/* * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include "opteed_private.h" /******************************************************************************* * Given a OPTEE entrypoint info pointer, entry point PC, register width, * cpu id & pointer to a context data structure, this function will * initialize OPTEE context and entry point info for OPTEE. ******************************************************************************/ void opteed_init_optee_ep_state(struct entry_point_info *optee_entry_point, uint32_t rw, uint64_t pc, uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3, optee_context_t *optee_ctx) { uint32_t ep_attr; /* Passing a NULL context is a critical programming error */ assert(optee_ctx); assert(optee_entry_point); assert(pc); /* Associate this context with the cpu specified */ optee_ctx->mpidr = read_mpidr_el1(); optee_ctx->state = 0; set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_OFF); cm_set_context(&optee_ctx->cpu_ctx, SECURE); /* initialise an entrypoint to set up the CPU context */ ep_attr = SECURE | EP_ST_ENABLE; if (read_sctlr_el3() & SCTLR_EE_BIT) ep_attr |= EP_EE_BIG; SET_PARAM_HEAD(optee_entry_point, PARAM_EP, VERSION_1, ep_attr); optee_entry_point->pc = pc; if (rw == OPTEE_AARCH64) optee_entry_point->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); else optee_entry_point->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM, SPSR_E_LITTLE, DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT); zeromem(&optee_entry_point->args, sizeof(optee_entry_point->args)); optee_entry_point->args.arg0 = arg0; optee_entry_point->args.arg1 = arg1; optee_entry_point->args.arg2 = arg2; optee_entry_point->args.arg3 = arg3; } /******************************************************************************* * This function takes an OPTEE context pointer and: * 1. Applies the S-EL1 system register context from optee_ctx->cpu_ctx. * 2. Saves the current C runtime state (callee saved registers) on the stack * frame and saves a reference to this state. * 3. Calls el3_exit() so that the EL3 system and general purpose registers * from the optee_ctx->cpu_ctx are used to enter the OPTEE image. ******************************************************************************/ uint64_t opteed_synchronous_sp_entry(optee_context_t *optee_ctx) { uint64_t rc; assert(optee_ctx != NULL); assert(optee_ctx->c_rt_ctx == 0); /* Apply the Secure EL1 system register context and switch to it */ assert(cm_get_context(SECURE) == &optee_ctx->cpu_ctx); cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); rc = opteed_enter_sp(&optee_ctx->c_rt_ctx); #if ENABLE_ASSERTIONS optee_ctx->c_rt_ctx = 0; #endif return rc; } /******************************************************************************* * This function takes an OPTEE context pointer and: * 1. Saves the S-EL1 system register context tp optee_ctx->cpu_ctx. * 2. Restores the current C runtime state (callee saved registers) from the * stack frame using the reference to this state saved in opteed_enter_sp(). * 3. It does not need to save any general purpose or EL3 system register state * as the generic smc entry routine should have saved those. ******************************************************************************/ void opteed_synchronous_sp_exit(optee_context_t *optee_ctx, uint64_t ret) { assert(optee_ctx != NULL); /* Save the Secure EL1 system register context */ assert(cm_get_context(SECURE) == &optee_ctx->cpu_ctx); cm_el1_sysregs_context_save(SECURE); assert(optee_ctx->c_rt_ctx != 0); opteed_exit_sp(optee_ctx->c_rt_ctx, ret); /* Should never reach here */ assert(0); }