info); if (target_pwrlvl == PSCI_INVALID_PWR_LVL) { ERROR("Invalid target power level for suspend operation\n"); panic(); } /* Fast path for CPU standby.*/ if (is_cpu_standby_req(is_power_down_state, target_pwrlvl)) { if (psci_plat_pm_ops->cpu_standby == NULL) return PSCI_E_INVALID_PARAMS; /* * Set the state of the CPU power domain to the platform * specific retention state and enter the standby state. */ cpu_pd_state = state_info.pwr_domain_state[PSCI_CPU_PWR_LVL]; psci_set_cpu_local_state(cpu_pd_state); #if PSCI_OS_INIT_MODE /* * If in OS-initiated mode, save a copy of the previous * requested local power states and update the new requested * local power states for this CPU. */ if (psci_suspend_mode == OS_INIT) { psci_update_req_local_pwr_states(target_pwrlvl, cpu_idx, &state_info, prev); } #endif #if ENABLE_PSCI_STAT plat_psci_stat_accounting_start(&state_info); #endif #if ENABLE_RUNTIME_INSTRUMENTATION PMF_CAPTURE_TIMESTAMP(rt_instr_svc, RT_INSTR_ENTER_HW_LOW_PWR, PMF_NO_CACHE_MAINT); #endif psci_plat_pm_ops->cpu_standby(cpu_pd_state); /* Upon exit from standby, set the state back to RUN. */ psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); #if PSCI_OS_INIT_MODE /* * If in OS-initiated mode, restore the previous requested * local power states for this CPU. */ if (psci_suspend_mode == OS_INIT) { psci_restore_req_local_pwr_states(cpu_idx, prev); } #endif #if ENABLE_RUNTIME_INSTRUMENTATION PMF_CAPTURE_TIMESTAMP(rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR, PMF_NO_CACHE_MAINT); #endif #if ENABLE_PSCI_STAT plat_psci_stat_accounting_stop(&state_info); /* Update PSCI stats */ psci_stats_update_pwr_up(PSCI_CPU_PWR_LVL, &state_info); #endif return PSCI_E_SUCCESS; } /* * If a power down state has been requested, we need to verify entry * point and program entry information. */ if (is_power_down_state != 0U) { rc = psci_validate_entry_point(&ep, entrypoint, context_id); if (rc != PSCI_E_SUCCESS) return rc; } /* * Do what is needed to enter the power down state. Upon success, * enter the final wfi which will power down this CPU. This function * might return if the power down was abandoned for any reason, e.g. * arrival of an interrupt */ rc = psci_cpu_suspend_start(&ep, target_pwrlvl, &state_info, is_power_down_state); return rc; } int psci_system_suspend(uintptr_t entrypoint, u_register_t context_id) { int rc; psci_power_state_t state_info; entry_point_info_t ep; /* Check if the current CPU is the last ON CPU in the system */ if (!psci_is_last_on_cpu()) return PSCI_E_DENIED; /* Validate the entry point and get the entry_point_info */ rc = psci_validate_entry_point(&ep, entrypoint, context_id); if (rc != PSCI_E_SUCCESS) return rc; /* Query the psci_power_state for system suspend */ psci_query_sys_suspend_pwrstate(&state_info); /* * Check if platform allows suspend to Highest power level * (System level) */ if (psci_find_target_suspend_lvl(&state_info) < PLAT_MAX_PWR_LVL) return PSCI_E_DENIED; /* Ensure that the psci_power_state makes sense */ assert(psci_validate_suspend_req(&state_info, PSTATE_TYPE_POWERDOWN) == PSCI_E_SUCCESS); assert(is_local_state_off( state_info.pwr_domain_state[PLAT_MAX_PWR_LVL]) != 0); /* * Do what is needed to enter the system suspend state. This function * might return if the power down was abandoned for any reason, e.g. * arrival of an interrupt */ rc = psci_cpu_suspend_start(&ep, PLAT_MAX_PWR_LVL, &state_info, PSTATE_TYPE_POWERDOWN); return rc; } int psci_cpu_off(void) { int rc; unsigned int target_pwrlvl = PLAT_MAX_PWR_LVL; /* * Do what is needed to power off this CPU and possible higher power * levels if it able to do so. Upon success, enter the final wfi * which will power down this CPU. */ rc = psci_do_cpu_off(target_pwrlvl); /* * The only error cpu_off can return is E_DENIED. So check if that's * indeed the case. */ assert(rc == PSCI_E_DENIED); return rc; } int psci_affinity_info(u_register_t target_affinity, unsigned int lowest_affinity_level) { unsigned int target_idx; /* Validate the target affinity */ if (!is_valid_mpidr(target_affinity)) return PSCI_E_INVALID_PARAMS; /* We dont support level higher than PSCI_CPU_PWR_LVL */ if (lowest_affinity_level > PSCI_CPU_PWR_LVL) return PSCI_E_INVALID_PARAMS; /* Calculate the cpu index of the target */ target_idx = (unsigned int) plat_core_pos_by_mpidr(target_affinity); /* * Generic management: * Perform cache maintanence ahead of reading the target CPU state to * ensure that the data is not stale. * There is a theoretical edge case where the cache may contain stale * data for the target CPU data - this can occur under the following * conditions: * - the target CPU is in another cluster from the current * - the target CPU was the last CPU to shutdown on its cluster * - the cluster was removed from coherency as part of the CPU shutdown * * In this case the cache maintenace that was performed as part of the * target CPUs shutdown was not seen by the current CPU's cluster. And * so the cache may contain stale data for the target CPU. */ flush_cpu_data_by_index(target_idx, psci_svc_cpu_data.aff_info_state); return psci_get_aff_info_state_by_idx(target_idx); } int psci_migrate(u_register_t target_cpu) { int rc; u_register_t resident_cpu_mpidr; /* Validate the target cpu */ if (!is_valid_mpidr(target_cpu)) return PSCI_E_INVALID_PARAMS; rc = psci_spd_migrate_info(&resident_cpu_mpidr); if (rc != PSCI_TOS_UP_MIG_CAP) return (rc == PSCI_TOS_NOT_UP_MIG_CAP) ? PSCI_E_DENIED : PSCI_E_NOT_SUPPORTED; /* * Migrate should only be invoked on the CPU where * the Secure OS is resident. */ if (resident_cpu_mpidr != read_mpidr_el1()) return PSCI_E_NOT_PRESENT; /* Check the validity of the specified target cpu */ if (!is_valid_mpidr(target_cpu)) return PSCI_E_INVALID_PARAMS; assert((psci_spd_pm != NULL) && (psci_spd_pm->svc_migrate != NULL)); rc = psci_spd_pm->svc_migrate(read_mpidr_el1(), target_cpu); assert((rc == PSCI_E_SUCCESS) || (rc == PSCI_E_INTERN_FAIL)); return rc; } int psci_migrate_info_type(void) { u_register_t resident_cpu_mpidr; return psci_spd_migrate_info(&resident_cpu_mpidr); } u_register_t psci_migrate_info_up_cpu(void) { u_register_t resident_cpu_mpidr; int rc; /* * Return value of this depends upon what * psci_spd_migrate_info() returns. */ rc = psci_spd_migrate_info(&resident_cpu_mpidr); if ((rc != PSCI_TOS_NOT_UP_MIG_CAP) && (rc != PSCI_TOS_UP_MIG_CAP)) return (u_register_t)(register_t) PSCI_E_INVALID_PARAMS; return resident_cpu_mpidr; } int psci_node_hw_state(u_register_t target_cpu, unsigned int power_level) { int rc; /* Validate target_cpu */ if (!is_valid_mpidr(target_cpu)) return PSCI_E_INVALID_PARAMS; /* Validate power_level against PLAT_MAX_PWR_LVL */ if (power_level > PLAT_MAX_PWR_LVL) return PSCI_E_INVALID_PARAMS; /* * Dispatch this call to platform to query power controller, and pass on * to the caller what it returns */ assert(psci_plat_pm_ops->get_node_hw_state != NULL); rc = psci_plat_pm_ops->get_node_hw_state(target_cpu, power_level); assert(((rc >= HW_ON) && (rc <= HW_STANDBY)) || (rc == PSCI_E_NOT_SUPPORTED) || (rc == PSCI_E_INVALID_PARAMS)); return rc; } int psci_features(unsigned int psci_fid) { unsigned int local_caps = psci_caps; if (psci_fid == SMCCC_VERSION) return PSCI_E_SUCCESS; /* Check if it is a 64 bit function */ if (((psci_fid >> FUNCID_CC_SHIFT) & FUNCID_CC_MASK) == SMC_64) local_caps &= PSCI_CAP_64BIT_MASK; /* Check for invalid fid */ if (!(is_std_svc_call(psci_fid) && is_valid_fast_smc(psci_fid) && is_psci_fid(psci_fid))) return PSCI_E_NOT_SUPPORTED; /* Check if the psci fid is supported or not */ if ((local_caps & define_psci_cap(psci_fid)) == 0U) return PSCI_E_NOT_SUPPORTED; /* Format the feature flags */ if ((psci_fid == PSCI_CPU_SUSPEND_AARCH32) || (psci_fid == PSCI_CPU_SUSPEND_AARCH64)) { unsigned int ret = ((FF_PSTATE << FF_PSTATE_SHIFT) | (FF_SUPPORTS_OS_INIT_MODE << FF_MODE_SUPPORT_SHIFT)); return (int)ret; } /* Return 0 for all other fid's */ return PSCI_E_SUCCESS; } #if PSCI_OS_INIT_MODE int psci_set_suspend_mode(unsigned int mode) { if (psci_suspend_mode == mode) { return PSCI_E_SUCCESS; } if (mode == PLAT_COORD) { /* Check if the current CPU is the last ON CPU in the system */ if (!psci_is_last_on_cpu_safe()) { return PSCI_E_DENIED; } } if (mode == OS_INIT) { /* * Check if all CPUs in the system are ON or if the current * CPU is the last ON CPU in the system. */ if (!(psci_are_all_cpus_on_safe() || psci_is_last_on_cpu_safe())) { return PSCI_E_DENIED; } } psci_suspend_mode = mode; psci_flush_dcache_range((uintptr_t)&psci_suspend_mode, sizeof(psci_suspend_mode)); return PSCI_E_SUCCESS; } #endif /******************************************************************************* * PSCI top level handler for servicing SMCs. ******************************************************************************/ u_register_t psci_smc_handler(uint32_t smc_fid, u_register_t x1, u_register_t x2, u_register_t x3, u_register_t x4, void *cookie, void *handle, u_register_t flags) { u_register_t ret; if (is_caller_secure(flags)) return (u_register_t)SMC_UNK; /* Check the fid against the capabilities */ if ((psci_caps & define_psci_cap(smc_fid)) == 0U) return (u_register_t)SMC_UNK; if (((smc_fid >> FUNCID_CC_SHIFT) & FUNCID_CC_MASK) == SMC_32) { /* 32-bit PSCI function, clear top parameter bits */ uint32_t r1 = (uint32_t)x1; uint32_t r2 = (uint32_t)x2; uint32_t r3 = (uint32_t)x3; switch (smc_fid) { case PSCI_VERSION: ret = (u_register_t)psci_version(); break; case PSCI_CPU_OFF: ret = (u_register_t)psci_cpu_off(); break; case PSCI_CPU_SUSPEND_AARCH32: ret = (u_register_t)psci_cpu_suspend(r1, r2, r3); break; case PSCI_CPU_ON_AARCH32: ret = (u_register_t)psci_cpu_on(r1, r2, r3); break; case PSCI_AFFINITY_INFO_AARCH32: ret = (u_register_t)psci_affinity_info(r1, r2); break; case PSCI_MIG_AARCH32: ret = (u_register_t)psci_migrate(r1); break; case PSCI_MIG_INFO_TYPE: ret = (u_register_t)psci_migrate_info_type(); break; case PSCI_MIG_INFO_UP_CPU_AARCH32: ret = psci_migrate_info_up_cpu(); break; case PSCI_NODE_HW_STATE_AARCH32: ret = (u_register_t)psci_node_hw_state(r1, r2); break; case PSCI_SYSTEM_SUSPEND_AARCH32: ret = (u_register_t)psci_system_suspend(r1, r2); break; case PSCI_SYSTEM_OFF: psci_system_off(); /* We should never return from psci_system_off() */ break; case PSCI_SYSTEM_RESET: psci_system_reset(); /* We should never return from psci_system_reset() */ break; case PSCI_FEATURES: ret = (u_register_t)psci_features(r1); break; #if PSCI_OS_INIT_MODE case PSCI_SET_SUSPEND_MODE: ret = (u_register_t)psci_set_suspend_mode(r1); break; #endif #if ENABLE_PSCI_STAT case PSCI_STAT_RESIDENCY_AARCH32: ret = psci_stat_residency(r1, r2); break; case PSCI_STAT_COUNT_AARCH32: ret = psci_stat_count(r1, r2); break; #endif case PSCI_MEM_PROTECT: ret = psci_mem_protect(r1); break; case PSCI_MEM_CHK_RANGE_AARCH32: ret = psci_mem_chk_range(r1, r2); break; case PSCI_SYSTEM_RESET2_AARCH32: /* We should never return from psci_system_reset2() */ ret = psci_system_reset2(r1, r2); break; default: WARN("Unimplemented PSCI Call: 0x%x\n", smc_fid); ret = (u_register_t)SMC_UNK; break; } } else { /* 64-bit PSCI function */ switch (smc_fid) { case PSCI_CPU_SUSPEND_AARCH64: ret = (u_register_t) psci_cpu_suspend((unsigned int)x1, x2, x3); break; case PSCI_CPU_ON_AARCH64: ret = (u_register_t)psci_cpu_on(x1, x2, x3); break; case PSCI_AFFINITY_INFO_AARCH64: ret = (u_register_t) psci_affinity_info(x1, (unsigned int)x2); break; case PSCI_MIG_AARCH64: ret = (u_register_t)psci_migrate(x1); break; case PSCI_MIG_INFO_UP_CPU_AARCH64: ret = psci_migrate_info_up_cpu(); break; case PSCI_NODE_HW_STATE_AARCH64: ret = (u_register_t)psci_node_hw_state( x1, (unsigned int) x2); break; case PSCI_SYSTEM_SUSPEND_AARCH64: ret = (u_register_t)psci_system_suspend(x1, x2); break; #if ENABLE_PSCI_STAT case PSCI_STAT_RESIDENCY_AARCH64: ret = psci_stat_residency(x1, (unsigned int) x2); break; case PSCI_STAT_COUNT_AARCH64: ret = psci_stat_count(x1, (unsigned int) x2); break; #endif case PSCI_MEM_CHK_RANGE_AARCH64: ret = psci_mem_chk_range(x1, x2); break; case PSCI_SYSTEM_RESET2_AARCH64: /* We should never return from psci_system_reset2() */ ret = psci_system_reset2((uint32_t) x1, x2); break; default: WARN("Unimplemented PSCI Call: 0x%x\n", smc_fid); ret = (u_register_t)SMC_UNK; break; } } return ret; }