/* * Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef XLAT_TABLES_V2_H #define XLAT_TABLES_V2_H #include #include #ifndef __ASSEMBLER__ #include #include #include /* * Default granularity size for an mmap_region_t. * Useful when no specific granularity is required. * * By default, choose the biggest possible block size allowed by the * architectural state and granule size in order to minimize the number of page * tables required for the mapping. */ #define REGION_DEFAULT_GRANULARITY XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC) /* Helper macro to define an mmap_region_t. */ #define MAP_REGION(_pa, _va, _sz, _attr) \ MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY) /* Helper macro to define an mmap_region_t with an identity mapping. */ #define MAP_REGION_FLAT(_adr, _sz, _attr) \ MAP_REGION(_adr, _adr, _sz, _attr) /* * Helper macro to define entries for mmap_region_t. It allows to define 'pa' * and sets 'va' to 0 for each region. To be used with mmap_add_alloc_va(). */ #define MAP_REGION_ALLOC_VA(pa, sz, attr) MAP_REGION(pa, 0, sz, attr) /* * Helper macro to define an mmap_region_t to map with the desired granularity * of translation tables. * * The granularity value passed to this macro must be a valid block or page * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB. * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library * is free to choose the granularity for this region. In this case, it is * equivalent to the MAP_REGION() macro. */ #define MAP_REGION2(_pa, _va, _sz, _attr, _gr) \ MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr) /* * Shifts and masks to access fields of an mmap attribute */ #define MT_TYPE_MASK U(0x7) #define MT_TYPE(_attr) ((_attr) & MT_TYPE_MASK) /* Access permissions (RO/RW) */ #define MT_PERM_SHIFT U(3) /* Physical address space (SECURE/NS/Root/Realm) */ #define MT_PAS_SHIFT U(4) #define MT_PAS_MASK (U(3) << MT_PAS_SHIFT) #define MT_PAS(_attr) ((_attr) & MT_PAS_MASK) /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */ #define MT_EXECUTE_SHIFT U(6) /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */ #define MT_USER_SHIFT U(7) /* Shareability attribute for the memory region */ #define MT_SHAREABILITY_SHIFT U(8) #define MT_SHAREABILITY_MASK (U(3) << MT_SHAREABILITY_SHIFT) #define MT_SHAREABILITY(_attr) ((_attr) & MT_SHAREABILITY_MASK) /* All other bits are reserved */ /* * Memory mapping attributes */ /* * Memory types supported. * These are organised so that, going down the list, the memory types are * getting weaker; conversely going up the list the memory types are getting * stronger. */ #define MT_DEVICE U(0) #define MT_NON_CACHEABLE U(1) #define MT_MEMORY U(2) /* Values up to 7 are reserved to add new memory types in the future */ #define MT_RO (U(0) << MT_PERM_SHIFT) #define MT_RW (U(1) << MT_PERM_SHIFT) #define MT_SECURE (U(0) << MT_PAS_SHIFT) #define MT_NS (U(1) << MT_PAS_SHIFT) #define MT_ROOT (U(2) << MT_PAS_SHIFT) #define MT_REALM (U(3) << MT_PAS_SHIFT) /* * Access permissions for instruction execution are only relevant for normal * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially * overridden) otherwise: * - Device memory is always marked as execute-never. * - Read-write normal memory is always marked as execute-never. */ #define MT_EXECUTE (U(0) << MT_EXECUTE_SHIFT) #define MT_EXECUTE_NEVER (U(1) << MT_EXECUTE_SHIFT) /* * When mapping a region at EL0 or EL1, this attribute will be used to determine * if a User mapping (EL0) will be created or a Privileged mapping (EL1). */ #define MT_USER (U(1) << MT_USER_SHIFT) #define MT_PRIVILEGED (U(0) << MT_USER_SHIFT) /* * Shareability defines the visibility of any cache changes to * all masters belonging to a shareable domain. * * MT_SHAREABILITY_ISH: For inner shareable domain * MT_SHAREABILITY_OSH: For outer shareable domain * MT_SHAREABILITY_NSH: For non shareable domain */ #define MT_SHAREABILITY_ISH (U(1) << MT_SHAREABILITY_SHIFT) #define MT_SHAREABILITY_OSH (U(2) << MT_SHAREABILITY_SHIFT) #define MT_SHAREABILITY_NSH (U(3) << MT_SHAREABILITY_SHIFT) /* Compound attributes for most common usages */ #define MT_CODE (MT_MEMORY | MT_RO | MT_EXECUTE) #define MT_RO_DATA (MT_MEMORY | MT_RO | MT_EXECUTE_NEVER) #define MT_RW_DATA (MT_MEMORY | MT_RW | MT_EXECUTE_NEVER) /* * Structure for specifying a single region of memory. */ typedef struct mmap_region { unsigned long long base_pa; uintptr_t base_va; size_t size; unsigned int attr; /* Desired granularity. See the MAP_REGION2() macro for more details. */ size_t granularity; } mmap_region_t; /* * Translation regimes supported by this library. EL_REGIME_INVALID tells the * library to detect it at runtime. */ #define EL1_EL0_REGIME 1 #define EL2_REGIME 2 #define EL3_REGIME 3 #define EL_REGIME_INVALID -1 /* Memory type for EL3 regions. With RME, EL3 is in ROOT PAS */ #if ENABLE_RME #define EL3_PAS MT_ROOT #else #define EL3_PAS MT_SECURE #endif /* ENABLE_RME */ /* * Declare the translation context type. * Its definition is private. */ typedef struct xlat_ctx xlat_ctx_t; /* * Statically allocate a translation context and associated structures. Also * initialize them. * * _ctx_name: * Prefix for the translation context variable. * E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'. * Useful to distinguish multiple contexts from one another. * * _mmap_count: * Number of mmap_region_t to allocate. * Would typically be MAX_MMAP_REGIONS for the translation context describing * the BL image currently executing. * * _xlat_tables_count: * Number of sub-translation tables to allocate. * Would typically be MAX_XLAT_TABLES for the translation context describing * the BL image currently executing. * Note that this is only for sub-tables ; at the initial lookup level, there * is always a single table. * * _virt_addr_space_size, _phy_addr_space_size: * Size (in bytes) of the virtual (resp. physical) address space. * Would typically be PLAT_VIRT_ADDR_SPACE_SIZE * (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the * BL image currently executing. */ #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \ _virt_addr_space_size, _phy_addr_space_size) \ REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ (_xlat_tables_count), \ (_virt_addr_space_size), \ (_phy_addr_space_size), \ EL_REGIME_INVALID, \ ".xlat_table", ".base_xlat_table") /* * Same as REGISTER_XLAT_CONTEXT plus the additional parameters: * * _xlat_regime: * Specify the translation regime managed by this xlat_ctx_t instance. The * values are the one from the EL*_REGIME definitions. * * _section_name: * Specify the name of the section where the translation tables have to be * placed by the linker. * * _base_table_section_name: * Specify the name of the section where the base translation tables have to * be placed by the linker. */ #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \ _virt_addr_space_size, _phy_addr_space_size, \ _xlat_regime, _section_name, _base_table_section_name) \ REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ (_xlat_tables_count), \ (_virt_addr_space_size), \ (_phy_addr_space_size), \ (_xlat_regime), \ (_section_name), (_base_table_section_name) \ ) /****************************************************************************** * Generic translation table APIs. * Each API comes in 2 variants: * - one that acts on the current translation context for this BL image * - another that acts on the given translation context instead. This variant * is named after the 1st version, with an additional '_ctx' suffix. *****************************************************************************/ /* * Initialize translation tables from the current list of mmap regions. Calling * this function marks the transition point after which static regions can no * longer be added. */ void init_xlat_tables(void); void init_xlat_tables_ctx(xlat_ctx_t *ctx); /* * Fill all fields of a dynamic translation tables context. It must be done * either statically with REGISTER_XLAT_CONTEXT() or at runtime with this * function. */ void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max, uintptr_t va_max, struct mmap_region *mmap, unsigned int mmap_num, uint64_t **tables, unsigned int tables_num, uint64_t *base_table, int xlat_regime, int *mapped_regions); /* * Add a static region with defined base PA and base VA. This function can only * be used before initializing the translation tables. The region cannot be * removed afterwards. */ void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size, unsigned int attr); void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); /* * Add an array of static regions with defined base PA and base VA. This * function can only be used before initializing the translation tables. The * regions cannot be removed afterwards. */ void mmap_add(const mmap_region_t *mm); void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); /* * Add a region with defined base PA. Returns base VA calculated using the * highest existing region in the mmap array even if it fails to allocate the * region. */ void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va, size_t size, unsigned int attr); void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); /* * Add an array of static regions with defined base PA, and fill the base VA * field on the array of structs. This function can only be used before * initializing the translation tables. The regions cannot be removed afterwards. */ void mmap_add_alloc_va(mmap_region_t *mm); #if PLAT_XLAT_TABLES_DYNAMIC /* * Add a dynamic region with defined base PA and base VA. This type of region * can be added and removed even after the translation tables are initialized. * * Returns: * 0: Success. * EINVAL: Invalid values were used as arguments. * ERANGE: Memory limits were surpassed. * ENOMEM: Not enough space in the mmap array or not enough free xlat tables. * EPERM: It overlaps another region in an invalid way. */ int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, size_t size, unsigned int attr); int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); /* * Add a dynamic region with defined base PA. Returns base VA calculated using * the highest existing region in the mmap array even if it fails to allocate * the region. * * mmap_add_dynamic_region_alloc_va() returns the allocated VA in 'base_va'. * mmap_add_dynamic_region_alloc_va_ctx() returns it in 'mm->base_va'. * * It returns the same error values as mmap_add_dynamic_region(). */ int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va, size_t size, unsigned int attr); int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); /* * Remove a region with the specified base VA and size. Only dynamic regions can * be removed, and they can be removed even if the translation tables are * initialized. * * Returns: * 0: Success. * EINVAL: The specified region wasn't found. * EPERM: Trying to remove a static region. */ int mmap_remove_dynamic_region(uintptr_t base_va, size_t size); int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, uintptr_t base_va, size_t size); #endif /* PLAT_XLAT_TABLES_DYNAMIC */ /* * Change the memory attributes of the memory region starting from a given * virtual address in a set of translation tables. * * This function can only be used after the translation tables have been * initialized. * * The base address of the memory region must be aligned on a page boundary. * The size of this memory region must be a multiple of a page size. * The memory region must be already mapped by the given translation tables * and it must be mapped at the granularity of a page. * * Return 0 on success, a negative value on error. * * In case of error, the memory attributes remain unchanged and this function * has no effect. * * ctx * Translation context to work on. * base_va: * Virtual address of the 1st page to change the attributes of. * size: * Size in bytes of the memory region. * attr: * New attributes of the page tables. The attributes that can be changed are * data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE) * and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts * that are used in the EL1&0 translation regime. Also, note that this * function doesn't allow to remap a region as RW and executable, or to remap * device memory as executable. * * NOTE: The caller of this function must be able to write to the translation * tables, i.e. the memory where they are stored must be mapped with read-write * access permissions. This function assumes it is the case. If this is not * the case then this function might trigger a data abort exception. * * NOTE2: The caller is responsible for making sure that the targeted * translation tables are not modified by any other code while this function is * executing. */ int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va, size_t size, uint32_t attr); int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr); #if PLAT_RO_XLAT_TABLES /* * Change the memory attributes of the memory region encompassing the higher * level translation tables to secure read-only data. * * Return 0 on success, a negative error code on error. */ int xlat_make_tables_readonly(void); #endif /* * Query the memory attributes of a memory page in a set of translation tables. * * Return 0 on success, a negative error code on error. * On success, the attributes are stored into *attr. * * ctx * Translation context to work on. * base_va * Virtual address of the page to get the attributes of. * There are no alignment restrictions on this address. The attributes of the * memory page it lies within are returned. * attr * Output parameter where to store the attributes of the targeted memory page. */ int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va, uint32_t *attr); int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr); #endif /*__ASSEMBLER__*/ #endif /* XLAT_TABLES_V2_H */