/* * Copyright (c) 2017-2024, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include "../xlat_tables_private.h" /* * Returns true if the provided granule size is supported, false otherwise. */ bool xlat_arch_is_granule_size_supported(size_t size) { if (size == PAGE_SIZE_4KB) { /* MSB of TGRAN4 field will be '1' for unsupported feature */ return is_feat_tgran4K_present(); } else if (size == PAGE_SIZE_16KB) { return is_feat_tgran16K_present(); } else if (size == PAGE_SIZE_64KB) { /* MSB of TGRAN64 field will be '1' for unsupported feature */ return is_feat_tgran64K_present(); } else { return false; } } size_t xlat_arch_get_max_supported_granule_size(void) { if (xlat_arch_is_granule_size_supported(PAGE_SIZE_64KB)) { return PAGE_SIZE_64KB; } else if (xlat_arch_is_granule_size_supported(PAGE_SIZE_16KB)) { return PAGE_SIZE_16KB; } else { assert(xlat_arch_is_granule_size_supported(PAGE_SIZE_4KB)); return PAGE_SIZE_4KB; } } /* * Determine the physical address space encoded in the 'attr' parameter. * * The physical address will fall into one of four spaces; secure, * nonsecure, root, or realm if RME is enabled, or one of two spaces; * secure and nonsecure otherwise. */ uint32_t xlat_arch_get_pas(uint32_t attr) { uint32_t pas = MT_PAS(attr); switch (pas) { #if ENABLE_RME /* TTD.NSE = 1 and TTD.NS = 1 for Realm PAS */ case MT_REALM: return LOWER_ATTRS(EL3_S1_NSE | NS); /* TTD.NSE = 1 and TTD.NS = 0 for Root PAS */ case MT_ROOT: return LOWER_ATTRS(EL3_S1_NSE); #endif case MT_NS: return LOWER_ATTRS(NS); default: /* MT_SECURE */ return 0U; } } unsigned long long tcr_physical_addr_size_bits(unsigned long long max_addr) { /* Physical address can't exceed 48 bits */ assert((max_addr & ADDR_MASK_48_TO_63) == 0U); /* 48 bits address */ if ((max_addr & ADDR_MASK_44_TO_47) != 0U) return TCR_PS_BITS_256TB; /* 44 bits address */ if ((max_addr & ADDR_MASK_42_TO_43) != 0U) return TCR_PS_BITS_16TB; /* 42 bits address */ if ((max_addr & ADDR_MASK_40_TO_41) != 0U) return TCR_PS_BITS_4TB; /* 40 bits address */ if ((max_addr & ADDR_MASK_36_TO_39) != 0U) return TCR_PS_BITS_1TB; /* 36 bits address */ if ((max_addr & ADDR_MASK_32_TO_35) != 0U) return TCR_PS_BITS_64GB; return TCR_PS_BITS_4GB; } #if ENABLE_ASSERTIONS /* * Physical Address ranges supported in the AArch64 Memory Model. Value 0b110 is * supported in ARMv8.2 onwards. */ static const unsigned int pa_range_bits_arr[] = { PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100, PARANGE_0101, PARANGE_0110, PARANGE_0111 }; unsigned long long xlat_arch_get_max_supported_pa(void) { u_register_t pa_range = read_id_aa64mmfr0_el1() & ID_AA64MMFR0_EL1_PARANGE_MASK; /* All other values are reserved */ assert(pa_range < ARRAY_SIZE(pa_range_bits_arr)); return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL; } /* * Return minimum virtual address space size supported by the architecture */ uintptr_t xlat_get_min_virt_addr_space_size(void) { uintptr_t ret; if (is_feat_ttst_present()) ret = MIN_VIRT_ADDR_SPACE_SIZE_TTST; else ret = MIN_VIRT_ADDR_SPACE_SIZE; return ret; } #endif /* ENABLE_ASSERTIONS*/ bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx) { if (ctx->xlat_regime == EL1_EL0_REGIME) { assert(xlat_arch_current_el() >= 1U); return (read_sctlr_el1() & SCTLR_M_BIT) != 0U; } else if (ctx->xlat_regime == EL2_REGIME) { assert(xlat_arch_current_el() >= 2U); return (read_sctlr_el2() & SCTLR_M_BIT) != 0U; } else { assert(ctx->xlat_regime == EL3_REGIME); assert(xlat_arch_current_el() >= 3U); return (read_sctlr_el3() & SCTLR_M_BIT) != 0U; } } bool is_dcache_enabled(void) { unsigned int el = get_current_el_maybe_constant(); if (el == 1U) { return (read_sctlr_el1() & SCTLR_C_BIT) != 0U; } else if (el == 2U) { return (read_sctlr_el2() & SCTLR_C_BIT) != 0U; } else { return (read_sctlr_el3() & SCTLR_C_BIT) != 0U; } } uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime) { if (xlat_regime == EL1_EL0_REGIME) { return UPPER_ATTRS(UXN) | UPPER_ATTRS(PXN); } else { assert((xlat_regime == EL2_REGIME) || (xlat_regime == EL3_REGIME)); return UPPER_ATTRS(XN); } } void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime) { /* * Ensure the translation table write has drained into memory before * invalidating the TLB entry. */ dsbishst(); /* * This function only supports invalidation of TLB entries for the EL3 * and EL1&0 translation regimes. * * Also, it is architecturally UNDEFINED to invalidate TLBs of a higher * exception level (see section D4.9.2 of the ARM ARM rev B.a). */ if (xlat_regime == EL1_EL0_REGIME) { assert(xlat_arch_current_el() >= 1U); tlbivaae1is(TLBI_ADDR(va)); } else if (xlat_regime == EL2_REGIME) { assert(xlat_arch_current_el() >= 2U); tlbivae2is(TLBI_ADDR(va)); } else { assert(xlat_regime == EL3_REGIME); assert(xlat_arch_current_el() >= 3U); tlbivae3is(TLBI_ADDR(va)); } } void xlat_arch_tlbi_va_sync(void) { /* * A TLB maintenance instruction can complete at any time after * it is issued, but is only guaranteed to be complete after the * execution of DSB by the PE that executed the TLB maintenance * instruction. After the TLB invalidate instruction is * complete, no new memory accesses using the invalidated TLB * entries will be observed by any observer of the system * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph * "Ordering and completion of TLB maintenance instructions". */ dsbish(); /* * The effects of a completed TLB maintenance instruction are * only guaranteed to be visible on the PE that executed the * instruction after the execution of an ISB instruction by the * PE that executed the TLB maintenance instruction. */ isb(); } unsigned int xlat_arch_current_el(void) { unsigned int el = (unsigned int)GET_EL(read_CurrentEl()); assert(el > 0U); return el; } void setup_mmu_cfg(uint64_t *params, unsigned int flags, const uint64_t *base_table, unsigned long long max_pa, uintptr_t max_va, int xlat_regime) { uint64_t mair, ttbr0, tcr; uintptr_t virtual_addr_space_size; /* Set attributes in the right indices of the MAIR. */ mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX); mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX); mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX); /* * Limit the input address ranges and memory region sizes translated * using TTBR0 to the given virtual address space size. */ assert(max_va < ((uint64_t)UINTPTR_MAX)); virtual_addr_space_size = (uintptr_t)max_va + 1U; assert(virtual_addr_space_size >= xlat_get_min_virt_addr_space_size()); assert(virtual_addr_space_size <= MAX_VIRT_ADDR_SPACE_SIZE); assert(IS_POWER_OF_TWO(virtual_addr_space_size)); /* * __builtin_ctzll(0) is undefined but here we are guaranteed that * virtual_addr_space_size is in the range [1,UINTPTR_MAX]. */ int t0sz = 64 - __builtin_ctzll(virtual_addr_space_size); tcr = (uint64_t)t0sz << TCR_T0SZ_SHIFT; /* * Set the cacheability and shareability attributes for memory * associated with translation table walks. */ if ((flags & XLAT_TABLE_NC) != 0U) { /* Inner & outer non-cacheable non-shareable. */ tcr |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC; } else { /* Inner & outer WBWA & shareable. */ tcr |= TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA; } /* * It is safer to restrict the max physical address accessible by the * hardware as much as possible. */ unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa); if (xlat_regime == EL1_EL0_REGIME) { /* * TCR_EL1.EPD1: Disable translation table walk for addresses * that are translated using TTBR1_EL1. */ tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT); } else if (xlat_regime == EL2_REGIME) { tcr |= TCR_EL2_RES1 | (tcr_ps_bits << TCR_EL2_PS_SHIFT); } else { assert(xlat_regime == EL3_REGIME); tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT); } /* Set TTBR bits as well */ ttbr0 = (uint64_t) base_table; if (is_feat_ttcnp_present()) { /* Enable CnP bit so as to share page tables with all PEs. */ ttbr0 |= TTBR_CNP_BIT; } params[MMU_CFG_MAIR] = mair; params[MMU_CFG_TCR] = tcr; params[MMU_CFG_TTBR0] = ttbr0; }