/* * Copyright (c) 2016-2022, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * Contains generic routines to fix up the device tree blob passed on to * payloads like BL32 and BL33 (and further down the boot chain). * This allows to easily add PSCI nodes, when the original DT does not have * it or advertises another method. * Also it supports to add reserved memory nodes to describe memory that * is used by the secure world, so that non-secure software avoids using * that. */ #include #include #include #include #include #include #include #include #include #include #include static int append_psci_compatible(void *fdt, int offs, const char *str) { return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1); } /* * Those defines are for PSCI v0.1 legacy clients, which we expect to use * the same execution state (AArch32/AArch64) as TF-A. * Kernels running in AArch32 on an AArch64 TF-A should use PSCI v0.2. */ #ifdef __aarch64__ #define PSCI_CPU_SUSPEND_FNID PSCI_CPU_SUSPEND_AARCH64 #define PSCI_CPU_ON_FNID PSCI_CPU_ON_AARCH64 #else #define PSCI_CPU_SUSPEND_FNID PSCI_CPU_SUSPEND_AARCH32 #define PSCI_CPU_ON_FNID PSCI_CPU_ON_AARCH32 #endif /******************************************************************************* * dt_add_psci_node() - Add a PSCI node into an existing device tree * @fdt: pointer to the device tree blob in memory * * Add a device tree node describing PSCI into the root level of an existing * device tree blob in memory. * This will add v0.1, v0.2 and v1.0 compatible strings and the standard * function IDs for v0.1 compatibility. * An existing PSCI node will not be touched, the function will return success * in this case. This function will not touch the /cpus enable methods, use * dt_add_psci_cpu_enable_methods() for that. * * Return: 0 on success, -1 otherwise. ******************************************************************************/ int dt_add_psci_node(void *fdt) { int offs; if (fdt_path_offset(fdt, "/psci") >= 0) { WARN("PSCI Device Tree node already exists!\n"); return 0; } offs = fdt_path_offset(fdt, "/"); if (offs < 0) return -1; offs = fdt_add_subnode(fdt, offs, "psci"); if (offs < 0) return -1; if (append_psci_compatible(fdt, offs, "arm,psci-1.0")) return -1; if (append_psci_compatible(fdt, offs, "arm,psci-0.2")) return -1; if (append_psci_compatible(fdt, offs, "arm,psci")) return -1; if (fdt_setprop_string(fdt, offs, "method", "smc")) return -1; if (fdt_setprop_u32(fdt, offs, "cpu_suspend", PSCI_CPU_SUSPEND_FNID)) return -1; if (fdt_setprop_u32(fdt, offs, "cpu_off", PSCI_CPU_OFF)) return -1; if (fdt_setprop_u32(fdt, offs, "cpu_on", PSCI_CPU_ON_FNID)) return -1; return 0; } /* * Find the first subnode that has a "device_type" property with the value * "cpu" and which's enable-method is not "psci" (yet). * Returns 0 if no such subnode is found, so all have already been patched * or none have to be patched in the first place. * Returns 1 if *one* such subnode has been found and successfully changed * to "psci". * Returns negative values on error. * * Call in a loop until it returns 0. Recalculate the node offset after * it has returned 1. */ static int dt_update_one_cpu_node(void *fdt, int offset) { int offs; /* Iterate over all subnodes to find those with device_type = "cpu". */ for (offs = fdt_first_subnode(fdt, offset); offs >= 0; offs = fdt_next_subnode(fdt, offs)) { const char *prop; int len; int ret; prop = fdt_getprop(fdt, offs, "device_type", &len); if (prop == NULL) continue; if ((strcmp(prop, "cpu") != 0) || (len != 4)) continue; /* Ignore any nodes which already use "psci". */ prop = fdt_getprop(fdt, offs, "enable-method", &len); if ((prop != NULL) && (strcmp(prop, "psci") == 0) && (len == 5)) continue; ret = fdt_setprop_string(fdt, offs, "enable-method", "psci"); if (ret < 0) return ret; /* * Subnode found and patched. * Restart to accommodate potentially changed offsets. */ return 1; } if (offs == -FDT_ERR_NOTFOUND) return 0; return offs; } /******************************************************************************* * dt_add_psci_cpu_enable_methods() - switch CPU nodes in DT to use PSCI * @fdt: pointer to the device tree blob in memory * * Iterate over all CPU device tree nodes (/cpus/cpu@x) in memory to change * the enable-method to PSCI. This will add the enable-method properties, if * required, or will change existing properties to read "psci". * * Return: 0 on success, or a negative error value otherwise. ******************************************************************************/ int dt_add_psci_cpu_enable_methods(void *fdt) { int offs, ret; do { offs = fdt_path_offset(fdt, "/cpus"); if (offs < 0) return offs; ret = dt_update_one_cpu_node(fdt, offs); } while (ret > 0); return ret; } #define HIGH_BITS(x) ((sizeof(x) > 4) ? ((x) >> 32) : (typeof(x))0) /******************************************************************************* * fdt_add_reserved_memory() - reserve (secure) memory regions in DT * @dtb: pointer to the device tree blob in memory * @node_name: name of the subnode to be used * @base: physical base address of the reserved region * @size: size of the reserved region * * Add a region of memory to the /reserved-memory node in a device tree in * memory, creating that node if required. Each region goes into a subnode * of that node and has a @node_name, a @base address and a @size. * This will prevent any device tree consumer from using that memory. It * can be used to announce secure memory regions, as it adds the "no-map" * property to prevent mapping and speculative operations on that region. * * See reserved-memory/reserved-memory.txt in the (Linux kernel) DT binding * documentation for details. * According to this binding, the address-cells and size-cells must match * those of the root node. * * Return: 0 on success, a negative error value otherwise. ******************************************************************************/ int fdt_add_reserved_memory(void *dtb, const char *node_name, uintptr_t base, size_t size) { int offs = fdt_path_offset(dtb, "/reserved-memory"); int node; uint32_t addresses[4]; int ac, sc; unsigned int idx = 0; ac = fdt_address_cells(dtb, 0); sc = fdt_size_cells(dtb, 0); if (offs < 0) { /* create if not existing yet */ offs = fdt_add_subnode(dtb, 0, "reserved-memory"); if (offs < 0) { return offs; } fdt_setprop_u32(dtb, offs, "#address-cells", ac); fdt_setprop_u32(dtb, offs, "#size-cells", sc); fdt_setprop(dtb, offs, "ranges", NULL, 0); } /* Check for existing regions */ fdt_for_each_subnode(node, dtb, offs) { uintptr_t c_base; size_t c_size; int ret; ret = fdt_get_reg_props_by_index(dtb, node, 0, &c_base, &c_size); /* Ignore illegal subnodes */ if (ret != 0) { continue; } /* existing region entirely contains the new region */ if (base >= c_base && (base + size) <= (c_base + c_size)) { return 0; } } if (ac > 1) { addresses[idx] = cpu_to_fdt32(HIGH_BITS(base)); idx++; } addresses[idx] = cpu_to_fdt32(base & 0xffffffff); idx++; if (sc > 1) { addresses[idx] = cpu_to_fdt32(HIGH_BITS(size)); idx++; } addresses[idx] = cpu_to_fdt32(size & 0xffffffff); idx++; offs = fdt_add_subnode(dtb, offs, node_name); fdt_setprop(dtb, offs, "no-map", NULL, 0); fdt_setprop(dtb, offs, "reg", addresses, idx * sizeof(uint32_t)); return 0; } /******************************************************************************* * fdt_add_cpu() Add a new CPU node to the DT * @dtb: Pointer to the device tree blob in memory * @parent: Offset of the parent node * @mpidr: MPIDR for the current CPU * * Create and add a new cpu node to a DTB. * * Return the offset of the new node or a negative value in case of error ******************************************************************************/ static int fdt_add_cpu(void *dtb, int parent, u_register_t mpidr) { int cpu_offs; int err; char snode_name[15]; uint64_t reg_prop; reg_prop = mpidr & MPID_MASK & ~MPIDR_MT_MASK; snprintf(snode_name, sizeof(snode_name), "cpu@%x", (unsigned int)reg_prop); cpu_offs = fdt_add_subnode(dtb, parent, snode_name); if (cpu_offs < 0) { ERROR ("FDT: add subnode \"%s\" failed: %i\n", snode_name, cpu_offs); return cpu_offs; } err = fdt_setprop_string(dtb, cpu_offs, "compatible", "arm,armv8"); if (err < 0) { ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", "compatible", cpu_offs); return err; } err = fdt_setprop_u64(dtb, cpu_offs, "reg", reg_prop); if (err < 0) { ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", "reg", cpu_offs); return err; } err = fdt_setprop_string(dtb, cpu_offs, "device_type", "cpu"); if (err < 0) { ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", "device_type", cpu_offs); return err; } err = fdt_setprop_string(dtb, cpu_offs, "enable-method", "psci"); if (err < 0) { ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", "enable-method", cpu_offs); return err; } return cpu_offs; } /****************************************************************************** * fdt_add_cpus_node() - Add the cpus node to the DTB * @dtb: pointer to the device tree blob in memory * @afflv0: Maximum number of threads per core (affinity level 0). * @afflv1: Maximum number of CPUs per cluster (affinity level 1). * @afflv2: Maximum number of clusters (affinity level 2). * * Iterate over all the possible MPIDs given the maximum affinity levels and * add a cpus node to the DTB with all the valid CPUs on the system. * If there is already a /cpus node, exit gracefully * * A system with two CPUs would generate a node equivalent or similar to: * * cpus { * #address-cells = <2>; * #size-cells = <0>; * * cpu0: cpu@0 { * compatible = "arm,armv8"; * reg = <0x0 0x0>; * device_type = "cpu"; * enable-method = "psci"; * }; * cpu1: cpu@10000 { * compatible = "arm,armv8"; * reg = <0x0 0x100>; * device_type = "cpu"; * enable-method = "psci"; * }; * }; * * Full documentation about the CPU bindings can be found at: * https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/cpus.txt * * Return the offset of the node or a negative value on error. ******************************************************************************/ int fdt_add_cpus_node(void *dtb, unsigned int afflv0, unsigned int afflv1, unsigned int afflv2) { int offs; int err; unsigned int i, j, k; u_register_t mpidr; int cpuid; if (fdt_path_offset(dtb, "/cpus") >= 0) { return -EEXIST; } offs = fdt_add_subnode(dtb, 0, "cpus"); if (offs < 0) { ERROR ("FDT: add subnode \"cpus\" node to parent node failed"); return offs; } err = fdt_setprop_u32(dtb, offs, "#address-cells", 2); if (err < 0) { ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", "#address-cells", offs); return err; } err = fdt_setprop_u32(dtb, offs, "#size-cells", 0); if (err < 0) { ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", "#size-cells", offs); return err; } /* * Populate the node with the CPUs. * As libfdt prepends subnodes within a node, reverse the index count * so the CPU nodes would be better ordered. */ for (i = afflv2; i > 0U; i--) { for (j = afflv1; j > 0U; j--) { for (k = afflv0; k > 0U; k--) { mpidr = ((i - 1) << MPIDR_AFF2_SHIFT) | ((j - 1) << MPIDR_AFF1_SHIFT) | ((k - 1) << MPIDR_AFF0_SHIFT) | (read_mpidr_el1() & MPIDR_MT_MASK); cpuid = plat_core_pos_by_mpidr(mpidr); if (cpuid >= 0) { /* Valid MPID found */ err = fdt_add_cpu(dtb, offs, mpidr); if (err < 0) { ERROR ("FDT: %s 0x%08x\n", "error adding CPU", (uint32_t)mpidr); return err; } } } } } return offs; } /******************************************************************************* * fdt_add_cpu_idle_states() - add PSCI CPU idle states to cpu nodes in the DT * @dtb: pointer to the device tree blob in memory * @states: array of idle state descriptions, ending with empty element * * Add information about CPU idle states to the devicetree. This function * assumes that CPU idle states are not already present in the devicetree, and * that all CPU states are equally applicable to all CPUs. * * See arm/idle-states.yaml and arm/psci.yaml in the (Linux kernel) DT binding * documentation for more details. * * Return: 0 on success, a negative error value otherwise. ******************************************************************************/ int fdt_add_cpu_idle_states(void *dtb, const struct psci_cpu_idle_state *state) { int cpu_node, cpus_node, idle_states_node, ret; uint32_t count, phandle; ret = fdt_find_max_phandle(dtb, &phandle); phandle++; if (ret < 0) { return ret; } cpus_node = fdt_path_offset(dtb, "/cpus"); if (cpus_node < 0) { return cpus_node; } /* Create the idle-states node and its child nodes. */ idle_states_node = fdt_add_subnode(dtb, cpus_node, "idle-states"); if (idle_states_node < 0) { return idle_states_node; } ret = fdt_setprop_string(dtb, idle_states_node, "entry-method", "psci"); if (ret < 0) { return ret; } for (count = 0U; state->name != NULL; count++, phandle++, state++) { int idle_state_node; idle_state_node = fdt_add_subnode(dtb, idle_states_node, state->name); if (idle_state_node < 0) { return idle_state_node; } fdt_setprop_string(dtb, idle_state_node, "compatible", "arm,idle-state"); fdt_setprop_u32(dtb, idle_state_node, "arm,psci-suspend-param", state->power_state); if (state->local_timer_stop) { fdt_setprop_empty(dtb, idle_state_node, "local-timer-stop"); } fdt_setprop_u32(dtb, idle_state_node, "entry-latency-us", state->entry_latency_us); fdt_setprop_u32(dtb, idle_state_node, "exit-latency-us", state->exit_latency_us); fdt_setprop_u32(dtb, idle_state_node, "min-residency-us", state->min_residency_us); if (state->wakeup_latency_us) { fdt_setprop_u32(dtb, idle_state_node, "wakeup-latency-us", state->wakeup_latency_us); } fdt_setprop_u32(dtb, idle_state_node, "phandle", phandle); } if (count == 0U) { return 0; } /* Link each cpu node to the idle state nodes. */ fdt_for_each_subnode(cpu_node, dtb, cpus_node) { const char *device_type; fdt32_t *value; /* Only process child nodes with device_type = "cpu". */ device_type = fdt_getprop(dtb, cpu_node, "device_type", NULL); if (device_type == NULL || strcmp(device_type, "cpu") != 0) { continue; } /* Allocate space for the list of phandles. */ ret = fdt_setprop_placeholder(dtb, cpu_node, "cpu-idle-states", count * sizeof(phandle), (void **)&value); if (ret < 0) { return ret; } /* Fill in the phandles of the idle state nodes. */ for (uint32_t i = 0U; i < count; ++i) { value[i] = cpu_to_fdt32(phandle - count + i); } } return 0; } /** * fdt_adjust_gic_redist() - Adjust GICv3 redistributor size * @dtb: Pointer to the DT blob in memory * @nr_cores: Number of CPU cores on this system. * @gicr_base: Base address of the first GICR frame, or ~0 if unchanged * @gicr_frame_size: Size of the GICR frame per core * * On a GICv3 compatible interrupt controller, the redistributor provides * a number of 64k pages per each supported core. So with a dynamic topology, * this size cannot be known upfront and thus can't be hardcoded into the DTB. * * Find the DT node describing the GICv3 interrupt controller, and adjust * the size of the redistributor to match the number of actual cores on * this system. * A GICv4 compatible redistributor uses four 64K pages per core, whereas GICs * without support for direct injection of virtual interrupts use two 64K pages. * The @gicr_frame_size parameter should be 262144 and 131072, respectively. * Also optionally allow adjusting the GICR frame base address, when this is * different due to ITS frames between distributor and redistributor. * * Return: 0 on success, negative error value otherwise. */ int fdt_adjust_gic_redist(void *dtb, unsigned int nr_cores, uintptr_t gicr_base, unsigned int gicr_frame_size) { int offset = fdt_node_offset_by_compatible(dtb, 0, "arm,gic-v3"); uint64_t reg_64; uint32_t reg_32; void *val; int parent, ret; int ac, sc; if (offset < 0) { return offset; } parent = fdt_parent_offset(dtb, offset); if (parent < 0) { return parent; } ac = fdt_address_cells(dtb, parent); sc = fdt_size_cells(dtb, parent); if (ac < 0 || sc < 0) { return -EINVAL; } if (gicr_base != INVALID_BASE_ADDR) { if (ac == 1) { reg_32 = cpu_to_fdt32(gicr_base); val = ®_32; } else { reg_64 = cpu_to_fdt64(gicr_base); val = ®_64; } /* * The redistributor base address is the second address in * the "reg" entry, so we have to skip one address and one * size cell. */ ret = fdt_setprop_inplace_namelen_partial(dtb, offset, "reg", 3, (ac + sc) * 4, val, ac * 4); if (ret < 0) { return ret; } } if (sc == 1) { reg_32 = cpu_to_fdt32(nr_cores * gicr_frame_size); val = ®_32; } else { reg_64 = cpu_to_fdt64(nr_cores * (uint64_t)gicr_frame_size); val = ®_64; } /* * The redistributor is described in the second "reg" entry. * So we have to skip one address and one size cell, then another * address cell to get to the second size cell. */ return fdt_setprop_inplace_namelen_partial(dtb, offset, "reg", 3, (ac + sc + ac) * 4, val, sc * 4); } /** * fdt_set_mac_address () - store MAC address in device tree * @dtb: pointer to the device tree blob in memory * @eth_idx: number of Ethernet interface in /aliases node * @mac_addr: pointer to 6 byte MAC address to store * * Use the generic local-mac-address property in a network device DT node * to define the MAC address this device should be using. Many platform * network devices lack device-specific non-volatile storage to hold this * address, and leave it up to firmware to find and store a unique MAC * address in the DT. * The MAC address could be read from some board or firmware defined storage, * or could be derived from some other unique property like a serial number. * * Return: 0 on success, a negative libfdt error value otherwise. */ int fdt_set_mac_address(void *dtb, unsigned int ethernet_idx, const uint8_t *mac_addr) { char eth_alias[12]; const char *path; int node; if (ethernet_idx > 9U) { return -FDT_ERR_BADVALUE; } snprintf(eth_alias, sizeof(eth_alias), "ethernet%d", ethernet_idx); path = fdt_get_alias(dtb, eth_alias); if (path == NULL) { return -FDT_ERR_NOTFOUND; } node = fdt_path_offset(dtb, path); if (node < 0) { ERROR("Path \"%s\" not found in DT: %d\n", path, node); return node; } return fdt_setprop(dtb, node, "local-mac-address", mac_addr, 6); }