/* * Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #if STM32MP13 #define TAMP_BOOT_MODE_BACKUP_REG_ID U(30) #endif #if STM32MP15 #define TAMP_BOOT_MODE_BACKUP_REG_ID U(20) #endif /* * Backup register to store fwu update information. * It should be writeable only by secure world, but also readable by non secure * (so it should be in Zone 2). */ #define TAMP_BOOT_FWU_INFO_REG_ID U(10) #if defined(IMAGE_BL2) #define MAP_SEC_SYSRAM MAP_REGION_FLAT(STM32MP_SYSRAM_BASE, \ STM32MP_SYSRAM_SIZE, \ MT_MEMORY | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #elif defined(IMAGE_BL32) #define MAP_SEC_SYSRAM MAP_REGION_FLAT(STM32MP_SEC_SYSRAM_BASE, \ STM32MP_SEC_SYSRAM_SIZE, \ MT_MEMORY | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) /* Non-secure SYSRAM is used a uncached memory for SCMI message transfer */ #define MAP_NS_SYSRAM MAP_REGION_FLAT(STM32MP_NS_SYSRAM_BASE, \ STM32MP_NS_SYSRAM_SIZE, \ MT_DEVICE | \ MT_RW | \ MT_NS | \ MT_EXECUTE_NEVER) #endif #if STM32MP13 #define MAP_SRAM_ALL MAP_REGION_FLAT(SRAMS_BASE, \ SRAMS_SIZE_2MB_ALIGNED, \ MT_MEMORY | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #endif #define MAP_DEVICE1 MAP_REGION_FLAT(STM32MP1_DEVICE1_BASE, \ STM32MP1_DEVICE1_SIZE, \ MT_DEVICE | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #define MAP_DEVICE2 MAP_REGION_FLAT(STM32MP1_DEVICE2_BASE, \ STM32MP1_DEVICE2_SIZE, \ MT_DEVICE | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #if defined(IMAGE_BL2) static const mmap_region_t stm32mp1_mmap[] = { MAP_SEC_SYSRAM, #if STM32MP13 MAP_SRAM_ALL, #endif MAP_DEVICE1, #if STM32MP_RAW_NAND MAP_DEVICE2, #endif {0} }; #endif #if defined(IMAGE_BL32) static const mmap_region_t stm32mp1_mmap[] = { MAP_SEC_SYSRAM, MAP_NS_SYSRAM, MAP_DEVICE1, MAP_DEVICE2, {0} }; #endif void configure_mmu(void) { mmap_add(stm32mp1_mmap); init_xlat_tables(); enable_mmu_svc_mon(0); } uintptr_t stm32_get_gpio_bank_base(unsigned int bank) { #if STM32MP13 assert(bank <= GPIO_BANK_I); #endif #if STM32MP15 if (bank == GPIO_BANK_Z) { return GPIOZ_BASE; } assert(bank <= GPIO_BANK_K); #endif return GPIOA_BASE + (bank * GPIO_BANK_OFFSET); } uint32_t stm32_get_gpio_bank_offset(unsigned int bank) { #if STM32MP13 assert(bank <= GPIO_BANK_I); #endif #if STM32MP15 if (bank == GPIO_BANK_Z) { return 0; } assert(bank <= GPIO_BANK_K); #endif return bank * GPIO_BANK_OFFSET; } bool stm32_gpio_is_secure_at_reset(unsigned int bank) { #if STM32MP13 return true; #endif #if STM32MP15 if (bank == GPIO_BANK_Z) { return true; } return false; #endif } unsigned long stm32_get_gpio_bank_clock(unsigned int bank) { #if STM32MP13 assert(bank <= GPIO_BANK_I); #endif #if STM32MP15 if (bank == GPIO_BANK_Z) { return GPIOZ; } assert(bank <= GPIO_BANK_K); #endif return GPIOA + (bank - GPIO_BANK_A); } int stm32_get_gpio_bank_pinctrl_node(void *fdt, unsigned int bank) { const char *node_compatible = NULL; switch (bank) { case GPIO_BANK_A: case GPIO_BANK_B: case GPIO_BANK_C: case GPIO_BANK_D: case GPIO_BANK_E: case GPIO_BANK_F: case GPIO_BANK_G: case GPIO_BANK_H: case GPIO_BANK_I: #if STM32MP13 node_compatible = "st,stm32mp135-pinctrl"; break; #endif #if STM32MP15 case GPIO_BANK_J: case GPIO_BANK_K: node_compatible = "st,stm32mp157-pinctrl"; break; case GPIO_BANK_Z: node_compatible = "st,stm32mp157-z-pinctrl"; break; #endif default: panic(); } return fdt_node_offset_by_compatible(fdt, -1, node_compatible); } #if STM32MP_UART_PROGRAMMER || !defined(IMAGE_BL2) /* * UART Management */ static const uintptr_t stm32mp1_uart_addresses[8] = { USART1_BASE, USART2_BASE, USART3_BASE, UART4_BASE, UART5_BASE, USART6_BASE, UART7_BASE, UART8_BASE, }; uintptr_t get_uart_address(uint32_t instance_nb) { if ((instance_nb == 0U) || (instance_nb > ARRAY_SIZE(stm32mp1_uart_addresses))) { return 0U; } return stm32mp1_uart_addresses[instance_nb - 1U]; } #endif #if STM32MP_USB_PROGRAMMER struct gpio_bank_pin_list { uint32_t bank; uint32_t pin; }; static const struct gpio_bank_pin_list gpio_list[] = { { /* USART2_RX: GPIOA3 */ .bank = 0U, .pin = 3U, }, { /* USART3_RX: GPIOB12 */ .bank = 1U, .pin = 12U, }, { /* UART4_RX: GPIOB2 */ .bank = 1U, .pin = 2U, }, { /* UART5_RX: GPIOB4 */ .bank = 1U, .pin = 5U, }, { /* USART6_RX: GPIOC7 */ .bank = 2U, .pin = 7U, }, { /* UART7_RX: GPIOF6 */ .bank = 5U, .pin = 6U, }, { /* UART8_RX: GPIOE0 */ .bank = 4U, .pin = 0U, }, }; void stm32mp1_deconfigure_uart_pins(void) { size_t i; for (i = 0U; i < ARRAY_SIZE(gpio_list); i++) { set_gpio_reset_cfg(gpio_list[i].bank, gpio_list[i].pin); } } #endif uint32_t stm32mp_get_chip_version(void) { #if STM32MP13 return stm32mp_syscfg_get_chip_version(); #endif #if STM32MP15 uint32_t version = 0U; if (stm32mp1_dbgmcu_get_chip_version(&version) < 0) { INFO("Cannot get CPU version, debug disabled\n"); return 0U; } return version; #endif } uint32_t stm32mp_get_chip_dev_id(void) { #if STM32MP13 return stm32mp_syscfg_get_chip_dev_id(); #endif #if STM32MP15 uint32_t dev_id; if (stm32mp1_dbgmcu_get_chip_dev_id(&dev_id) < 0) { INFO("Use default chip ID, debug disabled\n"); dev_id = STM32MP1_CHIP_ID; } return dev_id; #endif } static uint32_t get_part_number(void) { static uint32_t part_number; if (part_number != 0U) { return part_number; } if (stm32_get_otp_value(PART_NUMBER_OTP, &part_number) != 0) { panic(); } part_number = (part_number & PART_NUMBER_OTP_PART_MASK) >> PART_NUMBER_OTP_PART_SHIFT; part_number |= stm32mp_get_chip_dev_id() << 16; return part_number; } #if STM32MP15 static uint32_t get_cpu_package(void) { uint32_t package; if (stm32_get_otp_value(PACKAGE_OTP, &package) != 0) { panic(); } package = (package & PACKAGE_OTP_PKG_MASK) >> PACKAGE_OTP_PKG_SHIFT; return package; } #endif void stm32mp_get_soc_name(char name[STM32_SOC_NAME_SIZE]) { const char *cpu_s, *cpu_r, *pkg; /* MPUs Part Numbers */ switch (get_part_number()) { #if STM32MP13 case STM32MP135F_PART_NB: cpu_s = "135F"; break; case STM32MP135D_PART_NB: cpu_s = "135D"; break; case STM32MP135C_PART_NB: cpu_s = "135C"; break; case STM32MP135A_PART_NB: cpu_s = "135A"; break; case STM32MP133F_PART_NB: cpu_s = "133F"; break; case STM32MP133D_PART_NB: cpu_s = "133D"; break; case STM32MP133C_PART_NB: cpu_s = "133C"; break; case STM32MP133A_PART_NB: cpu_s = "133A"; break; case STM32MP131F_PART_NB: cpu_s = "131F"; break; case STM32MP131D_PART_NB: cpu_s = "131D"; break; case STM32MP131C_PART_NB: cpu_s = "131C"; break; case STM32MP131A_PART_NB: cpu_s = "131A"; break; #endif #if STM32MP15 case STM32MP157C_PART_NB: cpu_s = "157C"; break; case STM32MP157A_PART_NB: cpu_s = "157A"; break; case STM32MP153C_PART_NB: cpu_s = "153C"; break; case STM32MP153A_PART_NB: cpu_s = "153A"; break; case STM32MP151C_PART_NB: cpu_s = "151C"; break; case STM32MP151A_PART_NB: cpu_s = "151A"; break; case STM32MP157F_PART_NB: cpu_s = "157F"; break; case STM32MP157D_PART_NB: cpu_s = "157D"; break; case STM32MP153F_PART_NB: cpu_s = "153F"; break; case STM32MP153D_PART_NB: cpu_s = "153D"; break; case STM32MP151F_PART_NB: cpu_s = "151F"; break; case STM32MP151D_PART_NB: cpu_s = "151D"; break; #endif default: cpu_s = "????"; break; } /* Package */ #if STM32MP13 /* On STM32MP13, package is not present in OTP */ pkg = ""; #endif #if STM32MP15 switch (get_cpu_package()) { case PKG_AA_LFBGA448: pkg = "AA"; break; case PKG_AB_LFBGA354: pkg = "AB"; break; case PKG_AC_TFBGA361: pkg = "AC"; break; case PKG_AD_TFBGA257: pkg = "AD"; break; default: pkg = "??"; break; } #endif /* REVISION */ switch (stm32mp_get_chip_version()) { case STM32MP1_REV_B: cpu_r = "B"; break; #if STM32MP13 case STM32MP1_REV_Y: cpu_r = "Y"; break; #endif case STM32MP1_REV_Z: cpu_r = "Z"; break; default: cpu_r = "?"; break; } snprintf(name, STM32_SOC_NAME_SIZE, "STM32MP%s%s Rev.%s", cpu_s, pkg, cpu_r); } void stm32mp_print_cpuinfo(void) { char name[STM32_SOC_NAME_SIZE]; stm32mp_get_soc_name(name); NOTICE("CPU: %s\n", name); } void stm32mp_print_boardinfo(void) { uint32_t board_id = 0U; if (stm32_get_otp_value(BOARD_ID_OTP, &board_id) != 0) { return; } if (board_id != 0U) { stm32_display_board_info(board_id); } } /* Return true when SoC provides a single Cortex-A7 core, and false otherwise */ bool stm32mp_is_single_core(void) { #if STM32MP13 return true; #endif #if STM32MP15 bool single_core = false; switch (get_part_number()) { case STM32MP151A_PART_NB: case STM32MP151C_PART_NB: case STM32MP151D_PART_NB: case STM32MP151F_PART_NB: single_core = true; break; default: break; } return single_core; #endif } /* Return true when device is in closed state */ uint32_t stm32mp_check_closed_device(void) { uint32_t value; if (stm32_get_otp_value(CFG0_OTP, &value) != 0) { return STM32MP_CHIP_SEC_CLOSED; } #if STM32MP13 value = (value & CFG0_OTP_MODE_MASK) >> CFG0_OTP_MODE_SHIFT; switch (value) { case CFG0_OPEN_DEVICE: return STM32MP_CHIP_SEC_OPEN; case CFG0_CLOSED_DEVICE: case CFG0_CLOSED_DEVICE_NO_BOUNDARY_SCAN: case CFG0_CLOSED_DEVICE_NO_JTAG: return STM32MP_CHIP_SEC_CLOSED; default: panic(); } #endif #if STM32MP15 if ((value & CFG0_CLOSED_DEVICE) == CFG0_CLOSED_DEVICE) { return STM32MP_CHIP_SEC_CLOSED; } else { return STM32MP_CHIP_SEC_OPEN; } #endif } /* Return true when device supports secure boot */ bool stm32mp_is_auth_supported(void) { bool supported = false; switch (get_part_number()) { #if STM32MP13 case STM32MP131C_PART_NB: case STM32MP131F_PART_NB: case STM32MP133C_PART_NB: case STM32MP133F_PART_NB: case STM32MP135C_PART_NB: case STM32MP135F_PART_NB: #endif #if STM32MP15 case STM32MP151C_PART_NB: case STM32MP151F_PART_NB: case STM32MP153C_PART_NB: case STM32MP153F_PART_NB: case STM32MP157C_PART_NB: case STM32MP157F_PART_NB: #endif supported = true; break; default: break; } return supported; } uint32_t stm32_iwdg_get_instance(uintptr_t base) { switch (base) { case IWDG1_BASE: return IWDG1_INST; case IWDG2_BASE: return IWDG2_INST; default: panic(); } } uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst) { uint32_t iwdg_cfg = 0U; uint32_t otp_value; if (stm32_get_otp_value(HW2_OTP, &otp_value) != 0) { panic(); } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_HW_POS)) != 0U) { iwdg_cfg |= IWDG_HW_ENABLED; } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS)) != 0U) { iwdg_cfg |= IWDG_DISABLE_ON_STOP; } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS)) != 0U) { iwdg_cfg |= IWDG_DISABLE_ON_STANDBY; } return iwdg_cfg; } #if defined(IMAGE_BL2) uint32_t stm32_iwdg_shadow_update(uint32_t iwdg_inst, uint32_t flags) { uint32_t otp_value; uint32_t otp; uint32_t result; if (stm32_get_otp_index(HW2_OTP, &otp, NULL) != 0) { panic(); } if (stm32_get_otp_value(HW2_OTP, &otp_value) != 0) { panic(); } if ((flags & IWDG_DISABLE_ON_STOP) != 0) { otp_value |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS); } if ((flags & IWDG_DISABLE_ON_STANDBY) != 0) { otp_value |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS); } result = bsec_write_otp(otp_value, otp); if (result != BSEC_OK) { return result; } /* Sticky lock OTP_IWDG (read and write) */ if ((bsec_set_sr_lock(otp) != BSEC_OK) || (bsec_set_sw_lock(otp) != BSEC_OK)) { return BSEC_LOCK_FAIL; } return BSEC_OK; } #endif bool stm32mp_is_wakeup_from_standby(void) { /* TODO add source code to determine if platform is waking up from standby mode */ return false; } uintptr_t stm32_get_bkpr_boot_mode_addr(void) { return tamp_bkpr(TAMP_BOOT_MODE_BACKUP_REG_ID); } #if PSA_FWU_SUPPORT uintptr_t stm32_get_bkpr_fwu_info_addr(void) { return tamp_bkpr(TAMP_BOOT_FWU_INFO_REG_ID); } #endif /* PSA_FWU_SUPPORT */