/* * Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved. * Portions copyright (c) 2021-2022, ProvenRun S.A.S. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include /* * The following platform GIC functions are weakly defined. They * provide typical implementations that may be re-used by multiple * platforms but may also be overridden by a platform if required. */ #pragma weak plat_ic_get_pending_interrupt_id #pragma weak plat_ic_get_pending_interrupt_type #pragma weak plat_ic_acknowledge_interrupt #pragma weak plat_ic_get_interrupt_type #pragma weak plat_ic_end_of_interrupt #pragma weak plat_interrupt_type_to_line #pragma weak plat_ic_get_running_priority #pragma weak plat_ic_is_spi #pragma weak plat_ic_is_ppi #pragma weak plat_ic_is_sgi #pragma weak plat_ic_get_interrupt_active #pragma weak plat_ic_enable_interrupt #pragma weak plat_ic_disable_interrupt #pragma weak plat_ic_set_interrupt_priority #pragma weak plat_ic_set_interrupt_type #pragma weak plat_ic_raise_el3_sgi #pragma weak plat_ic_raise_ns_sgi #pragma weak plat_ic_raise_s_el1_sgi #pragma weak plat_ic_set_spi_routing /* * This function returns the highest priority pending interrupt at * the Interrupt controller */ uint32_t plat_ic_get_pending_interrupt_id(void) { unsigned int id; id = gicv2_get_pending_interrupt_id(); if (id == GIC_SPURIOUS_INTERRUPT) return INTR_ID_UNAVAILABLE; return id; } /* * This function returns the type of the highest priority pending interrupt * at the Interrupt controller. In the case of GICv2, the Highest Priority * Pending interrupt register (`GICC_HPPIR`) is read to determine the id of * the pending interrupt. The type of interrupt depends upon the id value * as follows. * 1. id < PENDING_G1_INTID (1022) is reported as a S-EL1 interrupt * 2. id = PENDING_G1_INTID (1022) is reported as a Non-secure interrupt. * 3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt * type. */ uint32_t plat_ic_get_pending_interrupt_type(void) { unsigned int id; id = gicv2_get_pending_interrupt_type(); /* Assume that all secure interrupts are S-EL1 interrupts */ if (id < PENDING_G1_INTID) { #if GICV2_G0_FOR_EL3 return INTR_TYPE_EL3; #else return INTR_TYPE_S_EL1; #endif } if (id == GIC_SPURIOUS_INTERRUPT) return INTR_TYPE_INVAL; return INTR_TYPE_NS; } /* * This function returns the highest priority pending interrupt at * the Interrupt controller and indicates to the Interrupt controller * that the interrupt processing has started. */ uint32_t plat_ic_acknowledge_interrupt(void) { return gicv2_acknowledge_interrupt(); } /* * This function returns the type of the interrupt `id`, depending on how * the interrupt has been configured in the interrupt controller */ uint32_t plat_ic_get_interrupt_type(uint32_t id) { unsigned int type; type = gicv2_get_interrupt_group(id); /* Assume that all secure interrupts are S-EL1 interrupts */ return (type == GICV2_INTR_GROUP1) ? INTR_TYPE_NS : #if GICV2_G0_FOR_EL3 INTR_TYPE_EL3; #else INTR_TYPE_S_EL1; #endif } /* * This functions is used to indicate to the interrupt controller that * the processing of the interrupt corresponding to the `id` has * finished. */ void plat_ic_end_of_interrupt(uint32_t id) { gicv2_end_of_interrupt(id); } /* * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins. * The interrupt controller knows which pin/line it uses to signal a type of * interrupt. It lets the interrupt management framework determine * for a type of interrupt and security state, which line should be used in the * SCR_EL3 to control its routing to EL3. The interrupt line is represented * as the bit position of the IRQ or FIQ bit in the SCR_EL3. */ uint32_t plat_interrupt_type_to_line(uint32_t type, uint32_t security_state) { assert((type == INTR_TYPE_S_EL1) || (type == INTR_TYPE_EL3) || (type == INTR_TYPE_NS)); assert(sec_state_is_valid(security_state)); /* Non-secure interrupts are signaled on the IRQ line always */ if (type == INTR_TYPE_NS) return __builtin_ctz(SCR_IRQ_BIT); /* * Secure interrupts are signaled using the IRQ line if the FIQ is * not enabled else they are signaled using the FIQ line. */ return ((gicv2_is_fiq_enabled() != 0U) ? __builtin_ctz(SCR_FIQ_BIT) : __builtin_ctz(SCR_IRQ_BIT)); } unsigned int plat_ic_get_running_priority(void) { return gicv2_get_running_priority(); } int plat_ic_is_spi(unsigned int id) { return (id >= MIN_SPI_ID) && (id <= MAX_SPI_ID); } int plat_ic_is_ppi(unsigned int id) { return (id >= MIN_PPI_ID) && (id < MIN_SPI_ID); } int plat_ic_is_sgi(unsigned int id) { return (id >= MIN_SGI_ID) && (id < MIN_PPI_ID); } unsigned int plat_ic_get_interrupt_active(unsigned int id) { return gicv2_get_interrupt_active(id); } void plat_ic_enable_interrupt(unsigned int id) { gicv2_enable_interrupt(id); } void plat_ic_disable_interrupt(unsigned int id) { gicv2_disable_interrupt(id); } void plat_ic_set_interrupt_priority(unsigned int id, unsigned int priority) { gicv2_set_interrupt_priority(id, priority); } bool plat_ic_has_interrupt_type(unsigned int type) { bool has_interrupt_type = false; switch (type) { #if GICV2_G0_FOR_EL3 case INTR_TYPE_EL3: #else case INTR_TYPE_S_EL1: #endif case INTR_TYPE_NS: has_interrupt_type = true; break; default: /* Do nothing in default case */ break; } return has_interrupt_type; } void plat_ic_set_interrupt_type(unsigned int id, unsigned int type) { unsigned int gicv2_group = 0U; /* Map canonical interrupt type to GICv2 type */ switch (type) { #if GICV2_G0_FOR_EL3 case INTR_TYPE_EL3: #else case INTR_TYPE_S_EL1: #endif gicv2_group = GICV2_INTR_GROUP0; break; case INTR_TYPE_NS: gicv2_group = GICV2_INTR_GROUP1; break; default: assert(false); /* Unreachable */ break; } gicv2_set_interrupt_group(id, gicv2_group); } void plat_ic_raise_el3_sgi(int sgi_num, u_register_t target) { #if GICV2_G0_FOR_EL3 int id; /* Target must be a valid MPIDR in the system */ id = plat_core_pos_by_mpidr(target); assert(id >= 0); /* Verify that this is a secure SGI */ assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_EL3); gicv2_raise_sgi(sgi_num, false, id); #else assert(false); #endif } void plat_ic_raise_ns_sgi(int sgi_num, u_register_t target) { int id; /* Target must be a valid MPIDR in the system */ id = plat_core_pos_by_mpidr(target); assert(id >= 0); /* Verify that this is a non-secure SGI */ assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_NS); gicv2_raise_sgi(sgi_num, true, id); } void plat_ic_raise_s_el1_sgi(int sgi_num, u_register_t target) { #if GICV2_G0_FOR_EL3 assert(false); #else int id; /* Target must be a valid MPIDR in the system */ id = plat_core_pos_by_mpidr(target); assert(id >= 0); /* Verify that this is a secure EL1 SGI */ assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_S_EL1); gicv2_raise_sgi(sgi_num, false, id); #endif } void plat_ic_set_spi_routing(unsigned int id, unsigned int routing_mode, u_register_t mpidr) { int proc_num = 0; switch (routing_mode) { case INTR_ROUTING_MODE_PE: proc_num = plat_core_pos_by_mpidr(mpidr); assert(proc_num >= 0); break; case INTR_ROUTING_MODE_ANY: /* Bit mask selecting all 8 CPUs as candidates */ proc_num = -1; break; default: assert(0); /* Unreachable */ break; } gicv2_set_spi_routing(id, proc_num); } void plat_ic_set_interrupt_pending(unsigned int id) { gicv2_set_interrupt_pending(id); } void plat_ic_clear_interrupt_pending(unsigned int id) { gicv2_clear_interrupt_pending(id); } unsigned int plat_ic_set_priority_mask(unsigned int mask) { return gicv2_set_pmr(mask); } unsigned int plat_ic_get_interrupt_id(unsigned int raw) { unsigned int id = (raw & INT_ID_MASK); if (id == GIC_SPURIOUS_INTERRUPT) id = INTR_ID_UNAVAILABLE; return id; }