/* * Copyright 2024 NXP * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #define MAX_STACK_DEPTH (40U) /* This is used for floating-point precision calculations. */ #define FP_PRECISION (100000000UL) struct s32cc_clk_drv { uintptr_t fxosc_base; uintptr_t armpll_base; uintptr_t periphpll_base; uintptr_t armdfs_base; uintptr_t cgm0_base; uintptr_t cgm1_base; uintptr_t cgm5_base; uintptr_t ddrpll_base; uintptr_t mc_me; uintptr_t mc_rgm; uintptr_t rdc; }; static int update_stack_depth(unsigned int *depth) { if (*depth == 0U) { return -ENOMEM; } (*depth)--; return 0; } static struct s32cc_clk_drv *get_drv(void) { static struct s32cc_clk_drv driver = { .fxosc_base = FXOSC_BASE_ADDR, .armpll_base = ARMPLL_BASE_ADDR, .periphpll_base = PERIPHPLL_BASE_ADDR, .armdfs_base = ARM_DFS_BASE_ADDR, .cgm0_base = CGM0_BASE_ADDR, .cgm1_base = CGM1_BASE_ADDR, .cgm5_base = MC_CGM5_BASE_ADDR, .ddrpll_base = DDRPLL_BASE_ADDR, .mc_me = MC_ME_BASE_ADDR, .mc_rgm = MC_RGM_BASE_ADDR, .rdc = RDC_BASE_ADDR, }; return &driver; } static int enable_module(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth); static struct s32cc_clk_obj *get_clk_parent(const struct s32cc_clk_obj *module) { const struct s32cc_clk *clk = s32cc_obj2clk(module); if (clk->module != NULL) { return clk->module; } if (clk->pclock != NULL) { return &clk->pclock->desc; } return NULL; } static int get_base_addr(enum s32cc_clk_source id, const struct s32cc_clk_drv *drv, uintptr_t *base) { int ret = 0; switch (id) { case S32CC_FXOSC: *base = drv->fxosc_base; break; case S32CC_ARM_PLL: *base = drv->armpll_base; break; case S32CC_PERIPH_PLL: *base = drv->periphpll_base; break; case S32CC_DDR_PLL: *base = drv->ddrpll_base; break; case S32CC_ARM_DFS: *base = drv->armdfs_base; break; case S32CC_CGM0: *base = drv->cgm0_base; break; case S32CC_CGM1: *base = drv->cgm1_base; break; case S32CC_CGM5: *base = drv->cgm5_base; break; case S32CC_FIRC: break; case S32CC_SIRC: break; default: ret = -EINVAL; break; } if (ret != 0) { ERROR("Unknown clock source id: %u\n", id); } return ret; } static void enable_fxosc(const struct s32cc_clk_drv *drv) { uintptr_t fxosc_base = drv->fxosc_base; uint32_t ctrl; ctrl = mmio_read_32(FXOSC_CTRL(fxosc_base)); if ((ctrl & FXOSC_CTRL_OSCON) != U(0)) { return; } ctrl = FXOSC_CTRL_COMP_EN; ctrl &= ~FXOSC_CTRL_OSC_BYP; ctrl |= FXOSC_CTRL_EOCV(0x1); ctrl |= FXOSC_CTRL_GM_SEL(0x7); mmio_write_32(FXOSC_CTRL(fxosc_base), ctrl); /* Switch ON the crystal oscillator. */ mmio_setbits_32(FXOSC_CTRL(fxosc_base), FXOSC_CTRL_OSCON); /* Wait until the clock is stable. */ while ((mmio_read_32(FXOSC_STAT(fxosc_base)) & FXOSC_STAT_OSC_STAT) == U(0)) { } } static int enable_osc(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { const struct s32cc_osc *osc = s32cc_obj2osc(module); unsigned int ldepth = depth; int ret = 0; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } switch (osc->source) { case S32CC_FXOSC: enable_fxosc(drv); break; /* FIRC and SIRC oscillators are enabled by default */ case S32CC_FIRC: break; case S32CC_SIRC: break; default: ERROR("Invalid oscillator %d\n", osc->source); ret = -EINVAL; break; }; return ret; } static struct s32cc_clk_obj *get_pll_parent(const struct s32cc_clk_obj *module) { const struct s32cc_pll *pll = s32cc_obj2pll(module); if (pll->source == NULL) { ERROR("Failed to identify PLL's parent\n"); } return pll->source; } static int get_pll_mfi_mfn(unsigned long pll_vco, unsigned long ref_freq, uint32_t *mfi, uint32_t *mfn) { unsigned long vco; unsigned long mfn64; /* FRAC-N mode */ *mfi = (uint32_t)(pll_vco / ref_freq); /* MFN formula : (double)(pll_vco % ref_freq) / ref_freq * 18432.0 */ mfn64 = pll_vco % ref_freq; mfn64 *= FP_PRECISION; mfn64 /= ref_freq; mfn64 *= 18432UL; mfn64 /= FP_PRECISION; if (mfn64 > UINT32_MAX) { return -EINVAL; } *mfn = (uint32_t)mfn64; vco = ((unsigned long)*mfn * FP_PRECISION) / 18432UL; vco += (unsigned long)*mfi * FP_PRECISION; vco *= ref_freq; vco /= FP_PRECISION; if (vco != pll_vco) { ERROR("Failed to find MFI and MFN settings for PLL freq %lu. Nearest freq = %lu\n", pll_vco, vco); return -EINVAL; } return 0; } static struct s32cc_clkmux *get_pll_mux(const struct s32cc_pll *pll) { const struct s32cc_clk_obj *source = pll->source; const struct s32cc_clk *clk; if (source == NULL) { ERROR("Failed to identify PLL's parent\n"); return NULL; } if (source->type != s32cc_clk_t) { ERROR("The parent of the PLL isn't a clock\n"); return NULL; } clk = s32cc_obj2clk(source); if (clk->module == NULL) { ERROR("The clock isn't connected to a module\n"); return NULL; } source = clk->module; if ((source->type != s32cc_clkmux_t) && (source->type != s32cc_shared_clkmux_t)) { ERROR("The parent of the PLL isn't a MUX\n"); return NULL; } return s32cc_obj2clkmux(source); } static void disable_odiv(uintptr_t pll_addr, uint32_t div_index) { mmio_clrbits_32(PLLDIG_PLLODIV(pll_addr, div_index), PLLDIG_PLLODIV_DE); } static void enable_odiv(uintptr_t pll_addr, uint32_t div_index) { mmio_setbits_32(PLLDIG_PLLODIV(pll_addr, div_index), PLLDIG_PLLODIV_DE); } static void disable_odivs(uintptr_t pll_addr, uint32_t ndivs) { uint32_t i; for (i = 0; i < ndivs; i++) { disable_odiv(pll_addr, i); } } static void enable_pll_hw(uintptr_t pll_addr) { /* Enable the PLL. */ mmio_write_32(PLLDIG_PLLCR(pll_addr), 0x0); /* Poll until PLL acquires lock. */ while ((mmio_read_32(PLLDIG_PLLSR(pll_addr)) & PLLDIG_PLLSR_LOCK) == 0U) { } } static void disable_pll_hw(uintptr_t pll_addr) { mmio_write_32(PLLDIG_PLLCR(pll_addr), PLLDIG_PLLCR_PLLPD); } static int program_pll(const struct s32cc_pll *pll, uintptr_t pll_addr, const struct s32cc_clk_drv *drv, uint32_t sclk_id, unsigned long sclk_freq) { uint32_t rdiv = 1, mfi, mfn; int ret; ret = get_pll_mfi_mfn(pll->vco_freq, sclk_freq, &mfi, &mfn); if (ret != 0) { return -EINVAL; } /* Disable ODIVs*/ disable_odivs(pll_addr, pll->ndividers); /* Disable PLL */ disable_pll_hw(pll_addr); /* Program PLLCLKMUX */ mmio_write_32(PLLDIG_PLLCLKMUX(pll_addr), sclk_id); /* Program VCO */ mmio_clrsetbits_32(PLLDIG_PLLDV(pll_addr), PLLDIG_PLLDV_RDIV_MASK | PLLDIG_PLLDV_MFI_MASK, PLLDIG_PLLDV_RDIV_SET(rdiv) | PLLDIG_PLLDV_MFI(mfi)); mmio_write_32(PLLDIG_PLLFD(pll_addr), PLLDIG_PLLFD_MFN_SET(mfn) | PLLDIG_PLLFD_SMDEN); enable_pll_hw(pll_addr); return ret; } static int enable_pll(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { const struct s32cc_pll *pll = s32cc_obj2pll(module); const struct s32cc_clkmux *mux; uintptr_t pll_addr = UL(0x0); unsigned int ldepth = depth; unsigned long sclk_freq; uint32_t sclk_id; int ret; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } mux = get_pll_mux(pll); if (mux == NULL) { return -EINVAL; } if (pll->instance != mux->module) { ERROR("MUX type is not in sync with PLL ID\n"); return -EINVAL; } ret = get_base_addr(pll->instance, drv, &pll_addr); if (ret != 0) { ERROR("Failed to detect PLL instance\n"); return ret; } switch (mux->source_id) { case S32CC_CLK_FIRC: sclk_freq = 48U * MHZ; sclk_id = 0; break; case S32CC_CLK_FXOSC: sclk_freq = 40U * MHZ; sclk_id = 1; break; default: ERROR("Invalid source selection for PLL 0x%lx\n", pll_addr); return -EINVAL; }; return program_pll(pll, pll_addr, drv, sclk_id, sclk_freq); } static inline struct s32cc_pll *get_div_pll(const struct s32cc_pll_out_div *pdiv) { const struct s32cc_clk_obj *parent; parent = pdiv->parent; if (parent == NULL) { ERROR("Failed to identify PLL divider's parent\n"); return NULL; } if (parent->type != s32cc_pll_t) { ERROR("The parent of the divider is not a PLL instance\n"); return NULL; } return s32cc_obj2pll(parent); } static void config_pll_out_div(uintptr_t pll_addr, uint32_t div_index, uint32_t dc) { uint32_t pllodiv; uint32_t pdiv; pllodiv = mmio_read_32(PLLDIG_PLLODIV(pll_addr, div_index)); pdiv = PLLDIG_PLLODIV_DIV(pllodiv); if (((pdiv + 1U) == dc) && ((pllodiv & PLLDIG_PLLODIV_DE) != 0U)) { return; } if ((pllodiv & PLLDIG_PLLODIV_DE) != 0U) { disable_odiv(pll_addr, div_index); } pllodiv = PLLDIG_PLLODIV_DIV_SET(dc - 1U); mmio_write_32(PLLDIG_PLLODIV(pll_addr, div_index), pllodiv); enable_odiv(pll_addr, div_index); } static struct s32cc_clk_obj *get_pll_div_parent(const struct s32cc_clk_obj *module) { const struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module); if (pdiv->parent == NULL) { ERROR("Failed to identify PLL DIV's parent\n"); } return pdiv->parent; } static int enable_pll_div(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { const struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module); uintptr_t pll_addr = 0x0ULL; unsigned int ldepth = depth; const struct s32cc_pll *pll; uint32_t dc; int ret; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } pll = get_div_pll(pdiv); if (pll == NULL) { ERROR("The parent of the PLL DIV is invalid\n"); return 0; } ret = get_base_addr(pll->instance, drv, &pll_addr); if (ret != 0) { ERROR("Failed to detect PLL instance\n"); return -EINVAL; } dc = (uint32_t)(pll->vco_freq / pdiv->freq); config_pll_out_div(pll_addr, pdiv->index, dc); return 0; } static int cgm_mux_clk_config(uintptr_t cgm_addr, uint32_t mux, uint32_t source, bool safe_clk) { uint32_t css, csc; css = mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)); /* Already configured */ if ((MC_CGM_MUXn_CSS_SELSTAT(css) == source) && (MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SUCCESS) && ((css & MC_CGM_MUXn_CSS_SWIP) == 0U) && !safe_clk) { return 0; } /* Ongoing clock switch? */ while ((mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)) & MC_CGM_MUXn_CSS_SWIP) != 0U) { } csc = mmio_read_32(CGM_MUXn_CSC(cgm_addr, mux)); /* Clear previous source. */ csc &= ~(MC_CGM_MUXn_CSC_SELCTL_MASK); if (!safe_clk) { /* Select the clock source and trigger the clock switch. */ csc |= MC_CGM_MUXn_CSC_SELCTL(source) | MC_CGM_MUXn_CSC_CLK_SW; } else { /* Switch to safe clock */ csc |= MC_CGM_MUXn_CSC_SAFE_SW; } mmio_write_32(CGM_MUXn_CSC(cgm_addr, mux), csc); /* Wait for configuration bit to auto-clear. */ while ((mmio_read_32(CGM_MUXn_CSC(cgm_addr, mux)) & MC_CGM_MUXn_CSC_CLK_SW) != 0U) { } /* Is the clock switch completed? */ while ((mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)) & MC_CGM_MUXn_CSS_SWIP) != 0U) { } /* * Check if the switch succeeded. * Check switch trigger cause and the source. */ css = mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)); if (!safe_clk) { if ((MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SUCCESS) && (MC_CGM_MUXn_CSS_SELSTAT(css) == source)) { return 0; } ERROR("Failed to change the source of mux %" PRIu32 " to %" PRIu32 " (CGM=%lu)\n", mux, source, cgm_addr); } else { if (((MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SAFE_CLK) || (MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SAFE_CLK_INACTIVE)) && ((MC_CGM_MUXn_CSS_SAFE_SW & css) != 0U)) { return 0; } ERROR("The switch of mux %" PRIu32 " (CGM=%lu) to safe clock failed\n", mux, cgm_addr); } return -EINVAL; } static int enable_cgm_mux(const struct s32cc_clkmux *mux, const struct s32cc_clk_drv *drv) { uintptr_t cgm_addr = UL(0x0); uint32_t mux_hw_clk; int ret; ret = get_base_addr(mux->module, drv, &cgm_addr); if (ret != 0) { return ret; } mux_hw_clk = (uint32_t)S32CC_CLK_ID(mux->source_id); return cgm_mux_clk_config(cgm_addr, mux->index, mux_hw_clk, false); } static struct s32cc_clk_obj *get_mux_parent(const struct s32cc_clk_obj *module) { const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module); struct s32cc_clk *clk; if (mux == NULL) { return NULL; } clk = s32cc_get_arch_clk(mux->source_id); if (clk == NULL) { ERROR("Invalid parent (%lu) for mux %" PRIu8 "\n", mux->source_id, mux->index); return NULL; } return &clk->desc; } static int enable_mux(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module); unsigned int ldepth = depth; const struct s32cc_clk *clk; int ret = 0; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } if (mux == NULL) { return -EINVAL; } clk = s32cc_get_arch_clk(mux->source_id); if (clk == NULL) { ERROR("Invalid parent (%lu) for mux %" PRIu8 "\n", mux->source_id, mux->index); return -EINVAL; } switch (mux->module) { /* PLL mux will be enabled by PLL setup */ case S32CC_ARM_PLL: case S32CC_PERIPH_PLL: case S32CC_DDR_PLL: break; case S32CC_CGM1: ret = enable_cgm_mux(mux, drv); break; case S32CC_CGM0: ret = enable_cgm_mux(mux, drv); break; case S32CC_CGM5: ret = enable_cgm_mux(mux, drv); break; default: ERROR("Unknown mux parent type: %d\n", mux->module); ret = -EINVAL; break; }; return ret; } static struct s32cc_clk_obj *get_dfs_parent(const struct s32cc_clk_obj *module) { const struct s32cc_dfs *dfs = s32cc_obj2dfs(module); if (dfs->parent == NULL) { ERROR("Failed to identify DFS's parent\n"); } return dfs->parent; } static int enable_dfs(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { unsigned int ldepth = depth; int ret = 0; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } return 0; } static struct s32cc_dfs *get_div_dfs(const struct s32cc_dfs_div *dfs_div) { const struct s32cc_clk_obj *parent = dfs_div->parent; if (parent->type != s32cc_dfs_t) { ERROR("DFS DIV doesn't have a DFS as parent\n"); return NULL; } return s32cc_obj2dfs(parent); } static struct s32cc_pll *dfsdiv2pll(const struct s32cc_dfs_div *dfs_div) { const struct s32cc_clk_obj *parent; const struct s32cc_dfs *dfs; dfs = get_div_dfs(dfs_div); if (dfs == NULL) { return NULL; } parent = dfs->parent; if (parent->type != s32cc_pll_t) { return NULL; } return s32cc_obj2pll(parent); } static int get_dfs_mfi_mfn(unsigned long dfs_freq, const struct s32cc_dfs_div *dfs_div, uint32_t *mfi, uint32_t *mfn) { uint64_t factor64, tmp64, ofreq; uint32_t factor32; unsigned long in = dfs_freq; unsigned long out = dfs_div->freq; /** * factor = (IN / OUT) / 2 * MFI = integer(factor) * MFN = (factor - MFI) * 36 */ factor64 = ((((uint64_t)in) * FP_PRECISION) / ((uint64_t)out)) / 2ULL; tmp64 = factor64 / FP_PRECISION; if (tmp64 > UINT32_MAX) { return -EINVAL; } factor32 = (uint32_t)tmp64; *mfi = factor32; tmp64 = ((factor64 - ((uint64_t)*mfi * FP_PRECISION)) * 36UL) / FP_PRECISION; if (tmp64 > UINT32_MAX) { return -EINVAL; } *mfn = (uint32_t)tmp64; /* div_freq = in / (2 * (*mfi + *mfn / 36.0)) */ factor64 = (((uint64_t)*mfn) * FP_PRECISION) / 36ULL; factor64 += ((uint64_t)*mfi) * FP_PRECISION; factor64 *= 2ULL; ofreq = (((uint64_t)in) * FP_PRECISION) / factor64; if (ofreq != dfs_div->freq) { ERROR("Failed to find MFI and MFN settings for DFS DIV freq %lu\n", dfs_div->freq); ERROR("Nearest freq = %" PRIx64 "\n", ofreq); return -EINVAL; } return 0; } static int init_dfs_port(uintptr_t dfs_addr, uint32_t port, uint32_t mfi, uint32_t mfn) { uint32_t portsr, portolsr; uint32_t mask, old_mfi, old_mfn; uint32_t dvport; bool init_dfs; dvport = mmio_read_32(DFS_DVPORTn(dfs_addr, port)); old_mfi = DFS_DVPORTn_MFI(dvport); old_mfn = DFS_DVPORTn_MFN(dvport); portsr = mmio_read_32(DFS_PORTSR(dfs_addr)); portolsr = mmio_read_32(DFS_PORTOLSR(dfs_addr)); /* Skip configuration if it's not needed */ if (((portsr & BIT_32(port)) != 0U) && ((portolsr & BIT_32(port)) == 0U) && (mfi == old_mfi) && (mfn == old_mfn)) { return 0; } init_dfs = (portsr == 0U); if (init_dfs) { mask = DFS_PORTRESET_MASK; } else { mask = DFS_PORTRESET_SET(BIT_32(port)); } mmio_write_32(DFS_PORTOLSR(dfs_addr), mask); mmio_write_32(DFS_PORTRESET(dfs_addr), mask); while ((mmio_read_32(DFS_PORTSR(dfs_addr)) & mask) != 0U) { } if (init_dfs) { mmio_write_32(DFS_CTL(dfs_addr), DFS_CTL_RESET); } mmio_write_32(DFS_DVPORTn(dfs_addr, port), DFS_DVPORTn_MFI_SET(mfi) | DFS_DVPORTn_MFN_SET(mfn)); if (init_dfs) { /* DFS clk enable programming */ mmio_clrbits_32(DFS_CTL(dfs_addr), DFS_CTL_RESET); } mmio_clrbits_32(DFS_PORTRESET(dfs_addr), BIT_32(port)); while ((mmio_read_32(DFS_PORTSR(dfs_addr)) & BIT_32(port)) != BIT_32(port)) { } portolsr = mmio_read_32(DFS_PORTOLSR(dfs_addr)); if ((portolsr & DFS_PORTOLSR_LOL(port)) != 0U) { ERROR("Failed to lock DFS divider\n"); return -EINVAL; } return 0; } static struct s32cc_clk_obj * get_dfs_div_parent(const struct s32cc_clk_obj *module) { const struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module); if (dfs_div->parent == NULL) { ERROR("Failed to identify DFS divider's parent\n"); } return dfs_div->parent; } static int enable_dfs_div(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { const struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module); unsigned int ldepth = depth; const struct s32cc_pll *pll; const struct s32cc_dfs *dfs; uintptr_t dfs_addr = 0UL; uint32_t mfi, mfn; int ret = 0; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } dfs = get_div_dfs(dfs_div); if (dfs == NULL) { return -EINVAL; } pll = dfsdiv2pll(dfs_div); if (pll == NULL) { ERROR("Failed to identify DFS divider's parent\n"); return -EINVAL; } ret = get_base_addr(dfs->instance, drv, &dfs_addr); if ((ret != 0) || (dfs_addr == 0UL)) { return -EINVAL; } ret = get_dfs_mfi_mfn(pll->vco_freq, dfs_div, &mfi, &mfn); if (ret != 0) { return -EINVAL; } return init_dfs_port(dfs_addr, dfs_div->index, mfi, mfn); } typedef int (*enable_clk_t)(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth); static int enable_part(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { const struct s32cc_part *part = s32cc_obj2part(module); uint32_t part_no = part->partition_id; if ((drv->mc_me == 0UL) || (drv->mc_rgm == 0UL) || (drv->rdc == 0UL)) { return -EINVAL; } return mc_me_enable_partition(drv->mc_me, drv->mc_rgm, drv->rdc, part_no); } static int enable_part_block(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { const struct s32cc_part_block *block = s32cc_obj2partblock(module); const struct s32cc_part *part = block->part; uint32_t part_no = part->partition_id; unsigned int ldepth = depth; uint32_t cofb; int ret; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } if ((block->block >= s32cc_part_block0) && (block->block <= s32cc_part_block15)) { cofb = (uint32_t)block->block - (uint32_t)s32cc_part_block0; mc_me_enable_part_cofb(drv->mc_me, part_no, cofb, block->status); } else { ERROR("Unknown partition block type: %d\n", block->block); return -EINVAL; } return 0; } static struct s32cc_clk_obj * get_part_block_parent(const struct s32cc_clk_obj *module) { const struct s32cc_part_block *block = s32cc_obj2partblock(module); return &block->part->desc; } static int enable_module_with_refcount(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth); static int enable_part_block_link(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { const struct s32cc_part_block_link *link = s32cc_obj2partblocklink(module); struct s32cc_part_block *block = link->block; unsigned int ldepth = depth; int ret; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } /* Move the enablement algorithm to partition tree */ return enable_module_with_refcount(&block->desc, drv, ldepth); } static struct s32cc_clk_obj * get_part_block_link_parent(const struct s32cc_clk_obj *module) { const struct s32cc_part_block_link *link = s32cc_obj2partblocklink(module); return link->parent; } static int no_enable(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { return 0; } static int exec_cb_with_refcount(enable_clk_t en_cb, struct s32cc_clk_obj *mod, const struct s32cc_clk_drv *drv, bool leaf_node, unsigned int depth) { unsigned int ldepth = depth; int ret = 0; if (mod == NULL) { return 0; } ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } /* Refcount will be updated as part of the recursivity */ if (leaf_node) { return en_cb(mod, drv, ldepth); } if (mod->refcount == 0U) { ret = en_cb(mod, drv, ldepth); } if (ret == 0) { mod->refcount++; } return ret; } static struct s32cc_clk_obj *get_module_parent(const struct s32cc_clk_obj *module); static int enable_module(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { struct s32cc_clk_obj *parent = get_module_parent(module); static const enable_clk_t enable_clbs[12] = { [s32cc_clk_t] = no_enable, [s32cc_osc_t] = enable_osc, [s32cc_pll_t] = enable_pll, [s32cc_pll_out_div_t] = enable_pll_div, [s32cc_clkmux_t] = enable_mux, [s32cc_shared_clkmux_t] = enable_mux, [s32cc_dfs_t] = enable_dfs, [s32cc_dfs_div_t] = enable_dfs_div, [s32cc_part_t] = enable_part, [s32cc_part_block_t] = enable_part_block, [s32cc_part_block_link_t] = enable_part_block_link, }; unsigned int ldepth = depth; uint32_t index; int ret = 0; ret = update_stack_depth(&ldepth); if (ret != 0) { return ret; } if (drv == NULL) { return -EINVAL; } index = (uint32_t)module->type; if (index >= ARRAY_SIZE(enable_clbs)) { ERROR("Undefined module type: %d\n", module->type); return -EINVAL; } if (enable_clbs[index] == NULL) { ERROR("Undefined callback for the clock type: %d\n", module->type); return -EINVAL; } parent = get_module_parent(module); ret = exec_cb_with_refcount(enable_module, parent, drv, false, ldepth); if (ret != 0) { return ret; } ret = exec_cb_with_refcount(enable_clbs[index], module, drv, true, ldepth); if (ret != 0) { return ret; } return ret; } static int enable_module_with_refcount(struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int depth) { return exec_cb_with_refcount(enable_module, module, drv, false, depth); } static int s32cc_clk_enable(unsigned long id) { const struct s32cc_clk_drv *drv = get_drv(); unsigned int depth = MAX_STACK_DEPTH; struct s32cc_clk *clk; clk = s32cc_get_arch_clk(id); if (clk == NULL) { return -EINVAL; } return enable_module_with_refcount(&clk->desc, drv, depth); } static void s32cc_clk_disable(unsigned long id) { } static bool s32cc_clk_is_enabled(unsigned long id) { return false; } static unsigned long s32cc_clk_get_rate(unsigned long id) { return 0; } static int set_module_rate(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth); static int set_osc_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { struct s32cc_osc *osc = s32cc_obj2osc(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if ((osc->freq != 0UL) && (rate != osc->freq)) { ERROR("Already initialized oscillator. freq = %lu\n", osc->freq); return -EINVAL; } osc->freq = rate; *orate = osc->freq; return 0; } static int set_clk_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { const struct s32cc_clk *clk = s32cc_obj2clk(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if ((clk->min_freq != 0UL) && (clk->max_freq != 0UL) && ((rate < clk->min_freq) || (rate > clk->max_freq))) { ERROR("%lu frequency is out of the allowed range: [%lu:%lu]\n", rate, clk->min_freq, clk->max_freq); return -EINVAL; } if (clk->module != NULL) { return set_module_rate(clk->module, rate, orate, depth); } if (clk->pclock != NULL) { return set_clk_freq(&clk->pclock->desc, rate, orate, depth); } return -EINVAL; } static int set_pll_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { struct s32cc_pll *pll = s32cc_obj2pll(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if ((pll->vco_freq != 0UL) && (pll->vco_freq != rate)) { ERROR("PLL frequency was already set\n"); return -EINVAL; } pll->vco_freq = rate; *orate = pll->vco_freq; return 0; } static int set_pll_div_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module); const struct s32cc_pll *pll; unsigned long prate, dc; int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (pdiv->parent == NULL) { ERROR("Failed to identify PLL divider's parent\n"); return -EINVAL; } pll = s32cc_obj2pll(pdiv->parent); if (pll == NULL) { ERROR("The parent of the PLL DIV is invalid\n"); return -EINVAL; } prate = pll->vco_freq; /** * The PLL is not initialized yet, so let's take a risk * and accept the proposed rate. */ if (prate == 0UL) { pdiv->freq = rate; *orate = rate; return 0; } /* Decline in case the rate cannot fit PLL's requirements. */ dc = prate / rate; if ((prate / dc) != rate) { return -EINVAL; } pdiv->freq = rate; *orate = pdiv->freq; return 0; } static int set_fixed_div_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { const struct s32cc_fixed_div *fdiv = s32cc_obj2fixeddiv(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (fdiv->parent == NULL) { ERROR("The divider doesn't have a valid parent\b"); return -EINVAL; } ret = set_module_rate(fdiv->parent, rate * fdiv->rate_div, orate, depth); /* Update the output rate based on the parent's rate */ *orate /= fdiv->rate_div; return ret; } static int set_mux_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module); const struct s32cc_clk *clk = s32cc_get_arch_clk(mux->source_id); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (clk == NULL) { ERROR("Mux (id:%" PRIu8 ") without a valid source (%lu)\n", mux->index, mux->source_id); return -EINVAL; } return set_module_rate(&clk->desc, rate, orate, depth); } static int set_dfs_div_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module); const struct s32cc_dfs *dfs; int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (dfs_div->parent == NULL) { ERROR("Failed to identify DFS divider's parent\n"); return -EINVAL; } /* Sanity check */ dfs = s32cc_obj2dfs(dfs_div->parent); if (dfs->parent == NULL) { ERROR("Failed to identify DFS's parent\n"); return -EINVAL; } if ((dfs_div->freq != 0U) && (dfs_div->freq != rate)) { ERROR("DFS DIV frequency was already set to %lu\n", dfs_div->freq); return -EINVAL; } dfs_div->freq = rate; *orate = rate; return ret; } static int set_module_rate(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { int ret = 0; ret = update_stack_depth(depth); if (ret != 0) { return ret; } ret = -EINVAL; switch (module->type) { case s32cc_clk_t: ret = set_clk_freq(module, rate, orate, depth); break; case s32cc_osc_t: ret = set_osc_freq(module, rate, orate, depth); break; case s32cc_pll_t: ret = set_pll_freq(module, rate, orate, depth); break; case s32cc_pll_out_div_t: ret = set_pll_div_freq(module, rate, orate, depth); break; case s32cc_fixed_div_t: ret = set_fixed_div_freq(module, rate, orate, depth); break; case s32cc_clkmux_t: ret = set_mux_freq(module, rate, orate, depth); break; case s32cc_shared_clkmux_t: ret = set_mux_freq(module, rate, orate, depth); break; case s32cc_dfs_t: ERROR("Setting the frequency of a DFS is not allowed!"); break; case s32cc_dfs_div_t: ret = set_dfs_div_freq(module, rate, orate, depth); break; default: break; } return ret; } static int s32cc_clk_set_rate(unsigned long id, unsigned long rate, unsigned long *orate) { unsigned int depth = MAX_STACK_DEPTH; const struct s32cc_clk *clk; int ret; clk = s32cc_get_arch_clk(id); if (clk == NULL) { return -EINVAL; } ret = set_module_rate(&clk->desc, rate, orate, &depth); if (ret != 0) { ERROR("Failed to set frequency (%lu MHz) for clock %lu\n", rate, id); } return ret; } static struct s32cc_clk_obj *get_no_parent(const struct s32cc_clk_obj *module) { return NULL; } typedef struct s32cc_clk_obj *(*get_parent_clb_t)(const struct s32cc_clk_obj *clk_obj); static struct s32cc_clk_obj *get_module_parent(const struct s32cc_clk_obj *module) { static const get_parent_clb_t parents_clbs[12] = { [s32cc_clk_t] = get_clk_parent, [s32cc_osc_t] = get_no_parent, [s32cc_pll_t] = get_pll_parent, [s32cc_pll_out_div_t] = get_pll_div_parent, [s32cc_clkmux_t] = get_mux_parent, [s32cc_shared_clkmux_t] = get_mux_parent, [s32cc_dfs_t] = get_dfs_parent, [s32cc_dfs_div_t] = get_dfs_div_parent, [s32cc_part_t] = get_no_parent, [s32cc_part_block_t] = get_part_block_parent, [s32cc_part_block_link_t] = get_part_block_link_parent, }; uint32_t index; if (module == NULL) { return NULL; } index = (uint32_t)module->type; if (index >= ARRAY_SIZE(parents_clbs)) { ERROR("Undefined module type: %d\n", module->type); return NULL; } if (parents_clbs[index] == NULL) { ERROR("Undefined parent getter for type: %d\n", module->type); return NULL; } return parents_clbs[index](module); } static int s32cc_clk_get_parent(unsigned long id) { struct s32cc_clk *parent_clk; const struct s32cc_clk_obj *parent; const struct s32cc_clk *clk; unsigned long parent_id; int ret; clk = s32cc_get_arch_clk(id); if (clk == NULL) { return -EINVAL; } parent = get_module_parent(clk->module); if (parent == NULL) { return -EINVAL; } parent_clk = s32cc_obj2clk(parent); if (parent_clk == NULL) { return -EINVAL; } ret = s32cc_get_clk_id(parent_clk, &parent_id); if (ret != 0) { return ret; } if (parent_id > (unsigned long)INT_MAX) { return -E2BIG; } return (int)parent_id; } static int s32cc_clk_set_parent(unsigned long id, unsigned long parent_id) { const struct s32cc_clk *parent; const struct s32cc_clk *clk; bool valid_source = false; struct s32cc_clkmux *mux; uint8_t i; clk = s32cc_get_arch_clk(id); if (clk == NULL) { return -EINVAL; } parent = s32cc_get_arch_clk(parent_id); if (parent == NULL) { return -EINVAL; } if (!is_s32cc_clk_mux(clk)) { ERROR("Clock %lu is not a mux\n", id); return -EINVAL; } mux = s32cc_clk2mux(clk); if (mux == NULL) { ERROR("Failed to cast clock %lu to clock mux\n", id); return -EINVAL; } for (i = 0; i < mux->nclks; i++) { if (mux->clkids[i] == parent_id) { valid_source = true; break; } } if (!valid_source) { ERROR("Clock %lu is not a valid clock for mux %lu\n", parent_id, id); return -EINVAL; } mux->source_id = parent_id; return 0; } void s32cc_clk_register_drv(void) { static const struct clk_ops s32cc_clk_ops = { .enable = s32cc_clk_enable, .disable = s32cc_clk_disable, .is_enabled = s32cc_clk_is_enabled, .get_rate = s32cc_clk_get_rate, .set_rate = s32cc_clk_set_rate, .get_parent = s32cc_clk_get_parent, .set_parent = s32cc_clk_set_parent, }; clk_register(&s32cc_clk_ops); }