bl31_main.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. /*
  2. * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
  3. *
  4. * SPDX-License-Identifier: BSD-3-Clause
  5. */
  6. #include <assert.h>
  7. #include <string.h>
  8. #include <arch.h>
  9. #include <arch_features.h>
  10. #include <arch_helpers.h>
  11. #include <bl31/bl31.h>
  12. #include <bl31/ehf.h>
  13. #include <common/bl_common.h>
  14. #include <common/build_message.h>
  15. #include <common/debug.h>
  16. #include <common/feat_detect.h>
  17. #include <common/runtime_svc.h>
  18. #include <drivers/console.h>
  19. #include <lib/bootmarker_capture.h>
  20. #include <lib/el3_runtime/context_debug.h>
  21. #include <lib/el3_runtime/context_mgmt.h>
  22. #include <lib/pmf/pmf.h>
  23. #include <lib/runtime_instr.h>
  24. #include <plat/common/platform.h>
  25. #include <services/std_svc.h>
  26. #if ENABLE_RUNTIME_INSTRUMENTATION
  27. PMF_REGISTER_SERVICE_SMC(rt_instr_svc, PMF_RT_INSTR_SVC_ID,
  28. RT_INSTR_TOTAL_IDS, PMF_STORE_ENABLE)
  29. #endif
  30. #if ENABLE_RUNTIME_INSTRUMENTATION
  31. PMF_REGISTER_SERVICE(bl_svc, PMF_RT_INSTR_SVC_ID,
  32. BL_TOTAL_IDS, PMF_DUMP_ENABLE)
  33. #endif
  34. /*******************************************************************************
  35. * This function pointer is used to initialise the BL32 image. It's initialized
  36. * by SPD calling bl31_register_bl32_init after setting up all things necessary
  37. * for SP execution. In cases where both SPD and SP are absent, or when SPD
  38. * finds it impossible to execute SP, this pointer is left as NULL
  39. ******************************************************************************/
  40. static int32_t (*bl32_init)(void);
  41. /*****************************************************************************
  42. * Function used to initialise RMM if RME is enabled
  43. *****************************************************************************/
  44. #if ENABLE_RME
  45. static int32_t (*rmm_init)(void);
  46. #endif
  47. /*******************************************************************************
  48. * Variable to indicate whether next image to execute after BL31 is BL33
  49. * (non-secure & default) or BL32 (secure).
  50. ******************************************************************************/
  51. static uint32_t next_image_type = NON_SECURE;
  52. #ifdef SUPPORT_UNKNOWN_MPID
  53. /*
  54. * Flag to know whether an unsupported MPID has been detected. To avoid having it
  55. * landing on the .bss section, it is initialized to a non-zero value, this way
  56. * we avoid potential WAW hazards during system bring up.
  57. * */
  58. volatile uint32_t unsupported_mpid_flag = 1;
  59. #endif
  60. /*
  61. * Implement the ARM Standard Service function to get arguments for a
  62. * particular service.
  63. */
  64. uintptr_t get_arm_std_svc_args(unsigned int svc_mask)
  65. {
  66. /* Setup the arguments for PSCI Library */
  67. DEFINE_STATIC_PSCI_LIB_ARGS_V1(psci_args, bl31_warm_entrypoint);
  68. /* PSCI is the only ARM Standard Service implemented */
  69. assert(svc_mask == PSCI_FID_MASK);
  70. return (uintptr_t)&psci_args;
  71. }
  72. /*******************************************************************************
  73. * Simple function to initialise all BL31 helper libraries.
  74. ******************************************************************************/
  75. static void __init bl31_lib_init(void)
  76. {
  77. cm_init();
  78. }
  79. /*******************************************************************************
  80. * Setup function for BL31.
  81. ******************************************************************************/
  82. void bl31_setup(u_register_t arg0, u_register_t arg1, u_register_t arg2,
  83. u_register_t arg3)
  84. {
  85. /* Enable early console if EARLY_CONSOLE flag is enabled */
  86. plat_setup_early_console();
  87. /* Perform early platform-specific setup */
  88. bl31_early_platform_setup2(arg0, arg1, arg2, arg3);
  89. /* Perform late platform-specific setup */
  90. bl31_plat_arch_setup();
  91. #if CTX_INCLUDE_PAUTH_REGS
  92. /*
  93. * Assert that the ARMv8.3-PAuth registers are present or an access
  94. * fault will be triggered when they are being saved or restored.
  95. */
  96. assert(is_armv8_3_pauth_present());
  97. #endif /* CTX_INCLUDE_PAUTH_REGS */
  98. /* Prints context_memory allocated for all the security states */
  99. report_ctx_memory_usage();
  100. }
  101. /*******************************************************************************
  102. * BL31 is responsible for setting up the runtime services for the primary cpu
  103. * before passing control to the bootloader or an Operating System. This
  104. * function calls runtime_svc_init() which initializes all registered runtime
  105. * services. The run time services would setup enough context for the core to
  106. * switch to the next exception level. When this function returns, the core will
  107. * switch to the programmed exception level via an ERET.
  108. ******************************************************************************/
  109. void bl31_main(void)
  110. {
  111. /* Init registers that never change for the lifetime of TF-A */
  112. cm_manage_extensions_el3();
  113. /* Init per-world context registers for non-secure world */
  114. manage_extensions_nonsecure_per_world();
  115. NOTICE("BL31: %s\n", build_version_string);
  116. NOTICE("BL31: %s\n", build_message);
  117. #if FEATURE_DETECTION
  118. /* Detect if features enabled during compilation are supported by PE. */
  119. detect_arch_features();
  120. #endif /* FEATURE_DETECTION */
  121. #if ENABLE_RUNTIME_INSTRUMENTATION
  122. PMF_CAPTURE_TIMESTAMP(bl_svc, BL31_ENTRY, PMF_CACHE_MAINT);
  123. #endif
  124. #ifdef SUPPORT_UNKNOWN_MPID
  125. if (unsupported_mpid_flag == 0) {
  126. NOTICE("Unsupported MPID detected!\n");
  127. }
  128. #endif
  129. /* Perform platform setup in BL31 */
  130. bl31_platform_setup();
  131. /* Initialise helper libraries */
  132. bl31_lib_init();
  133. #if EL3_EXCEPTION_HANDLING
  134. INFO("BL31: Initialising Exception Handling Framework\n");
  135. ehf_init();
  136. #endif
  137. /* Initialize the runtime services e.g. psci. */
  138. INFO("BL31: Initializing runtime services\n");
  139. runtime_svc_init();
  140. /*
  141. * All the cold boot actions on the primary cpu are done. We now need to
  142. * decide which is the next image and how to execute it.
  143. * If the SPD runtime service is present, it would want to pass control
  144. * to BL32 first in S-EL1. In that case, SPD would have registered a
  145. * function to initialize bl32 where it takes responsibility of entering
  146. * S-EL1 and returning control back to bl31_main. Similarly, if RME is
  147. * enabled and a function is registered to initialize RMM, control is
  148. * transferred to RMM in R-EL2. After RMM initialization, control is
  149. * returned back to bl31_main. Once this is done we can prepare entry
  150. * into BL33 as normal.
  151. */
  152. /*
  153. * If SPD had registered an init hook, invoke it.
  154. */
  155. if (bl32_init != NULL) {
  156. INFO("BL31: Initializing BL32\n");
  157. console_flush();
  158. int32_t rc = (*bl32_init)();
  159. if (rc == 0) {
  160. WARN("BL31: BL32 initialization failed\n");
  161. }
  162. }
  163. /*
  164. * If RME is enabled and init hook is registered, initialize RMM
  165. * in R-EL2.
  166. */
  167. #if ENABLE_RME
  168. if (rmm_init != NULL) {
  169. INFO("BL31: Initializing RMM\n");
  170. console_flush();
  171. int32_t rc = (*rmm_init)();
  172. if (rc == 0) {
  173. WARN("BL31: RMM initialization failed\n");
  174. }
  175. }
  176. #endif
  177. /*
  178. * We are ready to enter the next EL. Prepare entry into the image
  179. * corresponding to the desired security state after the next ERET.
  180. */
  181. bl31_prepare_next_image_entry();
  182. /*
  183. * Perform any platform specific runtime setup prior to cold boot exit
  184. * from BL31
  185. */
  186. bl31_plat_runtime_setup();
  187. #if ENABLE_RUNTIME_INSTRUMENTATION
  188. console_flush();
  189. PMF_CAPTURE_TIMESTAMP(bl_svc, BL31_EXIT, PMF_CACHE_MAINT);
  190. #endif
  191. console_flush();
  192. console_switch_state(CONSOLE_FLAG_RUNTIME);
  193. }
  194. /*******************************************************************************
  195. * Accessor functions to help runtime services decide which image should be
  196. * executed after BL31. This is BL33 or the non-secure bootloader image by
  197. * default but the Secure payload dispatcher could override this by requesting
  198. * an entry into BL32 (Secure payload) first. If it does so then it should use
  199. * the same API to program an entry into BL33 once BL32 initialisation is
  200. * complete.
  201. ******************************************************************************/
  202. void bl31_set_next_image_type(uint32_t security_state)
  203. {
  204. assert(sec_state_is_valid(security_state));
  205. next_image_type = security_state;
  206. }
  207. uint32_t bl31_get_next_image_type(void)
  208. {
  209. return next_image_type;
  210. }
  211. /*******************************************************************************
  212. * This function programs EL3 registers and performs other setup to enable entry
  213. * into the next image after BL31 at the next ERET.
  214. ******************************************************************************/
  215. void __init bl31_prepare_next_image_entry(void)
  216. {
  217. entry_point_info_t *next_image_info;
  218. uint32_t image_type;
  219. #if CTX_INCLUDE_AARCH32_REGS
  220. /*
  221. * Ensure that the build flag to save AArch32 system registers in CPU
  222. * context is not set for AArch64-only platforms.
  223. */
  224. if (el_implemented(1) == EL_IMPL_A64ONLY) {
  225. ERROR("EL1 supports AArch64-only. Please set build flag "
  226. "CTX_INCLUDE_AARCH32_REGS = 0\n");
  227. panic();
  228. }
  229. #endif
  230. /* Determine which image to execute next */
  231. image_type = bl31_get_next_image_type();
  232. /* Program EL3 registers to enable entry into the next EL */
  233. next_image_info = bl31_plat_get_next_image_ep_info(image_type);
  234. assert(next_image_info != NULL);
  235. assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));
  236. INFO("BL31: Preparing for EL3 exit to %s world\n",
  237. (image_type == SECURE) ? "secure" : "normal");
  238. print_entry_point_info(next_image_info);
  239. cm_init_my_context(next_image_info);
  240. /*
  241. * If we are entering the Non-secure world, use
  242. * 'cm_prepare_el3_exit_ns' to exit.
  243. */
  244. if (image_type == NON_SECURE) {
  245. cm_prepare_el3_exit_ns();
  246. } else {
  247. cm_prepare_el3_exit(image_type);
  248. }
  249. }
  250. /*******************************************************************************
  251. * This function initializes the pointer to BL32 init function. This is expected
  252. * to be called by the SPD after it finishes all its initialization
  253. ******************************************************************************/
  254. void bl31_register_bl32_init(int32_t (*func)(void))
  255. {
  256. bl32_init = func;
  257. }
  258. #if ENABLE_RME
  259. /*******************************************************************************
  260. * This function initializes the pointer to RMM init function. This is expected
  261. * to be called by the RMMD after it finishes all its initialization
  262. ******************************************************************************/
  263. void bl31_register_rmm_init(int32_t (*func)(void))
  264. {
  265. rmm_init = func;
  266. }
  267. #endif