123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- /*
- * Copyright (c) 2022-2024, Arm Limited. All rights reserved.
- * Copyright (c) 2023, NVIDIA Corporation. All rights reserved.
- *
- * SPDX-License-Identifier: BSD-3-Clause
- *
- * Dispatch synchronous system register traps from lower ELs.
- */
- #include <arch_features.h>
- #include <arch_helpers.h>
- #include <bl31/sync_handle.h>
- #include <context.h>
- #include <lib/el3_runtime/context_mgmt.h>
- int handle_sysreg_trap(uint64_t esr_el3, cpu_context_t *ctx)
- {
- uint64_t __unused opcode = esr_el3 & ISS_SYSREG_OPCODE_MASK;
- #if ENABLE_FEAT_RNG_TRAP
- if ((opcode == ISS_SYSREG_OPCODE_RNDR) || (opcode == ISS_SYSREG_OPCODE_RNDRRS)) {
- return plat_handle_rng_trap(esr_el3, ctx);
- }
- #endif
- #if IMPDEF_SYSREG_TRAP
- if ((opcode & ISS_SYSREG_OPCODE_IMPDEF) == ISS_SYSREG_OPCODE_IMPDEF) {
- return plat_handle_impdef_trap(esr_el3, ctx);
- }
- #endif
- return TRAP_RET_UNHANDLED;
- }
- static bool is_tge_enabled(void)
- {
- u_register_t hcr_el2 = read_hcr_el2();
- return ((is_feat_vhe_present()) && ((hcr_el2 & HCR_TGE_BIT) != 0U));
- }
- /*
- * This function is to ensure that undef injection does not happen into
- * non-existent S-EL2. This could happen when trap happens from S-EL{1,0}
- * and non-secure world is running with TGE bit set, considering EL3 does
- * not save/restore EL2 registers if only one world has EL2 enabled.
- * So reading hcr_el2.TGE would give NS world value.
- */
- static bool is_secure_trap_without_sel2(u_register_t scr)
- {
- return ((scr & (SCR_NS_BIT | SCR_EEL2_BIT)) == 0);
- }
- static unsigned int target_el(unsigned int from_el, u_register_t scr)
- {
- if (from_el > MODE_EL1) {
- return from_el;
- } else if (is_tge_enabled() && !is_secure_trap_without_sel2(scr)) {
- return MODE_EL2;
- } else {
- return MODE_EL1;
- }
- }
- static u_register_t get_elr_el3(u_register_t spsr_el3, u_register_t vbar, unsigned int target_el)
- {
- unsigned int outgoing_el = GET_EL(spsr_el3);
- u_register_t elr_el3 = 0;
- if (outgoing_el == target_el) {
- /*
- * Target EL is either EL1 or EL2, lsb can tell us the SPsel
- * Thread mode : 0
- * Handler mode : 1
- */
- if ((spsr_el3 & (MODE_SP_MASK << MODE_SP_SHIFT)) == MODE_SP_ELX) {
- elr_el3 = vbar + CURRENT_EL_SPX;
- } else {
- elr_el3 = vbar + CURRENT_EL_SP0;
- }
- } else {
- /* Vector address for Lower EL using Aarch64 */
- elr_el3 = vbar + LOWER_EL_AARCH64;
- }
- return elr_el3;
- }
- /*
- * Explicitly create all bits of SPSR to get PSTATE at exception return.
- *
- * The code is based on "Aarch64.exceptions.takeexception" described in
- * DDI0602 revision 2023-06.
- * "https://developer.arm.com/documentation/ddi0602/2023-06/Shared-Pseudocode/
- * aarch64-exceptions-takeexception"
- *
- * NOTE: This piece of code must be reviewed every release to ensure that
- * we keep up with new ARCH features which introduces a new SPSR bit.
- */
- u_register_t create_spsr(u_register_t old_spsr, unsigned int target_el)
- {
- u_register_t new_spsr = 0;
- u_register_t sctlr;
- /* Set M bits for target EL in AArch64 mode, also get sctlr */
- if (target_el == MODE_EL2) {
- sctlr = read_sctlr_el2();
- new_spsr |= (SPSR_M_AARCH64 << SPSR_M_SHIFT) | SPSR_M_EL2H;
- } else {
- sctlr = read_sctlr_el1();
- new_spsr |= (SPSR_M_AARCH64 << SPSR_M_SHIFT) | SPSR_M_EL1H;
- }
- /* Mask all exceptions, update DAIF bits */
- new_spsr |= SPSR_DAIF_MASK << SPSR_DAIF_SHIFT;
- /* If FEAT_BTI is present, clear BTYPE bits */
- new_spsr |= old_spsr & (SPSR_BTYPE_MASK_AARCH64 << SPSR_BTYPE_SHIFT_AARCH64);
- if (is_feat_bti_present()) {
- new_spsr &= ~(SPSR_BTYPE_MASK_AARCH64 << SPSR_BTYPE_SHIFT_AARCH64);
- }
- /* If SSBS is implemented, take the value from SCTLR.DSSBS */
- new_spsr |= old_spsr & SPSR_SSBS_BIT_AARCH64;
- if (is_feat_ssbs_present()) {
- if ((sctlr & SCTLR_DSSBS_BIT) != 0U) {
- new_spsr |= SPSR_SSBS_BIT_AARCH64;
- } else {
- new_spsr &= ~SPSR_SSBS_BIT_AARCH64;
- }
- }
- /* If FEAT_NMI is implemented, ALLINT = !(SCTLR.SPINTMASK) */
- new_spsr |= old_spsr & SPSR_ALLINT_BIT_AARCH64;
- if (is_feat_nmi_present()) {
- if ((sctlr & SCTLR_SPINTMASK_BIT) != 0U) {
- new_spsr &= ~SPSR_ALLINT_BIT_AARCH64;
- } else {
- new_spsr |= SPSR_ALLINT_BIT_AARCH64;
- }
- }
- /* Clear PSTATE.IL bit explicitly */
- new_spsr &= ~SPSR_IL_BIT;
- /* Clear PSTATE.SS bit explicitly */
- new_spsr &= ~SPSR_SS_BIT;
- /* Update PSTATE.PAN bit */
- new_spsr |= old_spsr & SPSR_PAN_BIT;
- if (is_feat_pan_present() &&
- ((target_el == MODE_EL1) || ((target_el == MODE_EL2) && is_tge_enabled())) &&
- ((sctlr & SCTLR_SPAN_BIT) == 0U)) {
- new_spsr |= SPSR_PAN_BIT;
- }
- /* Clear UAO bit if FEAT_UAO is present */
- new_spsr |= old_spsr & SPSR_UAO_BIT_AARCH64;
- if (is_feat_uao_present()) {
- new_spsr &= ~SPSR_UAO_BIT_AARCH64;
- }
- /* DIT bits are unchanged */
- new_spsr |= old_spsr & SPSR_DIT_BIT;
- /* If FEAT_MTE2 is implemented mask tag faults by setting TCO bit */
- new_spsr |= old_spsr & SPSR_TCO_BIT_AARCH64;
- if (is_feat_mte2_present()) {
- new_spsr |= SPSR_TCO_BIT_AARCH64;
- }
- /* NZCV bits are unchanged */
- new_spsr |= old_spsr & SPSR_NZCV;
- /* If FEAT_EBEP is present set PM bit */
- new_spsr |= old_spsr & SPSR_PM_BIT_AARCH64;
- if (is_feat_ebep_present()) {
- new_spsr |= SPSR_PM_BIT_AARCH64;
- }
- /* If FEAT_SEBEP is present clear PPEND bit */
- new_spsr |= old_spsr & SPSR_PPEND_BIT;
- if (is_feat_sebep_present()) {
- new_spsr &= ~SPSR_PPEND_BIT;
- }
- /* If FEAT_GCS is present, update EXLOCK bit */
- new_spsr |= old_spsr & SPSR_EXLOCK_BIT_AARCH64;
- if (is_feat_gcs_present()) {
- u_register_t gcscr;
- if (target_el == MODE_EL2) {
- gcscr = read_gcscr_el2();
- } else {
- gcscr = read_gcscr_el1();
- }
- new_spsr |= (gcscr & GCSCR_EXLOCK_EN_BIT) ? SPSR_EXLOCK_BIT_AARCH64 : 0;
- }
- return new_spsr;
- }
- /*
- * Handler for injecting Undefined exception to lower EL which is caused by
- * lower EL accessing system registers of which (old)EL3 firmware is unaware.
- *
- * This is a safety net to avoid EL3 panics caused by system register access
- * that triggers an exception syndrome EC=0x18.
- */
- void inject_undef64(cpu_context_t *ctx)
- {
- u_register_t esr = (EC_UNKNOWN << ESR_EC_SHIFT) | ESR_IL_BIT;
- el3_state_t *state = get_el3state_ctx(ctx);
- u_register_t elr_el3 = read_ctx_reg(state, CTX_ELR_EL3);
- u_register_t old_spsr = read_ctx_reg(state, CTX_SPSR_EL3);
- u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
- u_register_t new_spsr = 0;
- unsigned int to_el = target_el(GET_EL(old_spsr), scr_el3);
- if (to_el == MODE_EL2) {
- write_elr_el2(elr_el3);
- elr_el3 = get_elr_el3(old_spsr, read_vbar_el2(), to_el);
- write_esr_el2(esr);
- write_spsr_el2(old_spsr);
- } else {
- write_elr_el1(elr_el3);
- elr_el3 = get_elr_el3(old_spsr, read_vbar_el1(), to_el);
- write_esr_el1(esr);
- write_spsr_el1(old_spsr);
- }
- new_spsr = create_spsr(old_spsr, to_el);
- write_ctx_reg(state, CTX_SPSR_EL3, new_spsr);
- write_ctx_reg(state, CTX_ELR_EL3, elr_el3);
- }
|