/* * Copyright (c) 2017-2024, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include static void *fdt; /******************************************************************************* * This function checks device tree file with its header. * Returns 0 on success and a negative FDT error code on failure. ******************************************************************************/ int dt_open_and_check(uintptr_t dt_addr) { int ret; ret = fdt_check_header((void *)dt_addr); if (ret == 0) { fdt = (void *)dt_addr; } return ret; } /******************************************************************************* * This function gets the address of the DT. * If DT is OK, fdt_addr is filled with DT address. * Returns 1 if success, 0 otherwise. ******************************************************************************/ int fdt_get_address(void **fdt_addr) { if (fdt == NULL) { return 0; } *fdt_addr = fdt; return 1; } /******************************************************************************* * This function check the presence of a node (generic use of fdt library). * Returns true if present, else return false. ******************************************************************************/ bool fdt_check_node(int node) { int len; const char *cchar; cchar = fdt_get_name(fdt, node, &len); return (cchar != NULL) && (len >= 0); } /******************************************************************************* * This function return global node status (generic use of fdt library). ******************************************************************************/ uint8_t fdt_get_status(int node) { uint8_t status = DT_DISABLED; const char *cchar; cchar = fdt_getprop(fdt, node, "status", NULL); if ((cchar == NULL) || (strncmp(cchar, "okay", strlen("okay")) == 0)) { status |= DT_NON_SECURE; } cchar = fdt_getprop(fdt, node, "secure-status", NULL); if (((cchar == NULL) && (status == DT_NON_SECURE)) || ((cchar != NULL) && (strncmp(cchar, "okay", strlen("okay")) == 0))) { status |= DT_SECURE; } return status; } #if ENABLE_ASSERTIONS /******************************************************************************* * This function returns the address cells from the node parent. * Returns: * - #address-cells value if success. * - invalid value if error. * - a default value if undefined #address-cells property as per libfdt * implementation. ******************************************************************************/ static int fdt_get_node_parent_address_cells(int node) { int parent; parent = fdt_parent_offset(fdt, node); if (parent < 0) { return -FDT_ERR_NOTFOUND; } return fdt_address_cells(fdt, parent); } #endif /******************************************************************************* * This function gets the stdout pin configuration information from the DT. * And then calls the sub-function to treat it and set GPIO registers. * Returns 0 on success and a negative FDT error code on failure. ******************************************************************************/ int dt_set_stdout_pinctrl(void) { int node; node = fdt_get_stdout_node_offset(fdt); if (node < 0) { return -FDT_ERR_NOTFOUND; } return dt_set_pinctrl_config(node); } /******************************************************************************* * This function fills the generic information from a given node. ******************************************************************************/ void dt_fill_device_info(struct dt_node_info *info, int node) { const fdt32_t *cuint; assert(fdt_get_node_parent_address_cells(node) == 1); cuint = fdt_getprop(fdt, node, "reg", NULL); if (cuint != NULL) { info->base = fdt32_to_cpu(*cuint); } else { info->base = 0; } cuint = fdt_getprop(fdt, node, "clocks", NULL); if (cuint != NULL) { cuint++; info->clock = (int)fdt32_to_cpu(*cuint); } else { info->clock = -1; } cuint = fdt_getprop(fdt, node, "resets", NULL); if (cuint != NULL) { cuint++; info->reset = (int)fdt32_to_cpu(*cuint); } else { info->reset = -1; } info->status = fdt_get_status(node); } /******************************************************************************* * This function retrieve the generic information from DT. * Returns node on success and a negative FDT error code on failure. ******************************************************************************/ int dt_get_node(struct dt_node_info *info, int offset, const char *compat) { int node; node = fdt_node_offset_by_compatible(fdt, offset, compat); if (node < 0) { return -FDT_ERR_NOTFOUND; } dt_fill_device_info(info, node); return node; } /******************************************************************************* * This function gets the UART instance info of stdout from the DT. * Returns node on success and a negative FDT error code on failure. ******************************************************************************/ int dt_get_stdout_uart_info(struct dt_node_info *info) { int node; node = fdt_get_stdout_node_offset(fdt); if (node < 0) { return -FDT_ERR_NOTFOUND; } dt_fill_device_info(info, node); return node; } /******************************************************************************* * This function returns the node offset matching compatible string in the DT, * and also matching the reg property with the given address. * Returns value on success, and error value on failure. ******************************************************************************/ int dt_match_instance_by_compatible(const char *compatible, uintptr_t address) { int node; fdt_for_each_compatible_node(fdt, node, compatible) { const fdt32_t *cuint; assert(fdt_get_node_parent_address_cells(node) == 1); cuint = fdt_getprop(fdt, node, "reg", NULL); if (cuint == NULL) { continue; } if ((uintptr_t)fdt32_to_cpu(*cuint) == address) { return node; } } return -FDT_ERR_NOTFOUND; } /******************************************************************************* * This function gets DDR size information from the DT. * Returns value in bytes on success, and 0 on failure. ******************************************************************************/ size_t dt_get_ddr_size(void) { static size_t size; int node; if (size != 0U) { return size; } node = fdt_node_offset_by_compatible(fdt, -1, DT_DDR_COMPAT); if (node < 0) { INFO("%s: Cannot read DDR node in DT\n", __func__); return 0U; } #ifdef __aarch64__ size = (size_t)fdt_read_uint64_default(fdt, node, "st,mem-size", 0ULL); #else /* __aarch64__ */ size = (size_t)fdt_read_uint32_default(fdt, node, "st,mem-size", 0U); #endif /* __aarch64__ */ flush_dcache_range((uintptr_t)&size, sizeof(size_t)); return size; } /******************************************************************************* * This function gets PWR VDD regulator voltage information from the DT. * Returns value in microvolts on success, and 0 on failure. ******************************************************************************/ uint32_t dt_get_pwr_vdd_voltage(void) { struct rdev *regul = dt_get_vdd_regulator(); uint16_t min; if (regul == NULL) { return 0; } regulator_get_range(regul, &min, NULL); return (uint32_t)min * 1000U; } /******************************************************************************* * This function retrieves VDD supply regulator from DT. * Returns an rdev taken from supply node, NULL otherwise. ******************************************************************************/ struct rdev *dt_get_vdd_regulator(void) { int node = fdt_node_offset_by_compatible(fdt, -1, DT_PWR_COMPAT); if (node < 0) { return NULL; } return regulator_get_by_supply_name(fdt, node, "vdd"); } /******************************************************************************* * This function retrieves CPU supply regulator from DT. * Returns an rdev taken from supply node, NULL otherwise. ******************************************************************************/ struct rdev *dt_get_cpu_regulator(void) { int node = fdt_path_offset(fdt, "/cpus/cpu@0"); if (node < 0) { return NULL; } return regulator_get_by_supply_name(fdt, node, "cpu"); } /******************************************************************************* * This function retrieves board model from DT * Returns string taken from model node, NULL otherwise ******************************************************************************/ const char *dt_get_board_model(void) { int node = fdt_path_offset(fdt, "/"); if (node < 0) { return NULL; } return (const char *)fdt_getprop(fdt, node, "model", NULL); } /******************************************************************************* * dt_find_otp_name: get OTP ID and length in DT. * name: sub-node name to look up. * otp: pointer to read OTP number or NULL. * otp_len: pointer to read OTP length in bits or NULL. * return value: 0 if no error, an FDT error value otherwise. ******************************************************************************/ int dt_find_otp_name(const char *name, uint32_t *otp, uint32_t *otp_len) { int node; int len; const fdt32_t *cuint; if ((name == NULL) || (otp == NULL)) { return -FDT_ERR_BADVALUE; } node = fdt_node_offset_by_compatible(fdt, -1, DT_BSEC_COMPAT); if (node < 0) { return node; } node = fdt_subnode_offset(fdt, node, name); if (node < 0) { ERROR("nvmem node %s not found\n", name); return node; } cuint = fdt_getprop(fdt, node, "reg", &len); if ((cuint == NULL) || (len != (2 * (int)sizeof(uint32_t)))) { ERROR("Malformed nvmem node %s: ignored\n", name); return -FDT_ERR_BADVALUE; } if ((fdt32_to_cpu(*cuint) % sizeof(uint32_t)) != 0U) { ERROR("Misaligned nvmem %s element: ignored\n", name); return -FDT_ERR_BADVALUE; } if (otp != NULL) { *otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t); } if (otp_len != NULL) { cuint++; *otp_len = fdt32_to_cpu(*cuint) * CHAR_BIT; } return 0; } /******************************************************************************* * This function gets the pin count for a GPIO bank based from the FDT. * It also checks node consistency. ******************************************************************************/ int fdt_get_gpio_bank_pin_count(unsigned int bank) { int pinctrl_node; int node; uint32_t bank_offset; pinctrl_node = stm32_get_gpio_bank_pinctrl_node(fdt, bank); if (pinctrl_node < 0) { return -FDT_ERR_NOTFOUND; } bank_offset = stm32_get_gpio_bank_offset(bank); fdt_for_each_subnode(node, fdt, pinctrl_node) { const fdt32_t *cuint; int pin_count = 0; int len; int i; if (fdt_getprop(fdt, node, "gpio-controller", NULL) == NULL) { continue; } cuint = fdt_getprop(fdt, node, "reg", NULL); if (cuint == NULL) { continue; } if (fdt32_to_cpu(*cuint) != bank_offset) { continue; } if (fdt_get_status(node) == DT_DISABLED) { return 0; } /* Parse gpio-ranges with its 4 parameters */ cuint = fdt_getprop(fdt, node, "gpio-ranges", &len); len /= sizeof(*cuint); if ((len % 4) != 0) { return -FDT_ERR_BADVALUE; } /* Get the last defined gpio line (offset + nb of pins) */ for (i = 0; i < len; i += 4) { pin_count = MAX(pin_count, (int)(fdt32_to_cpu(cuint[i + 1]) + fdt32_to_cpu(cuint[i + 3]))); } return pin_count; } return 0; }