/* * Copyright (c) 2022-2024, Arm Limited. All rights reserved. * Copyright (c) 2023, NVIDIA Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause * * Dispatch synchronous system register traps from lower ELs. */ #include #include #include #include #include int handle_sysreg_trap(uint64_t esr_el3, cpu_context_t *ctx) { uint64_t __unused opcode = esr_el3 & ISS_SYSREG_OPCODE_MASK; #if ENABLE_FEAT_RNG_TRAP if ((opcode == ISS_SYSREG_OPCODE_RNDR) || (opcode == ISS_SYSREG_OPCODE_RNDRRS)) { return plat_handle_rng_trap(esr_el3, ctx); } #endif #if IMPDEF_SYSREG_TRAP if ((opcode & ISS_SYSREG_OPCODE_IMPDEF) == ISS_SYSREG_OPCODE_IMPDEF) { return plat_handle_impdef_trap(esr_el3, ctx); } #endif return TRAP_RET_UNHANDLED; } static bool is_tge_enabled(void) { u_register_t hcr_el2 = read_hcr_el2(); return ((is_feat_vhe_present()) && ((hcr_el2 & HCR_TGE_BIT) != 0U)); } /* * This function is to ensure that undef injection does not happen into * non-existent S-EL2. This could happen when trap happens from S-EL{1,0} * and non-secure world is running with TGE bit set, considering EL3 does * not save/restore EL2 registers if only one world has EL2 enabled. * So reading hcr_el2.TGE would give NS world value. */ static bool is_secure_trap_without_sel2(u_register_t scr) { return ((scr & (SCR_NS_BIT | SCR_EEL2_BIT)) == 0); } static unsigned int target_el(unsigned int from_el, u_register_t scr) { if (from_el > MODE_EL1) { return from_el; } else if (is_tge_enabled() && !is_secure_trap_without_sel2(scr)) { return MODE_EL2; } else { return MODE_EL1; } } static u_register_t get_elr_el3(u_register_t spsr_el3, u_register_t vbar, unsigned int target_el) { unsigned int outgoing_el = GET_EL(spsr_el3); u_register_t elr_el3 = 0; if (outgoing_el == target_el) { /* * Target EL is either EL1 or EL2, lsb can tell us the SPsel * Thread mode : 0 * Handler mode : 1 */ if ((spsr_el3 & (MODE_SP_MASK << MODE_SP_SHIFT)) == MODE_SP_ELX) { elr_el3 = vbar + CURRENT_EL_SPX; } else { elr_el3 = vbar + CURRENT_EL_SP0; } } else { /* Vector address for Lower EL using Aarch64 */ elr_el3 = vbar + LOWER_EL_AARCH64; } return elr_el3; } /* * Explicitly create all bits of SPSR to get PSTATE at exception return. * * The code is based on "Aarch64.exceptions.takeexception" described in * DDI0602 revision 2023-06. * "https://developer.arm.com/documentation/ddi0602/2023-06/Shared-Pseudocode/ * aarch64-exceptions-takeexception" * * NOTE: This piece of code must be reviewed every release to ensure that * we keep up with new ARCH features which introduces a new SPSR bit. * * TF-A 2.12 release review * The latest version available is 2024-09, which has two extra features which * impacts generation of SPSR, since these features are not implemented in TF-A * at the time of release, just log the feature names here to be taken up when * feature support is introduced. * - FEAT_PAuth_LR (2023 extension) * - FEAT_UINJ (2024 extension) */ u_register_t create_spsr(u_register_t old_spsr, unsigned int target_el) { u_register_t new_spsr = 0; u_register_t sctlr; /* Set M bits for target EL in AArch64 mode, also get sctlr */ if (target_el == MODE_EL2) { sctlr = read_sctlr_el2(); new_spsr |= (SPSR_M_AARCH64 << SPSR_M_SHIFT) | SPSR_M_EL2H; } else { sctlr = read_sctlr_el1(); new_spsr |= (SPSR_M_AARCH64 << SPSR_M_SHIFT) | SPSR_M_EL1H; } /* Mask all exceptions, update DAIF bits */ new_spsr |= SPSR_DAIF_MASK << SPSR_DAIF_SHIFT; /* If FEAT_BTI is present, clear BTYPE bits */ new_spsr |= old_spsr & (SPSR_BTYPE_MASK_AARCH64 << SPSR_BTYPE_SHIFT_AARCH64); if (is_feat_bti_present()) { new_spsr &= ~(SPSR_BTYPE_MASK_AARCH64 << SPSR_BTYPE_SHIFT_AARCH64); } /* If SSBS is implemented, take the value from SCTLR.DSSBS */ new_spsr |= old_spsr & SPSR_SSBS_BIT_AARCH64; if (is_feat_ssbs_present()) { if ((sctlr & SCTLR_DSSBS_BIT) != 0U) { new_spsr |= SPSR_SSBS_BIT_AARCH64; } else { new_spsr &= ~SPSR_SSBS_BIT_AARCH64; } } /* If FEAT_NMI is implemented, ALLINT = !(SCTLR.SPINTMASK) */ new_spsr |= old_spsr & SPSR_ALLINT_BIT_AARCH64; if (is_feat_nmi_present()) { if ((sctlr & SCTLR_SPINTMASK_BIT) != 0U) { new_spsr &= ~SPSR_ALLINT_BIT_AARCH64; } else { new_spsr |= SPSR_ALLINT_BIT_AARCH64; } } /* Clear PSTATE.IL bit explicitly */ new_spsr &= ~SPSR_IL_BIT; /* Clear PSTATE.SS bit explicitly */ new_spsr &= ~SPSR_SS_BIT; /* Update PSTATE.PAN bit */ new_spsr |= old_spsr & SPSR_PAN_BIT; if (is_feat_pan_present() && ((target_el == MODE_EL1) || ((target_el == MODE_EL2) && is_tge_enabled())) && ((sctlr & SCTLR_SPAN_BIT) == 0U)) { new_spsr |= SPSR_PAN_BIT; } /* Clear UAO bit if FEAT_UAO is present */ new_spsr |= old_spsr & SPSR_UAO_BIT_AARCH64; if (is_feat_uao_present()) { new_spsr &= ~SPSR_UAO_BIT_AARCH64; } /* DIT bits are unchanged */ new_spsr |= old_spsr & SPSR_DIT_BIT; /* If FEAT_MTE2 is implemented mask tag faults by setting TCO bit */ new_spsr |= old_spsr & SPSR_TCO_BIT_AARCH64; if (is_feat_mte2_present()) { new_spsr |= SPSR_TCO_BIT_AARCH64; } /* NZCV bits are unchanged */ new_spsr |= old_spsr & SPSR_NZCV; /* If FEAT_EBEP is present set PM bit */ new_spsr |= old_spsr & SPSR_PM_BIT_AARCH64; if (is_feat_ebep_present()) { new_spsr |= SPSR_PM_BIT_AARCH64; } /* If FEAT_SEBEP is present clear PPEND bit */ new_spsr |= old_spsr & SPSR_PPEND_BIT; if (is_feat_sebep_present()) { new_spsr &= ~SPSR_PPEND_BIT; } /* If FEAT_GCS is present, update EXLOCK bit */ new_spsr |= old_spsr & SPSR_EXLOCK_BIT_AARCH64; if (is_feat_gcs_present()) { u_register_t gcscr; if (target_el == MODE_EL2) { gcscr = read_gcscr_el2(); } else { gcscr = read_gcscr_el1(); } new_spsr |= (gcscr & GCSCR_EXLOCK_EN_BIT) ? SPSR_EXLOCK_BIT_AARCH64 : 0; } return new_spsr; } /* * Handler for injecting Undefined exception to lower EL which is caused by * lower EL accessing system registers of which (old)EL3 firmware is unaware. * * This is a safety net to avoid EL3 panics caused by system register access * that triggers an exception syndrome EC=0x18. */ void inject_undef64(cpu_context_t *ctx) { u_register_t esr = (EC_UNKNOWN << ESR_EC_SHIFT) | ESR_IL_BIT; el3_state_t *state = get_el3state_ctx(ctx); u_register_t elr_el3 = read_ctx_reg(state, CTX_ELR_EL3); u_register_t old_spsr = read_ctx_reg(state, CTX_SPSR_EL3); u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); u_register_t new_spsr = 0; unsigned int to_el = target_el(GET_EL(old_spsr), scr_el3); if (to_el == MODE_EL2) { write_elr_el2(elr_el3); elr_el3 = get_elr_el3(old_spsr, read_vbar_el2(), to_el); write_esr_el2(esr); write_spsr_el2(old_spsr); } else { write_elr_el1(elr_el3); elr_el3 = get_elr_el3(old_spsr, read_vbar_el1(), to_el); write_esr_el1(esr); write_spsr_el1(old_spsr); } new_spsr = create_spsr(old_spsr, to_el); write_ctx_reg(state, CTX_SPSR_EL3, new_spsr); write_ctx_reg(state, CTX_ELR_EL3, elr_el3); }