/* * Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #if ENABLE_RME #ifdef PLAT_qemu #include #elif PLAT_qemu_sbsa #include #endif /* PLAT_qemu */ #endif /* ENABLE_RME */ #ifdef PLAT_qemu_sbsa #include #endif #include "qemu_private.h" #define MAP_BL31_TOTAL MAP_REGION_FLAT( \ BL31_BASE, \ BL31_END - BL31_BASE, \ MT_MEMORY | MT_RW | EL3_PAS) #define MAP_BL31_RO MAP_REGION_FLAT( \ BL_CODE_BASE, \ BL_CODE_END - BL_CODE_BASE, \ MT_CODE | EL3_PAS), \ MAP_REGION_FLAT( \ BL_RO_DATA_BASE, \ BL_RO_DATA_END \ - BL_RO_DATA_BASE, \ MT_RO_DATA | EL3_PAS) #if USE_COHERENT_MEM #define MAP_BL_COHERENT_RAM MAP_REGION_FLAT( \ BL_COHERENT_RAM_BASE, \ BL_COHERENT_RAM_END \ - BL_COHERENT_RAM_BASE, \ MT_DEVICE | MT_RW | EL3_PAS) #endif /* * Placeholder variables for copying the arguments that have been passed to * BL3-1 from BL2. */ static entry_point_info_t bl32_image_ep_info; static entry_point_info_t bl33_image_ep_info; #if ENABLE_RME static entry_point_info_t rmm_image_ep_info; #endif static struct transfer_list_header *bl31_tl; /******************************************************************************* * Perform any BL3-1 early platform setup. Here is an opportunity to copy * parameters passed by the calling EL (S-EL1 in BL2 & EL3 in BL1) before * they are lost (potentially). This needs to be done before the MMU is * initialized so that the memory layout can be used while creating page * tables. BL2 has flushed this information to memory, so we are guaranteed * to pick up good data. ******************************************************************************/ void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1, u_register_t arg2, u_register_t arg3) { /* Initialize the console to provide early debug support */ qemu_console_init(); /* Platform names have to be lowercase. */ #ifdef PLAT_qemu_sbsa sbsa_platform_init(); #endif /* * Check params passed from BL2 */ bl_params_t *params_from_bl2 = (bl_params_t *)arg0; assert(params_from_bl2); assert(params_from_bl2->h.type == PARAM_BL_PARAMS); assert(params_from_bl2->h.version >= VERSION_2); bl_params_node_t *bl_params = params_from_bl2->head; /* * Copy BL33, BL32 and RMM (if present), entry point information. * They are stored in Secure RAM, in BL2's address space. */ while (bl_params) { if (bl_params->image_id == BL32_IMAGE_ID) bl32_image_ep_info = *bl_params->ep_info; #if ENABLE_RME if (bl_params->image_id == RMM_IMAGE_ID) rmm_image_ep_info = *bl_params->ep_info; #endif if (bl_params->image_id == BL33_IMAGE_ID) bl33_image_ep_info = *bl_params->ep_info; bl_params = bl_params->next_params_info; } if (!bl33_image_ep_info.pc) panic(); #if ENABLE_RME if (!rmm_image_ep_info.pc) panic(); #endif if (TRANSFER_LIST && arg1 == (TRANSFER_LIST_SIGNATURE | REGISTER_CONVENTION_VERSION_MASK) && transfer_list_check_header((void *)arg3) != TL_OPS_NON) { bl31_tl = (void *)arg3; /* saved TL address from BL2 */ } } #if ENABLE_RME #if PLAT_qemu /* * The GPT library might modify the gpt regions structure to optimize * the layout, so the array cannot be constant. */ static pas_region_t pas_regions[] = { QEMU_PAS_ROOT, QEMU_PAS_SECURE, QEMU_PAS_GPTS, QEMU_PAS_NS0, QEMU_PAS_REALM, QEMU_PAS_NS1, }; static inline void bl31_adjust_pas_regions(void) {} #elif PLAT_qemu_sbsa /* * The GPT library might modify the gpt regions structure to optimize * the layout, so the array cannot be constant. */ static pas_region_t pas_regions[] = { QEMU_PAS_ROOT, QEMU_PAS_SECURE, QEMU_PAS_GPTS, QEMU_PAS_REALM, QEMU_PAS_NS0, }; static void bl31_adjust_pas_regions(void) { uint64_t base_addr = 0, total_size = 0; struct platform_memory_data data; uint32_t node; /* * The amount of memory supported by the SBSA platform is dynamic * and dependent on user input. Since the configuration of the GPT * needs to reflect the system memory, QEMU_PAS_NS0 needs to be set * based on the information found in the device tree. */ for (node = 0; node < sbsa_platform_num_memnodes(); node++) { data = sbsa_platform_memory_node(node); if (data.nodeid == 0) { base_addr = data.addr_base; } total_size += data.addr_size; } /* Index '4' correspond to QEMU_PAS_NS0, see pas_regions[] above */ pas_regions[4].base_pa = base_addr; pas_regions[4].size = total_size; } #endif /* PLAT_qemu */ static void bl31_plat_gpt_setup(void) { /* * Initialize entire protected space to GPT_GPI_ANY. With each L0 entry * covering 1GB (currently the only supported option), then covering * 256TB of RAM (48-bit PA) would require a 2MB L0 region. At the * moment we use a 8KB table, which covers 1TB of RAM (40-bit PA). */ if (gpt_init_l0_tables(PLATFORM_GPCCR_PPS, PLAT_QEMU_L0_GPT_BASE, PLAT_QEMU_L0_GPT_SIZE + PLAT_QEMU_GPT_BITLOCK_SIZE) < 0) { ERROR("gpt_init_l0_tables() failed!\n"); panic(); } bl31_adjust_pas_regions(); /* Carve out defined PAS ranges. */ if (gpt_init_pas_l1_tables(GPCCR_PGS_4K, PLAT_QEMU_L1_GPT_BASE, PLAT_QEMU_L1_GPT_SIZE, pas_regions, (unsigned int)(sizeof(pas_regions) / sizeof(pas_region_t))) < 0) { ERROR("gpt_init_pas_l1_tables() failed!\n"); panic(); } INFO("Enabling Granule Protection Checks\n"); if (gpt_enable() < 0) { ERROR("gpt_enable() failed!\n"); panic(); } } #endif void bl31_plat_arch_setup(void) { const mmap_region_t bl_regions[] = { MAP_BL31_TOTAL, MAP_BL31_RO, #if USE_COHERENT_MEM MAP_BL_COHERENT_RAM, #endif #if ENABLE_RME MAP_GPT_L0_REGION, MAP_GPT_L1_REGION, MAP_RMM_SHARED_MEM, #endif {0} }; setup_page_tables(bl_regions, plat_qemu_get_mmap()); enable_mmu_el3(0); #if ENABLE_RME /* Initialise and enable granule protection after MMU. */ bl31_plat_gpt_setup(); /* * Initialise Granule Protection library and enable GPC for the primary * processor. The tables have already been initialized by a previous BL * stage, so there is no need to provide any PAS here. This function * sets up pointers to those tables. */ if (gpt_runtime_init() < 0) { ERROR("gpt_runtime_init() failed!\n"); panic(); } #endif /* ENABLE_RME */ } static void qemu_gpio_init(void) { #ifdef SECURE_GPIO_BASE pl061_gpio_init(); pl061_gpio_register(SECURE_GPIO_BASE, 0); #endif } void bl31_platform_setup(void) { plat_qemu_gic_init(); qemu_gpio_init(); } unsigned int plat_get_syscnt_freq2(void) { return read_cntfrq_el0(); } /******************************************************************************* * Return a pointer to the 'entry_point_info' structure of the next image * for the security state specified. BL3-3 corresponds to the non-secure * image type while BL3-2 corresponds to the secure image type. A NULL * pointer is returned if the image does not exist. ******************************************************************************/ entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) { entry_point_info_t *next_image_info; assert(sec_state_is_valid(type)); if (type == NON_SECURE) { next_image_info = &bl33_image_ep_info; } #if ENABLE_RME else if (type == REALM) { next_image_info = &rmm_image_ep_info; } #endif else { next_image_info = &bl32_image_ep_info; } /* * None of the images on the ARM development platforms can have 0x0 * as the entrypoint */ if (next_image_info->pc) return next_image_info; else return NULL; } void bl31_plat_runtime_setup(void) { #if TRANSFER_LIST if (bl31_tl) { /* * update the TL from S to NS memory before jump to BL33 * to reflect all changes in TL done by BL32 */ memcpy((void *)FW_NS_HANDOFF_BASE, bl31_tl, bl31_tl->max_size); } #endif console_flush(); console_switch_state(CONSOLE_FLAG_RUNTIME); }