123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824 |
- /*
- * Copyright (c) 2013-2024, ARM Limited and Contributors. All rights reserved.
- *
- * SPDX-License-Identifier: BSD-3-Clause
- */
- /*******************************************************************************
- * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
- * plug-in component to the Secure Monitor, registered as a runtime service. The
- * SPD is expected to be a functional extension of the Secure Payload (SP) that
- * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
- * the Trusted OS/Applications range to the dispatcher. The SPD will either
- * handle the request locally or delegate it to the Secure Payload. It is also
- * responsible for initialising and maintaining communication with the SP.
- ******************************************************************************/
- #include <assert.h>
- #include <errno.h>
- #include <stddef.h>
- #include <string.h>
- #include <arch_helpers.h>
- #include <bl31/bl31.h>
- #include <bl31/ehf.h>
- #include <bl32/tsp/tsp.h>
- #include <common/bl_common.h>
- #include <common/debug.h>
- #include <common/runtime_svc.h>
- #include <lib/el3_runtime/context_mgmt.h>
- #include <plat/common/platform.h>
- #include <tools_share/uuid.h>
- #include "tspd_private.h"
- /*******************************************************************************
- * Address of the entrypoint vector table in the Secure Payload. It is
- * initialised once on the primary core after a cold boot.
- ******************************************************************************/
- tsp_vectors_t *tsp_vectors;
- /*******************************************************************************
- * Array to keep track of per-cpu Secure Payload state
- ******************************************************************************/
- tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
- /* TSP UID */
- DEFINE_SVC_UUID2(tsp_uuid,
- 0xa056305b, 0x9132, 0x7b42, 0x98, 0x11,
- 0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
- int32_t tspd_init(void);
- /*
- * This helper function handles Secure EL1 preemption. The preemption could be
- * due Non Secure interrupts or EL3 interrupts. In both the cases we context
- * switch to the normal world and in case of EL3 interrupts, it will again be
- * routed to EL3 which will get handled at the exception vectors.
- */
- uint64_t tspd_handle_sp_preemption(void *handle)
- {
- cpu_context_t *ns_cpu_context;
- assert(handle == cm_get_context(SECURE));
- cm_el1_sysregs_context_save(SECURE);
- /* Get a reference to the non-secure context */
- ns_cpu_context = cm_get_context(NON_SECURE);
- assert(ns_cpu_context);
- /*
- * To allow Secure EL1 interrupt handler to re-enter TSP while TSP
- * is preempted, the secure system register context which will get
- * overwritten must be additionally saved. This is currently done
- * by the TSPD S-EL1 interrupt handler.
- */
- /*
- * Restore non-secure state.
- */
- cm_el1_sysregs_context_restore(NON_SECURE);
- cm_set_next_eret_context(NON_SECURE);
- /*
- * The TSP was preempted during execution of a Yielding SMC Call.
- * Return back to the normal world with SMC_PREEMPTED as error
- * code in x0.
- */
- SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
- }
- /*******************************************************************************
- * This function is the handler registered for S-EL1 interrupts by the TSPD. It
- * validates the interrupt and upon success arranges entry into the TSP at
- * 'tsp_sel1_intr_entry()' for handling the interrupt.
- * Typically, interrupts for a specific security state get handled in the same
- * security execption level if the execution is in the same security state. For
- * example, if a non-secure interrupt gets fired when CPU is executing in NS-EL2
- * it gets handled in the non-secure world.
- * However, interrupts belonging to the opposite security state typically demand
- * a world(context) switch. This is inline with the security principle which
- * states a secure interrupt has to be handled in the secure world.
- * Hence, the TSPD in EL3 expects the context(handle) for a secure interrupt to
- * be non-secure and vice versa.
- * However, a race condition between non-secure and secure interrupts can lead to
- * a scenario where the above assumptions do not hold true. This is demonstrated
- * below through Note 1.
- ******************************************************************************/
- static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
- uint32_t flags,
- void *handle,
- void *cookie)
- {
- uint32_t linear_id;
- tsp_context_t *tsp_ctx;
- /* Get a reference to this cpu's TSP context */
- linear_id = plat_my_core_pos();
- tsp_ctx = &tspd_sp_context[linear_id];
- #if TSP_NS_INTR_ASYNC_PREEMPT
- /*
- * Note 1:
- * Under the current interrupt routing model, interrupts from other
- * world are routed to EL3 when TSP_NS_INTR_ASYNC_PREEMPT is enabled.
- * Consider the following scenario:
- * 1/ A non-secure payload(like tftf) requests a secure service from
- * TSP by invoking a yielding SMC call.
- * 2/ Later, execution jumps to TSP in S-EL1 with the help of TSP
- * Dispatcher in Secure Monitor(EL3).
- * 3/ While CPU is executing TSP, a Non-secure interrupt gets fired.
- * this demands a context switch to the non-secure world through
- * secure monitor.
- * 4/ Consequently, TSP in S-EL1 get asynchronously pre-empted and
- * execution switches to secure monitor(EL3).
- * 5/ EL3 tries to triage the (Non-secure) interrupt based on the
- * highest pending interrupt.
- * 6/ However, while the NS Interrupt was pending, secure timer gets
- * fired which makes a S-EL1 interrupt to be pending.
- * 7/ Hence, execution jumps to this companion handler of S-EL1
- * interrupt (i.e., tspd_sel1_interrupt_handler) even though the TSP
- * was pre-empted due to non-secure interrupt.
- * 8/ The above sequence of events explain how TSP was pre-empted by
- * S-EL1 interrupt indirectly in an asynchronous way.
- * 9/ Hence, we track the TSP pre-emption by S-EL1 interrupt using a
- * boolean variable per each core.
- * 10/ This helps us to indicate that SMC call for TSP service was
- * pre-empted when execution resumes in non-secure world.
- */
- /* Check the security state when the exception was generated */
- if (get_interrupt_src_ss(flags) == NON_SECURE) {
- /* Sanity check the pointer to this cpu's context */
- assert(handle == cm_get_context(NON_SECURE));
- /* Save the non-secure context before entering the TSP */
- cm_el1_sysregs_context_save(NON_SECURE);
- tsp_ctx->preempted_by_sel1_intr = false;
- } else {
- /* Sanity check the pointer to this cpu's context */
- assert(handle == cm_get_context(SECURE));
- /* Save the secure context before entering the TSP for S-EL1
- * interrupt handling
- */
- cm_el1_sysregs_context_save(SECURE);
- tsp_ctx->preempted_by_sel1_intr = true;
- }
- #else
- /* Check the security state when the exception was generated */
- assert(get_interrupt_src_ss(flags) == NON_SECURE);
- /* Sanity check the pointer to this cpu's context */
- assert(handle == cm_get_context(NON_SECURE));
- /* Save the non-secure context before entering the TSP */
- cm_el1_sysregs_context_save(NON_SECURE);
- #endif
- assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
- /*
- * Determine if the TSP was previously preempted. Its last known
- * context has to be preserved in this case.
- * The TSP should return control to the TSPD after handling this
- * S-EL1 interrupt. Preserve essential EL3 context to allow entry into
- * the TSP at the S-EL1 interrupt entry point using the 'cpu_context'
- * structure. There is no need to save the secure system register
- * context since the TSP is supposed to preserve it during S-EL1
- * interrupt handling.
- */
- if (get_yield_smc_active_flag(tsp_ctx->state)) {
- tsp_ctx->saved_spsr_el3 = (uint32_t)SMC_GET_EL3(&tsp_ctx->cpu_ctx,
- CTX_SPSR_EL3);
- tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
- CTX_ELR_EL3);
- #if TSP_NS_INTR_ASYNC_PREEMPT
- memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
- #endif
- }
- cm_el1_sysregs_context_restore(SECURE);
- cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry,
- SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
- cm_set_next_eret_context(SECURE);
- /*
- * Tell the TSP that it has to handle a S-EL1 interrupt synchronously.
- * Also the instruction in normal world where the interrupt was
- * generated is passed for debugging purposes. It is safe to retrieve
- * this address from ELR_EL3 as the secure context will not take effect
- * until el3_exit().
- */
- SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3());
- }
- #if TSP_NS_INTR_ASYNC_PREEMPT
- /*******************************************************************************
- * This function is the handler registered for Non secure interrupts by the
- * TSPD. It validates the interrupt and upon success arranges entry into the
- * normal world for handling the interrupt.
- ******************************************************************************/
- static uint64_t tspd_ns_interrupt_handler(uint32_t id,
- uint32_t flags,
- void *handle,
- void *cookie)
- {
- /* Check the security state when the exception was generated */
- assert(get_interrupt_src_ss(flags) == SECURE);
- /*
- * Disable the routing of NS interrupts from secure world to EL3 while
- * interrupted on this core.
- */
- disable_intr_rm_local(INTR_TYPE_NS, SECURE);
- return tspd_handle_sp_preemption(handle);
- }
- #endif
- /*******************************************************************************
- * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
- * (aarch32/aarch64) if not already known and initialises the context for entry
- * into the SP for its initialisation.
- ******************************************************************************/
- static int32_t tspd_setup(void)
- {
- entry_point_info_t *tsp_ep_info;
- uint32_t linear_id;
- linear_id = plat_my_core_pos();
- /*
- * Get information about the Secure Payload (BL32) image. Its
- * absence is a critical failure. TODO: Add support to
- * conditionally include the SPD service
- */
- tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
- if (!tsp_ep_info) {
- WARN("No TSP provided by BL2 boot loader, Booting device"
- " without TSP initialization. SMC`s destined for TSP"
- " will return SMC_UNK\n");
- return 1;
- }
- /*
- * If there's no valid entry point for SP, we return a non-zero value
- * signalling failure initializing the service. We bail out without
- * registering any handlers
- */
- if (!tsp_ep_info->pc)
- return 1;
- /*
- * We could inspect the SP image and determine its execution
- * state i.e whether AArch32 or AArch64. Assuming it's AArch64
- * for the time being.
- */
- tspd_init_tsp_ep_state(tsp_ep_info,
- TSP_AARCH64,
- tsp_ep_info->pc,
- &tspd_sp_context[linear_id]);
- #if TSP_INIT_ASYNC
- bl31_set_next_image_type(SECURE);
- #else
- /*
- * All TSPD initialization done. Now register our init function with
- * BL31 for deferred invocation
- */
- bl31_register_bl32_init(&tspd_init);
- #endif
- return 0;
- }
- /*******************************************************************************
- * This function passes control to the Secure Payload image (BL32) for the first
- * time on the primary cpu after a cold boot. It assumes that a valid secure
- * context has already been created by tspd_setup() which can be directly used.
- * It also assumes that a valid non-secure context has been initialised by PSCI
- * so it does not need to save and restore any non-secure state. This function
- * performs a synchronous entry into the Secure payload. The SP passes control
- * back to this routine through a SMC.
- ******************************************************************************/
- int32_t tspd_init(void)
- {
- uint32_t linear_id = plat_my_core_pos();
- tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
- entry_point_info_t *tsp_entry_point;
- uint64_t rc;
- /*
- * Get information about the Secure Payload (BL32) image. Its
- * absence is a critical failure.
- */
- tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
- assert(tsp_entry_point);
- cm_init_my_context(tsp_entry_point);
- /*
- * Arrange for an entry into the test secure payload. It will be
- * returned via TSP_ENTRY_DONE case
- */
- rc = tspd_synchronous_sp_entry(tsp_ctx);
- assert(rc != 0);
- return rc;
- }
- /*******************************************************************************
- * This function is responsible for handling all SMCs in the Trusted OS/App
- * range from the non-secure state as defined in the SMC Calling Convention
- * Document. It is also responsible for communicating with the Secure payload
- * to delegate work and return results back to the non-secure state. Lastly it
- * will also return any information that the secure payload needs to do the
- * work assigned to it.
- ******************************************************************************/
- static uintptr_t tspd_smc_handler(uint32_t smc_fid,
- u_register_t x1,
- u_register_t x2,
- u_register_t x3,
- u_register_t x4,
- void *cookie,
- void *handle,
- u_register_t flags)
- {
- cpu_context_t *ns_cpu_context;
- uint32_t linear_id = plat_my_core_pos(), ns;
- tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
- uint64_t rc;
- #if TSP_INIT_ASYNC
- entry_point_info_t *next_image_info;
- #endif
- /* Determine which security state this SMC originated from */
- ns = is_caller_non_secure(flags);
- switch (smc_fid) {
- /*
- * This function ID is used by TSP to indicate that it was
- * preempted by a normal world IRQ.
- *
- */
- case TSP_PREEMPTED:
- if (ns)
- SMC_RET1(handle, SMC_UNK);
- return tspd_handle_sp_preemption(handle);
- /*
- * This function ID is used only by the TSP to indicate that it has
- * finished handling a S-EL1 interrupt or was preempted by a higher
- * priority pending EL3 interrupt. Execution should resume
- * in the normal world.
- */
- case TSP_HANDLED_S_EL1_INTR:
- if (ns)
- SMC_RET1(handle, SMC_UNK);
- assert(handle == cm_get_context(SECURE));
- /*
- * Restore the relevant EL3 state which saved to service
- * this SMC.
- */
- if (get_yield_smc_active_flag(tsp_ctx->state)) {
- SMC_SET_EL3(&tsp_ctx->cpu_ctx,
- CTX_SPSR_EL3,
- tsp_ctx->saved_spsr_el3);
- SMC_SET_EL3(&tsp_ctx->cpu_ctx,
- CTX_ELR_EL3,
- tsp_ctx->saved_elr_el3);
- #if TSP_NS_INTR_ASYNC_PREEMPT
- /*
- * Need to restore the previously interrupted
- * secure context.
- */
- memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx,
- TSPD_SP_CTX_SIZE);
- #endif
- }
- /* Get a reference to the non-secure context */
- ns_cpu_context = cm_get_context(NON_SECURE);
- assert(ns_cpu_context);
- /*
- * Restore non-secure state. There is no need to save the
- * secure system register context since the TSP was supposed
- * to preserve it during S-EL1 interrupt handling.
- */
- cm_el1_sysregs_context_restore(NON_SECURE);
- cm_set_next_eret_context(NON_SECURE);
- /* Refer to Note 1 in function tspd_sel1_interrupt_handler()*/
- #if TSP_NS_INTR_ASYNC_PREEMPT
- if (tsp_ctx->preempted_by_sel1_intr) {
- /* Reset the flag */
- tsp_ctx->preempted_by_sel1_intr = false;
- SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
- } else {
- SMC_RET0((uint64_t) ns_cpu_context);
- }
- #else
- SMC_RET0((uint64_t) ns_cpu_context);
- #endif
- /*
- * This function ID is used only by the SP to indicate it has
- * finished initialising itself after a cold boot
- */
- case TSP_ENTRY_DONE:
- if (ns)
- SMC_RET1(handle, SMC_UNK);
- /*
- * Stash the SP entry points information. This is done
- * only once on the primary cpu
- */
- assert(tsp_vectors == NULL);
- tsp_vectors = (tsp_vectors_t *) x1;
- if (tsp_vectors) {
- set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
- /*
- * TSP has been successfully initialized. Register power
- * management hooks with PSCI
- */
- psci_register_spd_pm_hook(&tspd_pm);
- /*
- * Register an interrupt handler for S-EL1 interrupts
- * when generated during code executing in the
- * non-secure state.
- */
- flags = 0;
- set_interrupt_rm_flag(flags, NON_SECURE);
- rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
- tspd_sel1_interrupt_handler,
- flags);
- if (rc)
- panic();
- #if TSP_NS_INTR_ASYNC_PREEMPT
- /*
- * Register an interrupt handler for NS interrupts when
- * generated during code executing in secure state are
- * routed to EL3.
- */
- flags = 0;
- set_interrupt_rm_flag(flags, SECURE);
- rc = register_interrupt_type_handler(INTR_TYPE_NS,
- tspd_ns_interrupt_handler,
- flags);
- if (rc)
- panic();
- /*
- * Disable the NS interrupt locally.
- */
- disable_intr_rm_local(INTR_TYPE_NS, SECURE);
- #endif
- }
- #if TSP_INIT_ASYNC
- /* Save the Secure EL1 system register context */
- assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
- cm_el1_sysregs_context_save(SECURE);
- /* Program EL3 registers to enable entry into the next EL */
- next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
- assert(next_image_info);
- assert(NON_SECURE ==
- GET_SECURITY_STATE(next_image_info->h.attr));
- cm_init_my_context(next_image_info);
- cm_prepare_el3_exit(NON_SECURE);
- SMC_RET0(cm_get_context(NON_SECURE));
- #else
- /*
- * SP reports completion. The SPD must have initiated
- * the original request through a synchronous entry
- * into the SP. Jump back to the original C runtime
- * context.
- */
- tspd_synchronous_sp_exit(tsp_ctx, x1);
- break;
- #endif
- /*
- * This function ID is used only by the SP to indicate it has finished
- * aborting a preempted Yielding SMC Call.
- */
- case TSP_ABORT_DONE:
- /*
- * These function IDs are used only by the SP to indicate it has
- * finished:
- * 1. turning itself on in response to an earlier psci
- * cpu_on request
- * 2. resuming itself after an earlier psci cpu_suspend
- * request.
- */
- case TSP_ON_DONE:
- case TSP_RESUME_DONE:
- /*
- * These function IDs are used only by the SP to indicate it has
- * finished:
- * 1. suspending itself after an earlier psci cpu_suspend
- * request.
- * 2. turning itself off in response to an earlier psci
- * cpu_off request.
- */
- case TSP_OFF_DONE:
- case TSP_SUSPEND_DONE:
- case TSP_SYSTEM_OFF_DONE:
- case TSP_SYSTEM_RESET_DONE:
- if (ns)
- SMC_RET1(handle, SMC_UNK);
- /*
- * SP reports completion. The SPD must have initiated the
- * original request through a synchronous entry into the SP.
- * Jump back to the original C runtime context, and pass x1 as
- * return value to the caller
- */
- tspd_synchronous_sp_exit(tsp_ctx, x1);
- break;
- /*
- * Request from non-secure client to perform an
- * arithmetic operation or response from secure
- * payload to an earlier request.
- */
- case TSP_FAST_FID(TSP_ADD):
- case TSP_FAST_FID(TSP_SUB):
- case TSP_FAST_FID(TSP_MUL):
- case TSP_FAST_FID(TSP_DIV):
- case TSP_YIELD_FID(TSP_ADD):
- case TSP_YIELD_FID(TSP_SUB):
- case TSP_YIELD_FID(TSP_MUL):
- case TSP_YIELD_FID(TSP_DIV):
- /*
- * Request from non-secure client to perform a check
- * of the DIT PSTATE bit.
- */
- case TSP_YIELD_FID(TSP_CHECK_DIT):
- /*
- * Request from non-secure client to modify the EL1
- * context registers.
- */
- case TSP_YIELD_FID(TSP_MODIFY_EL1_CTX):
- if (ns) {
- /*
- * This is a fresh request from the non-secure client.
- * The parameters are in x1 and x2. Figure out which
- * registers need to be preserved, save the non-secure
- * state and send the request to the secure payload.
- */
- assert(handle == cm_get_context(NON_SECURE));
- /* Check if we are already preempted */
- if (get_yield_smc_active_flag(tsp_ctx->state))
- SMC_RET1(handle, SMC_UNK);
- cm_el1_sysregs_context_save(NON_SECURE);
- /* Save x1 and x2 for use by TSP_GET_ARGS call below */
- store_tsp_args(tsp_ctx, x1, x2);
- /*
- * We are done stashing the non-secure context. Ask the
- * secure payload to do the work now.
- */
- /*
- * Verify if there is a valid context to use, copy the
- * operation type and parameters to the secure context
- * and jump to the fast smc entry point in the secure
- * payload. Entry into S-EL1 will take place upon exit
- * from this function.
- */
- assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
- /* Set appropriate entry for SMC.
- * We expect the TSP to manage the PSTATE.I and PSTATE.F
- * flags as appropriate.
- */
- if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
- cm_set_elr_el3(SECURE, (uint64_t)
- &tsp_vectors->fast_smc_entry);
- } else {
- set_yield_smc_active_flag(tsp_ctx->state);
- cm_set_elr_el3(SECURE, (uint64_t)
- &tsp_vectors->yield_smc_entry);
- #if TSP_NS_INTR_ASYNC_PREEMPT
- /*
- * Enable the routing of NS interrupts to EL3
- * during processing of a Yielding SMC Call on
- * this core.
- */
- enable_intr_rm_local(INTR_TYPE_NS, SECURE);
- #endif
- #if EL3_EXCEPTION_HANDLING
- /*
- * With EL3 exception handling, while an SMC is
- * being processed, Non-secure interrupts can't
- * preempt Secure execution. However, for
- * yielding SMCs, we want preemption to happen;
- * so explicitly allow NS preemption in this
- * case, and supply the preemption return code
- * for TSP.
- */
- ehf_allow_ns_preemption(TSP_PREEMPTED);
- #endif
- }
- cm_el1_sysregs_context_restore(SECURE);
- cm_set_next_eret_context(SECURE);
- SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
- } else {
- /*
- * This is the result from the secure client of an
- * earlier request. The results are in x1-x3. Copy it
- * into the non-secure context, save the secure state
- * and return to the non-secure state.
- */
- assert(handle == cm_get_context(SECURE));
- cm_el1_sysregs_context_save(SECURE);
- /* Get a reference to the non-secure context */
- ns_cpu_context = cm_get_context(NON_SECURE);
- assert(ns_cpu_context);
- /* Restore non-secure state */
- cm_el1_sysregs_context_restore(NON_SECURE);
- cm_set_next_eret_context(NON_SECURE);
- if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_YIELD) {
- clr_yield_smc_active_flag(tsp_ctx->state);
- #if TSP_NS_INTR_ASYNC_PREEMPT
- /*
- * Disable the routing of NS interrupts to EL3
- * after processing of a Yielding SMC Call on
- * this core is finished.
- */
- disable_intr_rm_local(INTR_TYPE_NS, SECURE);
- #endif
- }
- SMC_RET3(ns_cpu_context, x1, x2, x3);
- }
- assert(0); /* Unreachable */
- /*
- * Request from the non-secure world to abort a preempted Yielding SMC
- * Call.
- */
- case TSP_FID_ABORT:
- /* ABORT should only be invoked by normal world */
- if (!ns) {
- assert(0);
- break;
- }
- assert(handle == cm_get_context(NON_SECURE));
- cm_el1_sysregs_context_save(NON_SECURE);
- /* Abort the preempted SMC request */
- if (!tspd_abort_preempted_smc(tsp_ctx)) {
- /*
- * If there was no preempted SMC to abort, return
- * SMC_UNK.
- *
- * Restoring the NON_SECURE context is not necessary as
- * the synchronous entry did not take place if the
- * return code of tspd_abort_preempted_smc is zero.
- */
- cm_set_next_eret_context(NON_SECURE);
- break;
- }
- cm_el1_sysregs_context_restore(NON_SECURE);
- cm_set_next_eret_context(NON_SECURE);
- SMC_RET1(handle, SMC_OK);
- /*
- * Request from non secure world to resume the preempted
- * Yielding SMC Call.
- */
- case TSP_FID_RESUME:
- /* RESUME should be invoked only by normal world */
- if (!ns) {
- assert(0);
- break;
- }
- /*
- * This is a resume request from the non-secure client.
- * save the non-secure state and send the request to
- * the secure payload.
- */
- assert(handle == cm_get_context(NON_SECURE));
- /* Check if we are already preempted before resume */
- if (!get_yield_smc_active_flag(tsp_ctx->state))
- SMC_RET1(handle, SMC_UNK);
- cm_el1_sysregs_context_save(NON_SECURE);
- /*
- * We are done stashing the non-secure context. Ask the
- * secure payload to do the work now.
- */
- #if TSP_NS_INTR_ASYNC_PREEMPT
- /*
- * Enable the routing of NS interrupts to EL3 during resumption
- * of a Yielding SMC Call on this core.
- */
- enable_intr_rm_local(INTR_TYPE_NS, SECURE);
- #endif
- #if EL3_EXCEPTION_HANDLING
- /*
- * Allow the resumed yielding SMC processing to be preempted by
- * Non-secure interrupts. Also, supply the preemption return
- * code for TSP.
- */
- ehf_allow_ns_preemption(TSP_PREEMPTED);
- #endif
- /* We just need to return to the preempted point in
- * TSP and the execution will resume as normal.
- */
- cm_el1_sysregs_context_restore(SECURE);
- cm_set_next_eret_context(SECURE);
- SMC_RET0(&tsp_ctx->cpu_ctx);
- /*
- * This is a request from the secure payload for more arguments
- * for an ongoing arithmetic operation requested by the
- * non-secure world. Simply return the arguments from the non-
- * secure client in the original call.
- */
- case TSP_GET_ARGS:
- if (ns)
- SMC_RET1(handle, SMC_UNK);
- get_tsp_args(tsp_ctx, x1, x2);
- SMC_RET2(handle, x1, x2);
- case TOS_CALL_COUNT:
- /*
- * Return the number of service function IDs implemented to
- * provide service to non-secure
- */
- SMC_RET1(handle, TSP_NUM_FID);
- case TOS_UID:
- /* Return TSP UID to the caller */
- SMC_UUID_RET(handle, tsp_uuid);
- case TOS_CALL_VERSION:
- /* Return the version of current implementation */
- SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
- default:
- break;
- }
- SMC_RET1(handle, SMC_UNK);
- }
- /* Define a SPD runtime service descriptor for fast SMC calls */
- DECLARE_RT_SVC(
- tspd_fast,
- OEN_TOS_START,
- OEN_TOS_END,
- SMC_TYPE_FAST,
- tspd_setup,
- tspd_smc_handler
- );
- /* Define a SPD runtime service descriptor for Yielding SMC Calls */
- DECLARE_RT_SVC(
- tspd_std,
- OEN_TOS_START,
- OEN_TOS_END,
- SMC_TYPE_YIELD,
- NULL,
- tspd_smc_handler
- );
|