/* * Copyright (c) 2017-2024, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * Exception handlers at EL3, their priority levels, and management. */ #include #include #include #include #include #include #include #include #include #include #include /* Output EHF logs as verbose */ #define EHF_LOG(...) VERBOSE("EHF: " __VA_ARGS__) #define EHF_INVALID_IDX (-1) /* For a valid handler, return the actual function pointer; otherwise, 0. */ #define RAW_HANDLER(h) \ ((ehf_handler_t) ((((h) & EHF_PRI_VALID_) != 0U) ? \ ((h) & ~EHF_PRI_VALID_) : 0U)) #define PRI_BIT(idx) (((ehf_pri_bits_t) 1u) << (idx)) /* * Convert index into secure priority using the platform-defined priority bits * field. */ #define IDX_TO_PRI(idx) \ ((((unsigned) idx) << (7u - exception_data.pri_bits)) & 0x7fU) /* Check whether a given index is valid */ #define IS_IDX_VALID(idx) \ ((exception_data.ehf_priorities[idx].ehf_handler & EHF_PRI_VALID_) != 0U) /* Returns whether given priority is in secure priority range */ #define IS_PRI_SECURE(pri) (((pri) & 0x80U) == 0U) /* To be defined by the platform */ extern const ehf_priorities_t exception_data; /* Translate priority to the index in the priority array */ static unsigned int pri_to_idx(unsigned int priority) { unsigned int idx; idx = EHF_PRI_TO_IDX(priority, exception_data.pri_bits); assert(idx < exception_data.num_priorities); assert(IS_IDX_VALID(idx)); return idx; } /* Return whether there are outstanding priority activation */ static bool has_valid_pri_activations(pe_exc_data_t *pe_data) { return pe_data->active_pri_bits != 0U; } static pe_exc_data_t *this_cpu_data(void) { return &get_cpu_data(ehf_data); } /* * Return the current priority index of this CPU. If no priority is active, * return EHF_INVALID_IDX. */ static int get_pe_highest_active_idx(pe_exc_data_t *pe_data) { if (!has_valid_pri_activations(pe_data)) return EHF_INVALID_IDX; /* Current priority is the right-most bit */ return (int) __builtin_ctz(pe_data->active_pri_bits); } /* * Mark priority active by setting the corresponding bit in active_pri_bits and * programming the priority mask. * * This API is to be used as part of delegating to lower ELs other than for * interrupts; e.g. while handling synchronous exceptions. * * This API is expected to be invoked before restoring context (Secure or * Non-secure) in preparation for the respective dispatch. */ void ehf_activate_priority(unsigned int priority) { int cur_pri_idx; unsigned int old_mask, run_pri, idx; pe_exc_data_t *pe_data = this_cpu_data(); /* * Query interrupt controller for the running priority, or idle priority * if no interrupts are being handled. The requested priority must be * less (higher priority) than the active running priority. */ run_pri = plat_ic_get_running_priority(); if (priority >= run_pri) { ERROR("Running priority higher (0x%x) than requested (0x%x)\n", run_pri, priority); panic(); } /* * If there were priority activations already, the requested priority * must be less (higher priority) than the current highest priority * activation so far. */ cur_pri_idx = get_pe_highest_active_idx(pe_data); idx = pri_to_idx(priority); if ((cur_pri_idx != EHF_INVALID_IDX) && (idx >= ((unsigned int) cur_pri_idx))) { ERROR("Activation priority mismatch: req=0x%x current=0x%x\n", priority, IDX_TO_PRI(cur_pri_idx)); panic(); } /* Set the bit corresponding to the requested priority */ pe_data->active_pri_bits |= PRI_BIT(idx); /* * Program priority mask for the activated level. Check that the new * priority mask is setting a higher priority level than the existing * mask. */ old_mask = plat_ic_set_priority_mask(priority); if (priority >= old_mask) { ERROR("Requested priority (0x%x) lower than Priority Mask (0x%x)\n", priority, old_mask); panic(); } /* * If this is the first activation, save the priority mask. This will be * restored after the last deactivation. */ if (cur_pri_idx == EHF_INVALID_IDX) pe_data->init_pri_mask = (uint8_t) old_mask; EHF_LOG("activate prio=%d\n", get_pe_highest_active_idx(pe_data)); } /* * Mark priority inactive by clearing the corresponding bit in active_pri_bits, * and programming the priority mask. * * This API is expected to be used as part of delegating to to lower ELs other * than for interrupts; e.g. while handling synchronous exceptions. * * This API is expected to be invoked after saving context (Secure or * Non-secure), having concluded the respective dispatch. */ void ehf_deactivate_priority(unsigned int priority) { int cur_pri_idx; pe_exc_data_t *pe_data = this_cpu_data(); unsigned int old_mask, run_pri, idx; /* * Query interrupt controller for the running priority, or idle priority * if no interrupts are being handled. The requested priority must be * less (higher priority) than the active running priority. */ run_pri = plat_ic_get_running_priority(); if (priority >= run_pri) { ERROR("Running priority higher (0x%x) than requested (0x%x)\n", run_pri, priority); panic(); } /* * Deactivation is allowed only when there are priority activations, and * the deactivation priority level must match the current activated * priority. */ cur_pri_idx = get_pe_highest_active_idx(pe_data); idx = pri_to_idx(priority); if ((cur_pri_idx == EHF_INVALID_IDX) || (idx != ((unsigned int) cur_pri_idx))) { ERROR("Deactivation priority mismatch: req=0x%x current=0x%x\n", priority, IDX_TO_PRI(cur_pri_idx)); panic(); } /* Clear bit corresponding to highest priority */ pe_data->active_pri_bits &= (pe_data->active_pri_bits - 1u); /* * Restore priority mask corresponding to the next priority, or the * one stashed earlier if there are no more to deactivate. */ cur_pri_idx = get_pe_highest_active_idx(pe_data); #if GIC600_ERRATA_WA_2384374 if (cur_pri_idx == EHF_INVALID_IDX) { old_mask = plat_ic_deactivate_priority(pe_data->init_pri_mask); } else { old_mask = plat_ic_deactivate_priority(priority); } #else if (cur_pri_idx == EHF_INVALID_IDX) { old_mask = plat_ic_set_priority_mask(pe_data->init_pri_mask); } else { old_mask = plat_ic_set_priority_mask(priority); } #endif if (old_mask > priority) { ERROR("Deactivation priority (0x%x) lower than Priority Mask (0x%x)\n", priority, old_mask); panic(); } EHF_LOG("deactivate prio=%d\n", get_pe_highest_active_idx(pe_data)); } /* * After leaving Non-secure world, stash current Non-secure Priority Mask, and * set Priority Mask to the highest Non-secure priority so that Non-secure * interrupts cannot preempt Secure execution. * * If the current running priority is in the secure range, or if there are * outstanding priority activations, this function does nothing. * * This function subscribes to the 'cm_exited_normal_world' event published by * the Context Management Library. */ static void *ehf_exited_normal_world(const void *arg) { unsigned int run_pri; pe_exc_data_t *pe_data = this_cpu_data(); /* If the running priority is in the secure range, do nothing */ run_pri = plat_ic_get_running_priority(); if (IS_PRI_SECURE(run_pri)) return NULL; /* Do nothing if there are explicit activations */ if (has_valid_pri_activations(pe_data)) return NULL; assert(pe_data->ns_pri_mask == 0u); pe_data->ns_pri_mask = (uint8_t) plat_ic_set_priority_mask(GIC_HIGHEST_NS_PRIORITY); /* The previous Priority Mask is not expected to be in secure range */ if (IS_PRI_SECURE(pe_data->ns_pri_mask)) { ERROR("Priority Mask (0x%x) already in secure range\n", pe_data->ns_pri_mask); panic(); } EHF_LOG("Priority Mask: 0x%x => 0x%x\n", pe_data->ns_pri_mask, GIC_HIGHEST_NS_PRIORITY); return NULL; } /* * Conclude Secure execution and prepare for return to Non-secure world. Restore * the Non-secure Priority Mask previously stashed upon leaving Non-secure * world. * * If there the current running priority is in the secure range, or if there are * outstanding priority activations, this function does nothing. * * This function subscribes to the 'cm_entering_normal_world' event published by * the Context Management Library. */ static void *ehf_entering_normal_world(const void *arg) { unsigned int old_pmr, run_pri; pe_exc_data_t *pe_data = this_cpu_data(); /* If the running priority is in the secure range, do nothing */ run_pri = plat_ic_get_running_priority(); if (IS_PRI_SECURE(run_pri)) return NULL; /* * If there are explicit activations, do nothing. The Priority Mask will * be restored upon the last deactivation. */ if (has_valid_pri_activations(pe_data)) return NULL; /* Do nothing if we don't have a valid Priority Mask to restore */ if (pe_data->ns_pri_mask == 0U) return NULL; old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask); /* * When exiting secure world, the current Priority Mask must be * GIC_HIGHEST_NS_PRIORITY (as set during entry), or the Non-secure * priority mask set upon calling ehf_allow_ns_preemption() */ if ((old_pmr != GIC_HIGHEST_NS_PRIORITY) && (old_pmr != pe_data->ns_pri_mask)) { ERROR("Invalid Priority Mask (0x%x) restored\n", old_pmr); panic(); } EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask); pe_data->ns_pri_mask = 0; return NULL; } /* * Program Priority Mask to the original Non-secure priority such that * Non-secure interrupts may preempt Secure execution (for example, during * Yielding SMC calls). The 'preempt_ret_code' parameter indicates the Yielding * SMC's return value in case the call was preempted. * * This API is expected to be invoked before delegating a yielding SMC to Secure * EL1. I.e. within the window of secure execution after Non-secure context is * saved (after entry into EL3) and Secure context is restored (before entering * Secure EL1). */ void ehf_allow_ns_preemption(uint64_t preempt_ret_code) { cpu_context_t *ns_ctx; unsigned int old_pmr __unused; pe_exc_data_t *pe_data = this_cpu_data(); /* * We should have been notified earlier of entering secure world, and * therefore have stashed the Non-secure priority mask. */ assert(pe_data->ns_pri_mask != 0U); /* Make sure no priority levels are active when requesting this */ if (has_valid_pri_activations(pe_data)) { ERROR("PE %lx has priority activations: 0x%x\n", read_mpidr_el1(), pe_data->active_pri_bits); panic(); } /* * Program preempted return code to x0 right away so that, if the * Yielding SMC was indeed preempted before a dispatcher gets a chance * to populate it, the caller would find the correct return value. */ ns_ctx = cm_get_context(NON_SECURE); assert(ns_ctx != NULL); write_ctx_reg(get_gpregs_ctx(ns_ctx), CTX_GPREG_X0, preempt_ret_code); old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask); EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask); pe_data->ns_pri_mask = 0; } /* * Return whether Secure execution has explicitly allowed Non-secure interrupts * to preempt itself (for example, during Yielding SMC calls). */ unsigned int ehf_is_ns_preemption_allowed(void) { unsigned int run_pri; pe_exc_data_t *pe_data = this_cpu_data(); /* If running priority is in secure range, return false */ run_pri = plat_ic_get_running_priority(); if (IS_PRI_SECURE(run_pri)) return 0; /* * If Non-secure preemption was permitted by calling * ehf_allow_ns_preemption() earlier: * * - There wouldn't have been priority activations; * - We would have cleared the stashed the Non-secure Priority Mask. */ if (has_valid_pri_activations(pe_data)) return 0; if (pe_data->ns_pri_mask != 0U) return 0; return 1; } /* * Top-level EL3 interrupt handler. */ static uint64_t ehf_el3_interrupt_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { int ret = 0; uint32_t intr_raw; unsigned int intr, pri, idx; ehf_handler_t handler; /* * Top-level interrupt type handler from Interrupt Management Framework * doesn't acknowledge the interrupt; so the interrupt ID must be * invalid. */ assert(id == INTR_ID_UNAVAILABLE); /* * Acknowledge interrupt. Proceed with handling only for valid interrupt * IDs. This situation may arise because of Interrupt Management * Framework identifying an EL3 interrupt, but before it's been * acknowledged here, the interrupt was either deasserted, or there was * a higher-priority interrupt of another type. */ intr_raw = plat_ic_acknowledge_interrupt(); intr = plat_ic_get_interrupt_id(intr_raw); if (intr == INTR_ID_UNAVAILABLE) return 0; /* Having acknowledged the interrupt, get the running priority */ pri = plat_ic_get_running_priority(); /* Check EL3 interrupt priority is in secure range */ assert(IS_PRI_SECURE(pri)); /* * Translate the priority to a descriptor index. We do this by masking * and shifting the running priority value (platform-supplied). */ idx = pri_to_idx(pri); /* Validate priority */ assert(pri == IDX_TO_PRI(idx)); handler = (ehf_handler_t) RAW_HANDLER( exception_data.ehf_priorities[idx].ehf_handler); if (handler == NULL) { ERROR("No EL3 exception handler for priority 0x%x\n", IDX_TO_PRI(idx)); panic(); } /* * Call registered handler. Pass the raw interrupt value to registered * handlers. */ ret = handler(intr_raw, flags, handle, cookie); return (uint64_t) ret; } /* * Initialize the EL3 exception handling. */ void __init ehf_init(void) { unsigned int flags = 0; int ret __unused; /* Ensure EL3 interrupts are supported */ assert(plat_ic_has_interrupt_type(INTR_TYPE_EL3)); /* * Make sure that priority water mark has enough bits to represent the * whole priority array. */ assert(exception_data.num_priorities <= (sizeof(ehf_pri_bits_t) * 8U)); assert(exception_data.ehf_priorities != NULL); /* * Bit 7 of GIC priority must be 0 for secure interrupts. This means * platforms must use at least 1 of the remaining 7 bits. */ assert((exception_data.pri_bits >= 1U) || (exception_data.pri_bits < 8U)); /* Route EL3 interrupts when in Non-secure. */ set_interrupt_rm_flag(flags, NON_SECURE); /* Route EL3 interrupts only when SPM_MM present in secure. */ #if SPM_MM set_interrupt_rm_flag(flags, SECURE); #endif /* Register handler for EL3 interrupts */ ret = register_interrupt_type_handler(INTR_TYPE_EL3, ehf_el3_interrupt_handler, flags); assert(ret == 0); } /* * Register a handler at the supplied priority. Registration is allowed only if * a handler hasn't been registered before, or one wasn't provided at build * time. The priority for which the handler is being registered must also accord * with the platform-supplied data. */ void ehf_register_priority_handler(unsigned int pri, ehf_handler_t handler) { unsigned int idx; /* Sanity check for handler */ assert(handler != NULL); /* Handler ought to be 4-byte aligned */ assert((((uintptr_t) handler) & 3U) == 0U); /* Ensure we register for valid priority */ idx = pri_to_idx(pri); assert(idx < exception_data.num_priorities); assert(IDX_TO_PRI(idx) == pri); /* Return failure if a handler was already registered */ if (exception_data.ehf_priorities[idx].ehf_handler != EHF_NO_HANDLER_) { ERROR("Handler already registered for priority 0x%x\n", pri); panic(); } /* * Install handler, and retain the valid bit. We assume that the handler * is 4-byte aligned, which is usually the case. */ exception_data.ehf_priorities[idx].ehf_handler = (((uintptr_t) handler) | EHF_PRI_VALID_); EHF_LOG("register pri=0x%x handler=%p\n", pri, handler); } SUBSCRIBE_TO_EVENT(cm_entering_normal_world, ehf_entering_normal_world); SUBSCRIBE_TO_EVENT(cm_exited_normal_world, ehf_exited_normal_world);