123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- /*
- * Copyright 2018-2023 NXP
- *
- * SPDX-License-Identifier: BSD-3-Clause
- */
- #include <drivers/delay_timer.h>
- #include <lib/mmio.h>
- #include <dram.h>
- void ddr4_mr_write(uint32_t mr, uint32_t data, uint32_t mr_type,
- uint32_t rank, uint32_t dram_type)
- {
- uint32_t val, mr_mirror, data_mirror;
- /*
- * 1. Poll MRSTAT.mr_wr_busy until it is 0 to make sure
- * that there is no outstanding MR transAction.
- */
- /*
- * ERR050712:
- * When performing a software driven MR access, the following sequence
- * must be done automatically before performing other APB register accesses.
- * 1. Set MRCTRL0.mr_wr=1
- * 2. Check for MRSTAT.mr_wr_busy=0. If not, go to step (2)
- * 3. Check for MRSTAT.mr_wr_busy=0 again (for the second time). If not, go to step (2)
- */
- mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31));
- do {
- while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1) {
- ;
- }
- } while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1);
- /*
- * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
- * and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
- */
- val = mmio_read_32(DDRC_DIMMCTL(0));
- if ((val & 0x2) && (rank == 0x2)) {
- mr_mirror = (mr & 0x4) | ((mr & 0x1) << 1) | ((mr & 0x2) >> 1); /* BA0, BA1 swap */
- if (dram_type == DDRC_DDR4) {
- data_mirror = (data & 0x1607) | ((data & 0x8) << 1) | ((data & 0x10) >> 1) |
- ((data & 0x20) << 1) | ((data & 0x40) >> 1) | ((data & 0x80) << 1) |
- ((data & 0x100) >> 1) | ((data & 0x800) << 2) | ((data & 0x2000) >> 2) ;
- } else {
- data_mirror = (data & 0xfe07) | ((data & 0x8) << 1) | ((data & 0x10) >> 1) |
- ((data & 0x20) << 1) | ((data & 0x40) >> 1) | ((data & 0x80) << 1) |
- ((data & 0x100) >> 1);
- }
- } else {
- mr_mirror = mr;
- data_mirror = data;
- }
- mmio_write_32(DDRC_MRCTRL0(0), mr_type | (mr_mirror << 12) | (rank << 4));
- mmio_write_32(DDRC_MRCTRL1(0), data_mirror);
- /*
- * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1.
- * This bit is self-clearing, and triggers the MR transaction.
- * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
- * the MR transaction to SDRAM, and no further accesses can be
- * initiated until it is deasserted.
- */
- mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31));
- while (mmio_read_32(DDRC_MRSTAT(0))) {
- ;
- }
- }
- void dram_cfg_all_mr(struct dram_info *info, uint32_t pstate)
- {
- uint32_t num_rank = info->num_rank;
- uint32_t dram_type = info->dram_type;
- /*
- * 15. Perform MRS commands as required to re-program
- * timing registers in the SDRAM for the new frequency
- * (in particular, CL, CWL and WR may need to be changed).
- */
- for (int i = 1; i <= num_rank; i++) {
- for (int j = 0; j < 6; j++) {
- ddr4_mr_write(j, info->mr_table[pstate][j], 0, i, dram_type);
- }
- ddr4_mr_write(6, info->mr_table[pstate][7], 0, i, dram_type);
- }
- }
- void sw_pstate(uint32_t pstate, uint32_t drate)
- {
- uint32_t val;
- mmio_write_32(DDRC_SWCTL(0), 0x0);
- /*
- * Update any registers which may be required to
- * change for the new frequency.
- */
- mmio_write_32(DDRC_MSTR2(0), pstate);
- mmio_setbits_32(DDRC_MSTR(0), (0x1 << 29));
- /*
- * Toggle RFSHCTL3.refresh_update_level to allow the
- * new refresh-related register values to propagate
- * to the refresh logic.
- */
- val = mmio_read_32(DDRC_RFSHCTL3(0));
- if (val & 0x2) {
- mmio_write_32(DDRC_RFSHCTL3(0), val & 0xFFFFFFFD);
- } else {
- mmio_write_32(DDRC_RFSHCTL3(0), val | 0x2);
- }
- /*
- * 19. If required, trigger the initialization in the PHY.
- * If using the gen2 multiPHY, PLL initialization should
- * be triggered at this point. See the PHY databook for
- * details about the frequency change procedure.
- */
- mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8));
- mmio_write_32(DDRC_DFIMISC(0), 0x00000020 | (pstate << 8));
- /* wait DFISTAT.dfi_init_complete to 0 */
- while (mmio_read_32(DDRC_DFISTAT(0)) & 0x1) {
- ;
- }
- /* change the clock to the target frequency */
- dram_clock_switch(drate, false);
- mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8));
- /* wait DFISTAT.dfi_init_complete to 1 */
- while (!(mmio_read_32(DDRC_DFISTAT(0)) & 0x1)) {
- ;
- }
- /*
- * When changing frequencies the controller may violate the JEDEC
- * requirement that no more than 16 refreshes should be issued within
- * 2*tREFI. These extra refreshes are not expected to cause a problem
- * in the SDRAM. This issue can be avoided by waiting for at least 2*tREFI
- * before exiting self-refresh in step 19.
- */
- udelay(14);
- /* 14. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
- mmio_clrbits_32(DDRC_PWRCTL(0), (1 << 5));
- while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) == 0x23) {
- ;
- }
- }
- void ddr4_swffc(struct dram_info *info, unsigned int pstate)
- {
- uint32_t drate = info->timing_info->fsp_table[pstate];
- /*
- * 1. set SWCTL.sw_done to disable quasi-dynamic register
- * programming outside reset.
- */
- mmio_write_32(DDRC_SWCTL(0), 0x0);
- /*
- * 2. Write 0 to PCTRL_n.port_en. This blocks AXI port(s)
- * from taking any transaction (blocks traffic on AXI ports).
- */
- mmio_write_32(DDRC_PCTRL_0(0), 0x0);
- /*
- * 3. Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0.
- * Wait until all AXI ports are idle (the uMCTL2 core has to
- * be idle).
- */
- while (mmio_read_32(DDRC_PSTAT(0)) & 0x10001) {
- ;
- }
- /*
- * 4. Write 0 to SBRCTL.scrub_en. Disable SBR, required only if
- * SBR instantiated.
- * 5. Poll SBRSTAT.scrub_busy=0.
- * 6. Set DERATEEN.derate_enable = 0, if DERATEEN.derate_eanble = 1
- * and the read latency (RL) value needs to change after the frequency
- * change (LPDDR2/3/4 only).
- * 7. Set DBG1.dis_hif=1 so that no new commands will be accepted by the uMCTL2.
- */
- mmio_setbits_32(DDRC_DBG1(0), (0x1 << 1));
- /*
- * 8. Poll DBGCAM.dbg_wr_q_empty and DBGCAM.dbg_rd_q_empty to ensure
- * that write and read data buffers are empty.
- */
- while ((mmio_read_32(DDRC_DBGCAM(0)) & 0x06000000) != 0x06000000) {
- ;
- }
- /*
- * 9. For DDR4, update MR6 with the new tDLLK value via the Mode
- * Register Write signals
- * 10. Set DFILPCFG0.dfi_lp_en_sr = 0, if DFILPCFG0.dfi_lp_en_sr = 1,
- * and wait until DFISTAT.dfi_lp_ack
- * 11. If DFI PHY Master interface is active in uMCTL2, then disable it
- * 12. Wait until STAT.operating_mode[1:0]!=11 indicating that the
- * controller is not in self-refresh mode.
- */
- if ((mmio_read_32(DDRC_STAT(0)) & 0x3) == 0x3) {
- VERBOSE("DRAM is in Self Refresh\n");
- }
- /*
- * 13. Assert PWRCTL.selfref_sw for the DWC_ddr_umctl2 core to enter
- * the self-refresh mode.
- */
- mmio_setbits_32(DDRC_PWRCTL(0), (1 << 5));
- /*
- * 14. Wait until STAT.operating_mode[1:0]==11 indicating that the
- * controller core is in self-refresh mode.
- */
- while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) != 0x23) {
- ;
- }
- sw_pstate(pstate, drate);
- dram_cfg_all_mr(info, pstate);
- /* 23. Enable HIF commands by setting DBG1.dis_hif=0. */
- mmio_clrbits_32(DDRC_DBG1(0), (0x1 << 1));
- /*
- * 24. Reset DERATEEN.derate_enable = 1 if DERATEEN.derate_enable
- * has been set to 0 in step 6.
- * 25. If DFI PHY Master interface was active before step 11 then
- * enable it back by programming DFIPHYMSTR.phymstr_en = 1'b1.
- * 26. Write 1 to PCTRL_n.port_en. AXI port(s) are no longer blocked
- * from taking transactions (Re-enable traffic on AXI ports)
- */
- mmio_write_32(DDRC_PCTRL_0(0), 0x1);
- /*
- * 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only
- * required if SBR instantiated.
- */
- /*
- * set SWCTL.sw_done to enable quasi-dynamic register programming
- * outside reset.
- */
- mmio_write_32(DDRC_SWCTL(0), 0x1);
- /* wait SWSTAT.sw_done_ack to 1 */
- while (!(mmio_read_32(DDRC_SWSTAT(0)) & 0x1)) {
- ;
- }
- }
|