/* * Copyright (c) 2019-2024, ARM Limited and Contributors. All rights reserved. * Copyright (c) 2019-2023, Intel Corporation. All rights reserved. * Copyright (c) 2024, Altera Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include "agilex5_cache.h" #include "agilex5_power_manager.h" #include "ccu/ncore_ccu.h" #include "socfpga_mailbox.h" #include "socfpga_private.h" #include "socfpga_reset_manager.h" /* Get non-secure SPSR for BL33. Zephyr and Linux */ uint32_t arm_get_spsr_for_bl33_entry(void); static entry_point_info_t bl32_image_ep_info; static entry_point_info_t bl33_image_ep_info; /* The GICv3 driver only needs to be initialized in EL3 */ static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT]; #define SMMU_SDMMC entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) { entry_point_info_t *next_image_info; next_image_info = (type == NON_SECURE) ? &bl33_image_ep_info : &bl32_image_ep_info; /* None of the images on this platform can have 0x0 as the entrypoint */ if (next_image_info->pc) return next_image_info; else return NULL; } void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1, u_register_t arg2, u_register_t arg3) { static console_t console; mmio_write_64(PLAT_SEC_ENTRY, PLAT_SEC_WARM_ENTRY); console_16550_register(PLAT_INTEL_UART_BASE, PLAT_UART_CLOCK, PLAT_BAUDRATE, &console); setup_smmu_stream_id(); /* * Check params passed from BL31 should not be NULL, */ void *from_bl2 = (void *) arg0; #if RESET_TO_BL31 /* There are no parameters from BL2 if BL31 is a reset vector */ assert(from_bl2 == NULL); void *plat_params_from_bl2 = (void *) arg3; assert(plat_params_from_bl2 == NULL); /* Populate entry point information for BL33 */ SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0); # if ARM_LINUX_KERNEL_AS_BL33 /* * According to the file ``Documentation/arm64/booting.txt`` of the * Linux kernel tree, Linux expects the physical address of the device * tree blob (DTB) in x0, while x1-x3 are reserved for future use and * must be 0. */ bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE; bl33_image_ep_info.args.arg1 = 0U; bl33_image_ep_info.args.arg2 = 0U; bl33_image_ep_info.args.arg3 = 0U; # endif #else /* RESET_TO_BL31 */ bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2; assert(params_from_bl2 != NULL); /* * Copy BL32 (if populated by BL31) and BL33 entry point information. * They are stored in Secure RAM, in BL31's address space. */ if (params_from_bl2->h.type == PARAM_BL_PARAMS && params_from_bl2->h.version >= VERSION_2) { bl_params_node_t *bl_params = params_from_bl2->head; while (bl_params) { if (bl_params->image_id == BL33_IMAGE_ID) { bl33_image_ep_info = *bl_params->ep_info; } bl_params = bl_params->next_params_info; } } else { struct socfpga_bl31_params *arg_from_bl2 = (struct socfpga_bl31_params *) from_bl2; assert(arg_from_bl2->h.type == PARAM_BL31); assert(arg_from_bl2->h.version >= VERSION_1); bl32_image_ep_info = *arg_from_bl2->bl32_ep_info; bl33_image_ep_info = *arg_from_bl2->bl33_ep_info; } bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE; bl33_image_ep_info.args.arg1 = 0U; bl33_image_ep_info.args.arg2 = 0U; bl33_image_ep_info.args.arg3 = 0U; #endif /* * Tell BL31 where the non-trusted software image * is located and the entry state information */ bl33_image_ep_info.pc = plat_get_ns_image_entrypoint(); bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry(); SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE); } static const interrupt_prop_t agx5_interrupt_props[] = { PLAT_INTEL_SOCFPGA_G1S_IRQ_PROPS(INTR_GROUP1S), PLAT_INTEL_SOCFPGA_G0_IRQ_PROPS(INTR_GROUP0) }; static const gicv3_driver_data_t plat_gicv3_gic_data = { .gicd_base = PLAT_INTEL_SOCFPGA_GICD_BASE, .gicr_base = PLAT_INTEL_SOCFPGA_GICR_BASE, .interrupt_props = agx5_interrupt_props, .interrupt_props_num = ARRAY_SIZE(agx5_interrupt_props), .rdistif_num = PLATFORM_CORE_COUNT, .rdistif_base_addrs = rdistif_base_addrs, }; /******************************************************************************* * Perform any BL3-1 platform setup code ******************************************************************************/ void bl31_platform_setup(void) { socfpga_delay_timer_init(); /* Initialize the gic cpu and distributor interfaces */ gicv3_driver_init(&plat_gicv3_gic_data); gicv3_distif_init(); gicv3_rdistif_init(plat_my_core_pos()); gicv3_cpuif_enable(plat_my_core_pos()); mailbox_hps_stage_notify(HPS_EXECUTION_STATE_SSBL); } const mmap_region_t plat_agilex_mmap[] = { MAP_REGION_FLAT(DRAM_BASE, DRAM_SIZE, MT_MEMORY | MT_RW | MT_NS), MAP_REGION_FLAT(PSS_BASE, PSS_SIZE, MT_DEVICE | MT_RW | MT_NS), MAP_REGION_FLAT(MPFE_BASE, MPFE_SIZE, MT_DEVICE | MT_RW | MT_SECURE), MAP_REGION_FLAT(OCRAM_BASE, OCRAM_SIZE, MT_NON_CACHEABLE | MT_RW | MT_SECURE), MAP_REGION_FLAT(CCU_BASE, CCU_SIZE, MT_DEVICE | MT_RW | MT_SECURE), MAP_REGION_FLAT(MEM64_BASE, MEM64_SIZE, MT_DEVICE | MT_RW | MT_NS), MAP_REGION_FLAT(GIC_BASE, GIC_SIZE, MT_DEVICE | MT_RW | MT_SECURE), {0} }; /******************************************************************************* * Perform the very early platform specific architectural setup here. At the * moment this is only initializes the mmu in a quick and dirty way. ******************************************************************************/ void bl31_plat_arch_setup(void) { uint32_t boot_core = 0x00; uint32_t cpuid = 0x00; cpuid = MPIDR_AFFLVL1_VAL(read_mpidr()); boot_core = ((mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00) >> 10); NOTICE("BL31: Boot Core = %x\n", boot_core); NOTICE("BL31: CPU ID = %x\n", cpuid); INFO("BL31: Invalidate Data cache\n"); invalidate_dcache_all(); } /* Get non-secure image entrypoint for BL33. Zephyr and Linux */ uintptr_t plat_get_ns_image_entrypoint(void) { #ifdef PRELOADED_BL33_BASE return PRELOADED_BL33_BASE; #else return PLAT_NS_IMAGE_OFFSET; #endif } /* Get non-secure SPSR for BL33. Zephyr and Linux */ uint32_t arm_get_spsr_for_bl33_entry(void) { unsigned int mode; uint32_t spsr; /* Figure out what mode we enter the non-secure world in */ mode = (el_implemented(2) != EL_IMPL_NONE) ? MODE_EL2 : MODE_EL1; /* * TODO: Consider the possibility of specifying the SPSR in * the FIP ToC and allowing the platform to have a say as * well. */ spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); return spsr; } /* SMP: Secondary cores BL31 setup reset vector */ void bl31_plat_set_secondary_cpu_entrypoint(unsigned int cpu_id) { unsigned int pch_cpu = 0x00; unsigned int pchctlr_old = 0x00; unsigned int pchctlr_new = 0x00; uint32_t boot_core = 0x00; /* Store magic number for SMP secondary cores boot */ mmio_write_32(L2_RESET_DONE_REG, SMP_SEC_CORE_BOOT_REQ); boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00); /* Update the p-channel based on cpu id */ pch_cpu = 1 << cpu_id; if (boot_core == 0x00) { /* Update reset vector to 0x00 */ mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU2, (uint64_t) plat_secondary_cpus_bl31_entry >> 2); } else { /* Update reset vector to 0x00 */ mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU0, (uint64_t) plat_secondary_cpus_bl31_entry >> 2); } /* Update reset vector to 0x00 */ mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU1, (uint64_t) plat_secondary_cpus_bl31_entry >> 2); mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU3, (uint64_t) plat_secondary_cpus_bl31_entry >> 2); /* On all cores - temporary */ pchctlr_old = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR)); pchctlr_new = pchctlr_old | (pch_cpu<<1); mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pchctlr_new); /* We will only release the target secondary CPUs */ /* Bit mask for each CPU BIT0-3 */ mmio_write_32(RSTMGR_CPUSTRELEASE_CPUx, pch_cpu); } void bl31_plat_set_secondary_cpu_off(void) { unsigned int pch_cpu = 0x00; unsigned int pch_cpu_off = 0x00; unsigned int cpu_id = plat_my_core_pos(); pch_cpu_off = 1 << cpu_id; pch_cpu = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR)); pch_cpu = pch_cpu & ~(pch_cpu_off << 1); mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pch_cpu); } void bl31_plat_enable_mmu(uint32_t flags) { /* TODO: Enable mmu when needed */ }