/* * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef TSPD_PRIVATE_H #define TSPD_PRIVATE_H #include #include #include #include #include /******************************************************************************* * Secure Payload PM state information e.g. SP is suspended, uninitialised etc * and macros to access the state information in the per-cpu 'state' flags ******************************************************************************/ #define TSP_PSTATE_OFF 0 #define TSP_PSTATE_ON 1 #define TSP_PSTATE_SUSPEND 2 #define TSP_PSTATE_SHIFT 0 #define TSP_PSTATE_MASK 0x3 #define get_tsp_pstate(state) ((state >> TSP_PSTATE_SHIFT) & TSP_PSTATE_MASK) #define clr_tsp_pstate(state) (state &= ~(TSP_PSTATE_MASK \ << TSP_PSTATE_SHIFT)) #define set_tsp_pstate(st, pst) do { \ clr_tsp_pstate(st); \ st |= (pst & TSP_PSTATE_MASK) << \ TSP_PSTATE_SHIFT; \ } while (0); /* * This flag is used by the TSPD to determine if the TSP is servicing a yielding * SMC request prior to programming the next entry into the TSP e.g. if TSP * execution is preempted by a non-secure interrupt and handed control to the * normal world. If another request which is distinct from what the TSP was * previously doing arrives, then this flag will be help the TSPD to either * reject the new request or service it while ensuring that the previous context * is not corrupted. */ #define YIELD_SMC_ACTIVE_FLAG_SHIFT 2 #define YIELD_SMC_ACTIVE_FLAG_MASK 1 #define get_yield_smc_active_flag(state) \ ((state >> YIELD_SMC_ACTIVE_FLAG_SHIFT) \ & YIELD_SMC_ACTIVE_FLAG_MASK) #define set_yield_smc_active_flag(state) (state |= \ 1 << YIELD_SMC_ACTIVE_FLAG_SHIFT) #define clr_yield_smc_active_flag(state) (state &= \ ~(YIELD_SMC_ACTIVE_FLAG_MASK \ << YIELD_SMC_ACTIVE_FLAG_SHIFT)) /******************************************************************************* * Secure Payload execution state information i.e. aarch32 or aarch64 ******************************************************************************/ #define TSP_AARCH32 MODE_RW_32 #define TSP_AARCH64 MODE_RW_64 /******************************************************************************* * The SPD should know the type of Secure Payload. ******************************************************************************/ #define TSP_TYPE_UP PSCI_TOS_NOT_UP_MIG_CAP #define TSP_TYPE_UPM PSCI_TOS_UP_MIG_CAP #define TSP_TYPE_MP PSCI_TOS_NOT_PRESENT_MP /******************************************************************************* * Secure Payload migrate type information as known to the SPD. We assume that * the SPD is dealing with an MP Secure Payload. ******************************************************************************/ #define TSP_MIGRATE_INFO TSP_TYPE_MP /******************************************************************************* * Number of cpus that the present on this platform. TODO: Rely on a topology * tree to determine this in the future to avoid assumptions about mpidr * allocation ******************************************************************************/ #define TSPD_CORE_COUNT PLATFORM_CORE_COUNT /******************************************************************************* * Constants that allow assembler code to preserve callee-saved registers of the * C runtime context while performing a security state switch. ******************************************************************************/ #define TSPD_C_RT_CTX_X19 0x0 #define TSPD_C_RT_CTX_X20 0x8 #define TSPD_C_RT_CTX_X21 0x10 #define TSPD_C_RT_CTX_X22 0x18 #define TSPD_C_RT_CTX_X23 0x20 #define TSPD_C_RT_CTX_X24 0x28 #define TSPD_C_RT_CTX_X25 0x30 #define TSPD_C_RT_CTX_X26 0x38 #define TSPD_C_RT_CTX_X27 0x40 #define TSPD_C_RT_CTX_X28 0x48 #define TSPD_C_RT_CTX_X29 0x50 #define TSPD_C_RT_CTX_X30 0x58 #define TSPD_C_RT_CTX_SIZE 0x60 #define TSPD_C_RT_CTX_ENTRIES (TSPD_C_RT_CTX_SIZE >> DWORD_SHIFT) /******************************************************************************* * Constants that allow assembler code to preserve caller-saved registers of the * SP context while performing a TSP preemption. * Note: These offsets have to match with the offsets for the corresponding * registers in cpu_context as we are using memcpy to copy the values from * cpu_context to sp_ctx. ******************************************************************************/ #define TSPD_SP_CTX_X0 0x0 #define TSPD_SP_CTX_X1 0x8 #define TSPD_SP_CTX_X2 0x10 #define TSPD_SP_CTX_X3 0x18 #define TSPD_SP_CTX_X4 0x20 #define TSPD_SP_CTX_X5 0x28 #define TSPD_SP_CTX_X6 0x30 #define TSPD_SP_CTX_X7 0x38 #define TSPD_SP_CTX_X8 0x40 #define TSPD_SP_CTX_X9 0x48 #define TSPD_SP_CTX_X10 0x50 #define TSPD_SP_CTX_X11 0x58 #define TSPD_SP_CTX_X12 0x60 #define TSPD_SP_CTX_X13 0x68 #define TSPD_SP_CTX_X14 0x70 #define TSPD_SP_CTX_X15 0x78 #define TSPD_SP_CTX_X16 0x80 #define TSPD_SP_CTX_X17 0x88 #define TSPD_SP_CTX_SIZE 0x90 #define TSPD_SP_CTX_ENTRIES (TSPD_SP_CTX_SIZE >> DWORD_SHIFT) #ifndef __ASSEMBLER__ #include #include /* * The number of arguments to save during a SMC call for TSP. * Currently only x1 and x2 are used by TSP. */ #define TSP_NUM_ARGS 0x2 /* AArch64 callee saved general purpose register context structure. */ DEFINE_REG_STRUCT(c_rt_regs, TSPD_C_RT_CTX_ENTRIES); /* * Compile time assertion to ensure that both the compiler and linker * have the same double word aligned view of the size of the C runtime * register context. */ CASSERT(TSPD_C_RT_CTX_SIZE == sizeof(c_rt_regs_t), assert_spd_c_rt_regs_size_mismatch); /* SEL1 Secure payload (SP) caller saved register context structure. */ DEFINE_REG_STRUCT(sp_ctx_regs, TSPD_SP_CTX_ENTRIES); /* * Compile time assertion to ensure that both the compiler and linker * have the same double word aligned view of the size of the C runtime * register context. */ CASSERT(TSPD_SP_CTX_SIZE == sizeof(sp_ctx_regs_t), assert_spd_sp_regs_size_mismatch); /******************************************************************************* * Structure which helps the SPD to maintain the per-cpu state of the SP. * 'saved_spsr_el3' - temporary copy to allow S-EL1 interrupt handling when * the TSP has been preempted. * 'saved_elr_el3' - temporary copy to allow S-EL1 interrupt handling when * the TSP has been preempted. * 'state' - collection of flags to track SP state e.g. on/off * 'mpidr' - mpidr to associate a context with a cpu * 'c_rt_ctx' - stack address to restore C runtime context from after * returning from a synchronous entry into the SP. * 'cpu_ctx' - space to maintain SP architectural state * 'saved_tsp_args' - space to store arguments for TSP arithmetic operations * which will queried using the TSP_GET_ARGS SMC by TSP. * 'sp_ctx' - space to save the SEL1 Secure Payload(SP) caller saved * register context after it has been preempted by an EL3 * routed NS interrupt and when a Secure Interrupt is taken * to SP. ******************************************************************************/ typedef struct tsp_context { uint64_t saved_elr_el3; uint32_t saved_spsr_el3; uint32_t state; uint64_t mpidr; uint64_t c_rt_ctx; cpu_context_t cpu_ctx; uint64_t saved_tsp_args[TSP_NUM_ARGS]; #if TSP_NS_INTR_ASYNC_PREEMPT sp_ctx_regs_t sp_ctx; bool preempted_by_sel1_intr; #endif } tsp_context_t; /* Helper macros to store and retrieve tsp args from tsp_context */ #define store_tsp_args(_tsp_ctx, _x1, _x2) do {\ _tsp_ctx->saved_tsp_args[0] = _x1;\ _tsp_ctx->saved_tsp_args[1] = _x2;\ } while (0) #define get_tsp_args(_tsp_ctx, _x1, _x2) do {\ _x1 = _tsp_ctx->saved_tsp_args[0];\ _x2 = _tsp_ctx->saved_tsp_args[1];\ } while (0) /* TSPD power management handlers */ extern const spd_pm_ops_t tspd_pm; /******************************************************************************* * Forward declarations ******************************************************************************/ typedef struct tsp_vectors tsp_vectors_t; /******************************************************************************* * Function & Data prototypes ******************************************************************************/ uint64_t tspd_enter_sp(uint64_t *c_rt_ctx); void __dead2 tspd_exit_sp(uint64_t c_rt_ctx, uint64_t ret); uint64_t tspd_synchronous_sp_entry(tsp_context_t *tsp_ctx); void __dead2 tspd_synchronous_sp_exit(tsp_context_t *tsp_ctx, uint64_t ret); void tspd_init_tsp_ep_state(struct entry_point_info *tsp_entry_point, uint32_t rw, uint64_t pc, tsp_context_t *tsp_ctx); int tspd_abort_preempted_smc(tsp_context_t *tsp_ctx); uint64_t tspd_handle_sp_preemption(void *handle); extern tsp_context_t tspd_sp_context[TSPD_CORE_COUNT]; extern tsp_vectors_t *tsp_vectors; #endif /*__ASSEMBLER__*/ #endif /* TSPD_PRIVATE_H */