/* * Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HEADER_VERSION_MAJOR_MASK GENMASK(23, 16) #define RESET_TIMEOUT_US_1MS 1000U /* Internal layout of the 32bit OTP word board_id */ #define BOARD_ID_BOARD_NB_MASK GENMASK_32(31, 16) #define BOARD_ID_BOARD_NB_SHIFT 16 #define BOARD_ID_VARCPN_MASK GENMASK_32(15, 12) #define BOARD_ID_VARCPN_SHIFT 12 #define BOARD_ID_REVISION_MASK GENMASK_32(11, 8) #define BOARD_ID_REVISION_SHIFT 8 #define BOARD_ID_VARFG_MASK GENMASK_32(7, 4) #define BOARD_ID_VARFG_SHIFT 4 #define BOARD_ID_BOM_MASK GENMASK_32(3, 0) #define BOARD_ID2NB(_id) (((_id) & BOARD_ID_BOARD_NB_MASK) >> \ BOARD_ID_BOARD_NB_SHIFT) #define BOARD_ID2VARCPN(_id) (((_id) & BOARD_ID_VARCPN_MASK) >> \ BOARD_ID_VARCPN_SHIFT) #define BOARD_ID2REV(_id) (((_id) & BOARD_ID_REVISION_MASK) >> \ BOARD_ID_REVISION_SHIFT) #define BOARD_ID2VARFG(_id) (((_id) & BOARD_ID_VARFG_MASK) >> \ BOARD_ID_VARFG_SHIFT) #define BOARD_ID2BOM(_id) ((_id) & BOARD_ID_BOM_MASK) #define BOOT_AUTH_MASK GENMASK_32(23, 20) #define BOOT_AUTH_SHIFT 20 #define BOOT_PART_MASK GENMASK_32(19, 16) #define BOOT_PART_SHIFT 16 #define BOOT_ITF_MASK GENMASK_32(15, 12) #define BOOT_ITF_SHIFT 12 #define BOOT_INST_MASK GENMASK_32(11, 8) #define BOOT_INST_SHIFT 8 /* Layout for fwu update information. */ #define FWU_INFO_IDX_MSK GENMASK(3, 0) #define FWU_INFO_IDX_OFF U(0) #define FWU_INFO_CNT_MSK GENMASK(7, 4) #define FWU_INFO_CNT_OFF U(4) static console_t console; uintptr_t plat_get_ns_image_entrypoint(void) { return BL33_BASE; } unsigned int plat_get_syscnt_freq2(void) { return read_cntfrq_el0(); } static uintptr_t boot_ctx_address; static uint16_t boot_itf_selected; void stm32mp_save_boot_ctx_address(uintptr_t address) { boot_api_context_t *boot_context = (boot_api_context_t *)address; boot_ctx_address = address; boot_itf_selected = boot_context->boot_interface_selected; } uintptr_t stm32mp_get_boot_ctx_address(void) { return boot_ctx_address; } uint16_t stm32mp_get_boot_itf_selected(void) { return boot_itf_selected; } uintptr_t stm32mp_ddrctrl_base(void) { return DDRCTRL_BASE; } uintptr_t stm32mp_ddrphyc_base(void) { return DDRPHYC_BASE; } uintptr_t stm32mp_pwr_base(void) { return PWR_BASE; } uintptr_t stm32mp_rcc_base(void) { return RCC_BASE; } bool stm32mp_lock_available(void) { const uint32_t c_m_bits = SCTLR_M_BIT | SCTLR_C_BIT; /* The spinlocks are used only when MMU and data cache are enabled */ #ifdef __aarch64__ return (read_sctlr_el3() & c_m_bits) == c_m_bits; #else return (read_sctlr() & c_m_bits) == c_m_bits; #endif } int stm32mp_map_ddr_non_cacheable(void) { return mmap_add_dynamic_region(STM32MP_DDR_BASE, STM32MP_DDR_BASE, STM32MP_DDR_MAX_SIZE, MT_NON_CACHEABLE | MT_RW | MT_SECURE); } int stm32mp_unmap_ddr(void) { return mmap_remove_dynamic_region(STM32MP_DDR_BASE, STM32MP_DDR_MAX_SIZE); } int stm32_get_otp_index(const char *otp_name, uint32_t *otp_idx, uint32_t *otp_len) { assert(otp_name != NULL); assert(otp_idx != NULL); return dt_find_otp_name(otp_name, otp_idx, otp_len); } int stm32_get_otp_value(const char *otp_name, uint32_t *otp_val) { uint32_t otp_idx; assert(otp_name != NULL); assert(otp_val != NULL); if (stm32_get_otp_index(otp_name, &otp_idx, NULL) != 0) { return -1; } if (stm32_get_otp_value_from_idx(otp_idx, otp_val) != 0) { ERROR("BSEC: %s Read Error\n", otp_name); return -1; } return 0; } int stm32_get_otp_value_from_idx(const uint32_t otp_idx, uint32_t *otp_val) { uint32_t ret = BSEC_NOT_SUPPORTED; assert(otp_val != NULL); #if defined(IMAGE_BL2) ret = stm32_otp_shadow_read(otp_val, otp_idx); #elif defined(IMAGE_BL31) || defined(IMAGE_BL32) ret = stm32_otp_read(otp_val, otp_idx); #else #error "Not supported" #endif if (ret != BSEC_OK) { ERROR("BSEC: idx=%u Read Error\n", otp_idx); return -1; } return 0; } #if defined(IMAGE_BL2) static void reset_uart(uint32_t reset) { int ret; ret = stm32mp_reset_assert(reset, RESET_TIMEOUT_US_1MS); if (ret != 0) { panic(); } udelay(2); ret = stm32mp_reset_deassert(reset, RESET_TIMEOUT_US_1MS); if (ret != 0) { panic(); } mdelay(1); } #endif static void set_console(uintptr_t base, uint32_t clk_rate) { unsigned int console_flags; if (console_stm32_register(base, clk_rate, (uint32_t)STM32MP_UART_BAUDRATE, &console) == 0) { panic(); } console_flags = CONSOLE_FLAG_BOOT | CONSOLE_FLAG_CRASH | CONSOLE_FLAG_TRANSLATE_CRLF; #if !defined(IMAGE_BL2) && defined(DEBUG) console_flags |= CONSOLE_FLAG_RUNTIME; #endif console_set_scope(&console, console_flags); } int stm32mp_uart_console_setup(void) { struct dt_node_info dt_uart_info; uint32_t clk_rate = 0U; int result; uint32_t boot_itf __unused; uint32_t boot_instance __unused; result = dt_get_stdout_uart_info(&dt_uart_info); if ((result <= 0) || (dt_uart_info.status == DT_DISABLED)) { return -ENODEV; } #if defined(IMAGE_BL2) if ((dt_uart_info.clock < 0) || (dt_uart_info.reset < 0)) { return -ENODEV; } #endif #if STM32MP_UART_PROGRAMMER || !defined(IMAGE_BL2) stm32_get_boot_interface(&boot_itf, &boot_instance); if ((boot_itf == BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART) && (get_uart_address(boot_instance) == dt_uart_info.base)) { return -EACCES; } #endif #if defined(IMAGE_BL2) if (dt_set_stdout_pinctrl() != 0) { return -ENODEV; } clk_enable((unsigned long)dt_uart_info.clock); reset_uart((uint32_t)dt_uart_info.reset); clk_rate = clk_get_rate((unsigned long)dt_uart_info.clock); #endif set_console(dt_uart_info.base, clk_rate); return 0; } #if EARLY_CONSOLE void plat_setup_early_console(void) { #if defined(IMAGE_BL2) || STM32MP_RECONFIGURE_CONSOLE plat_crash_console_init(); #endif set_console(STM32MP_DEBUG_USART_BASE, STM32MP_DEBUG_USART_CLK_FRQ); NOTICE("Early console setup\n"); } #endif /* EARLY_CONSOLE */ /***************************************************************************** * plat_is_smccc_feature_available() - This function checks whether SMCCC * feature is availabile for platform. * @fid: SMCCC function id * * Return SMC_ARCH_CALL_SUCCESS if SMCCC feature is available and * SMC_ARCH_CALL_NOT_SUPPORTED otherwise. *****************************************************************************/ int32_t plat_is_smccc_feature_available(u_register_t fid) { switch (fid) { case SMCCC_ARCH_SOC_ID: return SMC_ARCH_CALL_SUCCESS; default: return SMC_ARCH_CALL_NOT_SUPPORTED; } } /* Get SOC version */ int32_t plat_get_soc_version(void) { uint32_t chip_id = stm32mp_get_chip_dev_id(); uint32_t manfid = SOC_ID_SET_JEP_106(JEDEC_ST_BKID, JEDEC_ST_MFID); return (int32_t)(manfid | (chip_id & SOC_ID_IMPL_DEF_MASK)); } /* Get SOC revision */ int32_t plat_get_soc_revision(void) { return (int32_t)(stm32mp_get_chip_version() & SOC_ID_REV_MASK); } void stm32_display_board_info(uint32_t board_id) { char rev[2]; rev[0] = BOARD_ID2REV(board_id) - 1 + 'A'; rev[1] = '\0'; NOTICE("Board: MB%04x Var%u.%u Rev.%s-%02u\n", BOARD_ID2NB(board_id), BOARD_ID2VARCPN(board_id), BOARD_ID2VARFG(board_id), rev, BOARD_ID2BOM(board_id)); } void stm32_save_boot_info(boot_api_context_t *boot_context) { uint32_t auth_status; assert(boot_context->boot_interface_instance <= (BOOT_INST_MASK >> BOOT_INST_SHIFT)); assert(boot_context->boot_interface_selected <= (BOOT_ITF_MASK >> BOOT_ITF_SHIFT)); assert(boot_context->boot_partition_used_toboot <= (BOOT_PART_MASK >> BOOT_PART_SHIFT)); switch (boot_context->auth_status) { case BOOT_API_CTX_AUTH_NO: auth_status = 0x0U; break; case BOOT_API_CTX_AUTH_SUCCESS: auth_status = 0x2U; break; case BOOT_API_CTX_AUTH_FAILED: default: auth_status = 0x1U; break; } clk_enable(TAMP_BKP_REG_CLK); mmio_clrsetbits_32(stm32_get_bkpr_boot_mode_addr(), BOOT_ITF_MASK | BOOT_INST_MASK | BOOT_PART_MASK | BOOT_AUTH_MASK, (boot_context->boot_interface_instance << BOOT_INST_SHIFT) | (boot_context->boot_interface_selected << BOOT_ITF_SHIFT) | (boot_context->boot_partition_used_toboot << BOOT_PART_SHIFT) | (auth_status << BOOT_AUTH_SHIFT)); clk_disable(TAMP_BKP_REG_CLK); } void stm32_get_boot_interface(uint32_t *interface, uint32_t *instance) { static uint32_t itf; if (itf == 0U) { clk_enable(TAMP_BKP_REG_CLK); itf = mmio_read_32(stm32_get_bkpr_boot_mode_addr()) & (BOOT_ITF_MASK | BOOT_INST_MASK); clk_disable(TAMP_BKP_REG_CLK); } *interface = (itf & BOOT_ITF_MASK) >> BOOT_ITF_SHIFT; *instance = (itf & BOOT_INST_MASK) >> BOOT_INST_SHIFT; } #if PSA_FWU_SUPPORT void stm32_fwu_set_boot_idx(void) { clk_enable(TAMP_BKP_REG_CLK); mmio_clrsetbits_32(stm32_get_bkpr_fwu_info_addr(), FWU_INFO_IDX_MSK, (plat_fwu_get_boot_idx() << FWU_INFO_IDX_OFF) & FWU_INFO_IDX_MSK); clk_disable(TAMP_BKP_REG_CLK); } uint32_t stm32_get_and_dec_fwu_trial_boot_cnt(void) { uintptr_t bkpr_fwu_cnt = stm32_get_bkpr_fwu_info_addr(); uint32_t try_cnt; clk_enable(TAMP_BKP_REG_CLK); try_cnt = (mmio_read_32(bkpr_fwu_cnt) & FWU_INFO_CNT_MSK) >> FWU_INFO_CNT_OFF; assert(try_cnt <= FWU_MAX_TRIAL_REBOOT); if (try_cnt != 0U) { mmio_clrsetbits_32(bkpr_fwu_cnt, FWU_INFO_CNT_MSK, (try_cnt - 1U) << FWU_INFO_CNT_OFF); } clk_disable(TAMP_BKP_REG_CLK); return try_cnt; } void stm32_set_max_fwu_trial_boot_cnt(void) { uintptr_t bkpr_fwu_cnt = stm32_get_bkpr_fwu_info_addr(); clk_enable(TAMP_BKP_REG_CLK); mmio_clrsetbits_32(bkpr_fwu_cnt, FWU_INFO_CNT_MSK, (FWU_MAX_TRIAL_REBOOT << FWU_INFO_CNT_OFF) & FWU_INFO_CNT_MSK); clk_disable(TAMP_BKP_REG_CLK); } void stm32_clear_fwu_trial_boot_cnt(void) { uintptr_t bkpr_fwu_cnt = stm32_get_bkpr_fwu_info_addr(); clk_enable(TAMP_BKP_REG_CLK); mmio_clrbits_32(bkpr_fwu_cnt, FWU_INFO_CNT_MSK); clk_disable(TAMP_BKP_REG_CLK); } #endif /* PSA_FWU_SUPPORT */