spm.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. /*
  2. * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
  3. *
  4. * SPDX-License-Identifier: BSD-3-Clause
  5. */
  6. #include <common/debug.h>
  7. #include <lib/bakery_lock.h>
  8. #include <lib/mmio.h>
  9. #include <mt8173_def.h>
  10. #include <spm.h>
  11. #include <spm_suspend.h>
  12. /*
  13. * System Power Manager (SPM) is a hardware module, which controls cpu or
  14. * system power for different power scenarios using different firmware, i.e.,
  15. * - spm_hotplug.c for cpu power control in cpu hotplug flow.
  16. * - spm_mcdi.c for cpu power control in cpu idle power saving state.
  17. * - spm_suspend.c for system power control in system suspend scenario.
  18. *
  19. * This file provide utility functions common to hotplug, mcdi(idle), suspend
  20. * power scenarios. A bakery lock (software lock) is incoporated to protect
  21. * certain critical sections to avoid kicking different SPM firmware
  22. * concurrently.
  23. */
  24. #define SPM_SYSCLK_SETTLE 128 /* 3.9ms */
  25. DEFINE_BAKERY_LOCK(spm_lock);
  26. static int spm_hotplug_ready __section(".tzfw_coherent_mem");
  27. static int spm_mcdi_ready __section(".tzfw_coherent_mem");
  28. static int spm_suspend_ready __section(".tzfw_coherent_mem");
  29. void spm_lock_init(void)
  30. {
  31. bakery_lock_init(&spm_lock);
  32. }
  33. void spm_lock_get(void)
  34. {
  35. bakery_lock_get(&spm_lock);
  36. }
  37. void spm_lock_release(void)
  38. {
  39. bakery_lock_release(&spm_lock);
  40. }
  41. int is_mcdi_ready(void)
  42. {
  43. return spm_mcdi_ready;
  44. }
  45. int is_hotplug_ready(void)
  46. {
  47. return spm_hotplug_ready;
  48. }
  49. int is_suspend_ready(void)
  50. {
  51. return spm_suspend_ready;
  52. }
  53. void set_mcdi_ready(void)
  54. {
  55. spm_mcdi_ready = 1;
  56. spm_hotplug_ready = 0;
  57. spm_suspend_ready = 0;
  58. }
  59. void set_hotplug_ready(void)
  60. {
  61. spm_mcdi_ready = 0;
  62. spm_hotplug_ready = 1;
  63. spm_suspend_ready = 0;
  64. }
  65. void set_suspend_ready(void)
  66. {
  67. spm_mcdi_ready = 0;
  68. spm_hotplug_ready = 0;
  69. spm_suspend_ready = 1;
  70. }
  71. void clear_all_ready(void)
  72. {
  73. spm_mcdi_ready = 0;
  74. spm_hotplug_ready = 0;
  75. spm_suspend_ready = 0;
  76. }
  77. void spm_register_init(void)
  78. {
  79. mmio_write_32(SPM_POWERON_CONFIG_SET, SPM_REGWR_CFG_KEY | SPM_REGWR_EN);
  80. mmio_write_32(SPM_POWER_ON_VAL0, 0);
  81. mmio_write_32(SPM_POWER_ON_VAL1, POWER_ON_VAL1_DEF);
  82. mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
  83. mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET);
  84. mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY);
  85. if (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF)
  86. WARN("PCM reset failed\n");
  87. mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS);
  88. mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_EVENT_LOCK_EN |
  89. CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B | CON1_MIF_APBEN);
  90. mmio_write_32(SPM_PCM_IM_PTR, 0);
  91. mmio_write_32(SPM_PCM_IM_LEN, 0);
  92. mmio_write_32(SPM_CLK_CON, CC_SYSCLK0_EN_1 | CC_SYSCLK0_EN_0 |
  93. CC_SYSCLK1_EN_0 | CC_SRCLKENA_MASK_0 | CC_CLKSQ1_SEL |
  94. CC_CXO32K_RM_EN_MD2 | CC_CXO32K_RM_EN_MD1 | CC_MD32_DCM_EN);
  95. mmio_write_32(SPM_SLEEP_ISR_MASK, 0xff0c);
  96. mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xc);
  97. mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xff);
  98. mmio_write_32(SPM_MD32_SRAM_CON, 0xff0);
  99. }
  100. void spm_reset_and_init_pcm(void)
  101. {
  102. unsigned int con1;
  103. int i = 0;
  104. mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET);
  105. mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY);
  106. while (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF) {
  107. i++;
  108. if (i > 1000) {
  109. i = 0;
  110. WARN("PCM reset failed\n");
  111. break;
  112. }
  113. }
  114. mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS);
  115. con1 = mmio_read_32(SPM_PCM_CON1) &
  116. (CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN);
  117. mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_EVENT_LOCK_EN |
  118. CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B |
  119. CON1_IM_NONRP_EN | CON1_MIF_APBEN);
  120. }
  121. void spm_init_pcm_register(void)
  122. {
  123. mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL0));
  124. mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R0);
  125. mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
  126. mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL1));
  127. mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R7);
  128. mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
  129. }
  130. void spm_set_power_control(const struct pwr_ctrl *pwrctrl)
  131. {
  132. mmio_write_32(SPM_AP_STANBY_CON, (!pwrctrl->md32_req_mask << 21) |
  133. (!pwrctrl->mfg_req_mask << 17) |
  134. (!pwrctrl->disp_req_mask << 16) |
  135. (!!pwrctrl->mcusys_idle_mask << 7) |
  136. (!!pwrctrl->ca15top_idle_mask << 6) |
  137. (!!pwrctrl->ca7top_idle_mask << 5) |
  138. (!!pwrctrl->wfi_op << 4));
  139. mmio_write_32(SPM_PCM_SRC_REQ, (!!pwrctrl->pcm_apsrc_req << 0));
  140. mmio_write_32(SPM_PCM_PASR_DPD_2, 0);
  141. mmio_clrsetbits_32(SPM_CLK_CON, CC_SRCLKENA_MASK_0,
  142. (pwrctrl->srclkenai_mask ? CC_SRCLKENA_MASK_0 : 0));
  143. mmio_write_32(SPM_SLEEP_CA15_WFI0_EN, !!pwrctrl->ca15_wfi0_en);
  144. mmio_write_32(SPM_SLEEP_CA15_WFI1_EN, !!pwrctrl->ca15_wfi1_en);
  145. mmio_write_32(SPM_SLEEP_CA15_WFI2_EN, !!pwrctrl->ca15_wfi2_en);
  146. mmio_write_32(SPM_SLEEP_CA15_WFI3_EN, !!pwrctrl->ca15_wfi3_en);
  147. mmio_write_32(SPM_SLEEP_CA7_WFI0_EN, !!pwrctrl->ca7_wfi0_en);
  148. mmio_write_32(SPM_SLEEP_CA7_WFI1_EN, !!pwrctrl->ca7_wfi1_en);
  149. mmio_write_32(SPM_SLEEP_CA7_WFI2_EN, !!pwrctrl->ca7_wfi2_en);
  150. mmio_write_32(SPM_SLEEP_CA7_WFI3_EN, !!pwrctrl->ca7_wfi3_en);
  151. }
  152. void spm_set_wakeup_event(const struct pwr_ctrl *pwrctrl)
  153. {
  154. unsigned int val, mask;
  155. if (pwrctrl->timer_val_cust == 0)
  156. val = pwrctrl->timer_val ? pwrctrl->timer_val : PCM_TIMER_MAX;
  157. else
  158. val = pwrctrl->timer_val_cust;
  159. mmio_write_32(SPM_PCM_TIMER_VAL, val);
  160. mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY);
  161. if (pwrctrl->wake_src_cust == 0)
  162. mask = pwrctrl->wake_src;
  163. else
  164. mask = pwrctrl->wake_src_cust;
  165. if (pwrctrl->syspwreq_mask)
  166. mask &= ~WAKE_SRC_SYSPWREQ;
  167. mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~mask);
  168. mmio_write_32(SPM_SLEEP_ISR_MASK, 0xfe04);
  169. }
  170. void spm_get_wakeup_status(struct wake_status *wakesta)
  171. {
  172. wakesta->assert_pc = mmio_read_32(SPM_PCM_REG_DATA_INI);
  173. wakesta->r12 = mmio_read_32(SPM_PCM_REG12_DATA);
  174. wakesta->raw_sta = mmio_read_32(SPM_SLEEP_ISR_RAW_STA);
  175. wakesta->wake_misc = mmio_read_32(SPM_SLEEP_WAKEUP_MISC);
  176. wakesta->timer_out = mmio_read_32(SPM_PCM_TIMER_OUT);
  177. wakesta->r13 = mmio_read_32(SPM_PCM_REG13_DATA);
  178. wakesta->idle_sta = mmio_read_32(SPM_SLEEP_SUBSYS_IDLE_STA);
  179. wakesta->debug_flag = mmio_read_32(SPM_PCM_PASR_DPD_3);
  180. wakesta->event_reg = mmio_read_32(SPM_PCM_EVENT_REG_STA);
  181. wakesta->isr = mmio_read_32(SPM_SLEEP_ISR_STATUS);
  182. }
  183. void spm_init_event_vector(const struct pcm_desc *pcmdesc)
  184. {
  185. /* init event vector register */
  186. mmio_write_32(SPM_PCM_EVENT_VECTOR0, pcmdesc->vec0);
  187. mmio_write_32(SPM_PCM_EVENT_VECTOR1, pcmdesc->vec1);
  188. mmio_write_32(SPM_PCM_EVENT_VECTOR2, pcmdesc->vec2);
  189. mmio_write_32(SPM_PCM_EVENT_VECTOR3, pcmdesc->vec3);
  190. mmio_write_32(SPM_PCM_EVENT_VECTOR4, pcmdesc->vec4);
  191. mmio_write_32(SPM_PCM_EVENT_VECTOR5, pcmdesc->vec5);
  192. mmio_write_32(SPM_PCM_EVENT_VECTOR6, pcmdesc->vec6);
  193. mmio_write_32(SPM_PCM_EVENT_VECTOR7, pcmdesc->vec7);
  194. /* event vector will be enabled by PCM itself */
  195. }
  196. void spm_kick_im_to_fetch(const struct pcm_desc *pcmdesc)
  197. {
  198. unsigned int ptr = 0, len, con0;
  199. ptr = (unsigned int)(unsigned long)(pcmdesc->base);
  200. len = pcmdesc->size - 1;
  201. if (mmio_read_32(SPM_PCM_IM_PTR) != ptr ||
  202. mmio_read_32(SPM_PCM_IM_LEN) != len ||
  203. pcmdesc->sess > 2) {
  204. mmio_write_32(SPM_PCM_IM_PTR, ptr);
  205. mmio_write_32(SPM_PCM_IM_LEN, len);
  206. } else {
  207. mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_IM_SLAVE);
  208. }
  209. /* kick IM to fetch (only toggle IM_KICK) */
  210. con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK);
  211. mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_IM_KICK);
  212. mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY);
  213. /* kick IM to fetch (only toggle PCM_KICK) */
  214. con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK);
  215. mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_PCM_KICK);
  216. mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY);
  217. }
  218. void spm_set_sysclk_settle(void)
  219. {
  220. mmio_write_32(SPM_CLK_SETTLE, SPM_SYSCLK_SETTLE);
  221. INFO("settle = %u\n", mmio_read_32(SPM_CLK_SETTLE));
  222. }
  223. void spm_kick_pcm_to_run(struct pwr_ctrl *pwrctrl)
  224. {
  225. unsigned int con1;
  226. con1 = mmio_read_32(SPM_PCM_CON1) &
  227. ~(CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN);
  228. mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | con1);
  229. if (mmio_read_32(SPM_PCM_TIMER_VAL) > PCM_TIMER_MAX)
  230. mmio_write_32(SPM_PCM_TIMER_VAL, PCM_TIMER_MAX);
  231. mmio_write_32(SPM_PCM_WDT_TIMER_VAL,
  232. mmio_read_32(SPM_PCM_TIMER_VAL) + PCM_WDT_TIMEOUT);
  233. mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_PCM_WDT_EN);
  234. mmio_write_32(SPM_PCM_PASR_DPD_0, 0);
  235. mmio_write_32(SPM_PCM_MAS_PAUSE_MASK, 0xffffffff);
  236. mmio_write_32(SPM_PCM_REG_DATA_INI, 0);
  237. mmio_clrbits_32(SPM_CLK_CON, CC_DISABLE_DORM_PWR);
  238. mmio_write_32(SPM_PCM_FLAGS, pwrctrl->pcm_flags);
  239. mmio_clrsetbits_32(SPM_CLK_CON, CC_LOCK_INFRA_DCM,
  240. (pwrctrl->infra_dcm_lock ? CC_LOCK_INFRA_DCM : 0));
  241. mmio_write_32(SPM_PCM_PWR_IO_EN,
  242. (pwrctrl->r0_ctrl_en ? PCM_PWRIO_EN_R0 : 0) |
  243. (pwrctrl->r7_ctrl_en ? PCM_PWRIO_EN_R7 : 0));
  244. }
  245. void spm_clean_after_wakeup(void)
  246. {
  247. mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_WDT_EN, CON1_CFG_KEY);
  248. mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
  249. mmio_write_32(SPM_SLEEP_CPU_WAKEUP_EVENT, 0);
  250. mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_TIMER_EN, CON1_CFG_KEY);
  251. mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~0);
  252. mmio_write_32(SPM_SLEEP_ISR_MASK, 0xFF0C);
  253. mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xC);
  254. mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xFF);
  255. }
  256. enum wake_reason_t spm_output_wake_reason(struct wake_status *wakesta)
  257. {
  258. enum wake_reason_t wr;
  259. int i;
  260. wr = WR_UNKNOWN;
  261. if (wakesta->assert_pc != 0) {
  262. ERROR("PCM ASSERT AT %u, r12=0x%x, r13=0x%x, debug_flag=0x%x\n",
  263. wakesta->assert_pc, wakesta->r12, wakesta->r13,
  264. wakesta->debug_flag);
  265. return WR_PCM_ASSERT;
  266. }
  267. if (wakesta->r12 & WAKE_SRC_SPM_MERGE) {
  268. if (wakesta->wake_misc & WAKE_MISC_PCM_TIMER)
  269. wr = WR_PCM_TIMER;
  270. if (wakesta->wake_misc & WAKE_MISC_CPU_WAKE)
  271. wr = WR_WAKE_SRC;
  272. }
  273. for (i = 1; i < 32; i++) {
  274. if (wakesta->r12 & (1U << i))
  275. wr = WR_WAKE_SRC;
  276. }
  277. if ((wakesta->event_reg & 0x100000) == 0) {
  278. INFO("pcm sleep abort!\n");
  279. wr = WR_PCM_ABORT;
  280. }
  281. INFO("timer_out = %u, r12 = 0x%x, r13 = 0x%x, debug_flag = 0x%x\n",
  282. wakesta->timer_out, wakesta->r12, wakesta->r13,
  283. wakesta->debug_flag);
  284. INFO("raw_sta = 0x%x, idle_sta = 0x%x, event_reg = 0x%x, isr = 0x%x\n",
  285. wakesta->raw_sta, wakesta->idle_sta, wakesta->event_reg,
  286. wakesta->isr);
  287. return wr;
  288. }
  289. void spm_boot_init(void)
  290. {
  291. /* set spm transaction to secure mode */
  292. mmio_write_32(DEVAPC0_APC_CON, 0x0);
  293. mmio_write_32(DEVAPC0_MAS_SEC_0, 0x200);
  294. /* Only CPU0 is online during boot, initialize cpu online reserve bit */
  295. mmio_write_32(SPM_PCM_RESERVE, 0xFE);
  296. mmio_clrbits_32(AP_PLL_CON3, 0xFFFFF);
  297. mmio_clrbits_32(AP_PLL_CON4, 0xF);
  298. spm_lock_init();
  299. spm_register_init();
  300. }