123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420 |
- Realm Management Extension (RME)
- ====================================
- FEAT_RME (or RME for short) is an Armv9-A extension and is one component of the
- `Arm Confidential Compute Architecture (Arm CCA)`_. TF-A supports RME starting
- from version 2.6. This chapter discusses the changes to TF-A to support RME and
- provides instructions on how to build and run TF-A with RME.
- RME support in TF-A
- ---------------------
- The following diagram shows an Arm CCA software architecture with TF-A as the
- EL3 firmware. In the Arm CCA architecture there are two additional security
- states and address spaces: ``Root`` and ``Realm``. TF-A firmware runs in the
- Root world. In the realm world, a Realm Management Monitor firmware (`RMM`_)
- manages the execution of Realm VMs and their interaction with the hypervisor.
- .. image:: ../resources/diagrams/arm-cca-software-arch.png
- RME is the hardware extension to support Arm CCA. To support RME, various
- changes have been introduced to TF-A. We discuss those changes below.
- Changes to translation tables library
- ***************************************
- RME adds Root and Realm Physical address spaces. To support this, two new
- memory type macros, ``MT_ROOT`` and ``MT_REALM``, have been added to the
- :ref:`Translation (XLAT) Tables Library`. These macros are used to configure
- memory regions as Root or Realm respectively.
- .. note::
- Only version 2 of the translation tables library supports the new memory
- types.
- Changes to context management
- *******************************
- A new CPU context for the Realm world has been added. The existing
- :ref:`CPU context management API<PSCI Library Integration guide for Armv8-A
- AArch32 systems>` can be used to manage Realm context.
- Boot flow changes
- *******************
- In a typical TF-A boot flow, BL2 runs at Secure-EL1. However when RME is
- enabled, TF-A runs in the Root world at EL3. Therefore, the boot flow is
- modified to run BL2 at EL3 when RME is enabled. In addition to this, a
- Realm-world firmware (`RMM`_) is loaded by BL2 in the Realm physical address
- space.
- The boot flow when RME is enabled looks like the following:
- 1. BL1 loads and executes BL2 at EL3
- 2. BL2 loads images including RMM
- 3. BL2 transfers control to BL31
- 4. BL31 initializes SPM (if SPM is enabled)
- 5. BL31 initializes RMM
- 6. BL31 transfers control to Normal-world software
- Granule Protection Tables (GPT) library
- *****************************************
- Isolation between the four physical address spaces is enforced by a process
- called Granule Protection Check (GPC) performed by the MMU downstream any
- address translation. GPC makes use of Granule Protection Table (GPT) in the
- Root world that describes the physical address space assignment of every
- page (granule). A GPT library that provides APIs to initialize GPTs and to
- transition granules between different physical address spaces has been added.
- More information about the GPT library can be found in the
- :ref:`Granule Protection Tables Library` chapter.
- RMM Dispatcher (RMMD)
- ************************
- RMMD is a new standard runtime service that handles the switch to the Realm
- world. It initializes the `RMM`_ and handles Realm Management Interface (RMI)
- SMC calls from Non-secure.
- There is a contract between `RMM`_ and RMMD that defines the arguments that the
- former needs to take in order to initialize and also the possible return values.
- This contract is defined in the `RMM`_ Boot Interface, which can be found at
- :ref:`rmm_el3_boot_interface`.
- There is also a specification of the runtime services provided by TF-A
- to `RMM`_. This can be found at :ref:`runtime_services_and_interface`.
- Test Realm Payload (TRP)
- *************************
- TRP is a small test payload that runs at R-EL2 and implements a subset of
- the Realm Management Interface (RMI) commands to primarily test EL3 firmware
- and the interface between R-EL2 and EL3. When building TF-A with RME enabled,
- if the path to an RMM image is not provided, TF-A builds the TRP by default
- and uses it as the R-EL2 payload.
- Building and running TF-A with RME
- ----------------------------------
- This section describes how you can build and run TF-A with RME enabled.
- We assume you have read the :ref:`Prerequisites` to build TF-A.
- The following instructions show you how to build and run TF-A with RME
- on FVP for two scenarios:
- - Three-world execution: This is the configuration to use if Secure
- world functionality is not needed. TF-A is tested with the following
- software entities in each world as listed below:
- - NS Host (RME capable Linux or TF-A Tests),
- - Root (TF-A)
- - R-EL2 (`RMM`_ or TRP)
- - Four-world execution: This is the configuration to use if both Secure
- and Realm world functionality is needed. TF-A is tested with the following
- software entities in each world as listed below:
- - NS Host (RME capable Linux or TF-A Tests),
- - Root (TF-A)
- - R-EL2 (`RMM`_ or TRP)
- - S-EL2 (Hafnium SPM)
- To run the tests, you need an FVP model. Please use the :ref:`latest version
- <Arm Fixed Virtual Platforms (FVP)>` of *FVP_Base_RevC-2xAEMvA* model. If NS
- Host is Linux, then the below instructions assume that a suitable RME enabled
- kernel image and associated root filesystem are available.
- Three-world execution
- *********************
- **1. Clone and build RMM Image**
- Please refer to the `RMM Getting Started`_ on how to setup
- Host Environment and build `RMM`_. The build commands assume that
- an AArch64 toolchain and CMake executable are available in the
- shell PATH variable and CROSS_COMPILE variable has been setup
- appropriately.
- To clone `RMM`_ and build using the default build options for FVP:
- .. code:: shell
- git clone --recursive https://git.trustedfirmware.org/TF-RMM/tf-rmm.git
- cd tf-rmm
- cmake -DRMM_CONFIG=fvp_defcfg -S . -B build
- cmake --build build
- This will generate **rmm.img** in **build/Release** folder.
- **2. Clone and build TF-A Tests with Realm Payload**
- This step is only needed if NS Host is TF-A Tests. The full set
- of instructions to setup build host and build options for
- TF-A-Tests can be found in the `TFTF Getting Started`_. TF-A Tests
- can test Realm world with either `RMM`_ or TRP in R-EL2. In the TRP case,
- some tests which are not applicable will be skipped.
- Use the following instructions to build TF-A with `TF-A Tests`_ as the
- non-secure payload (BL33).
- .. code:: shell
- git clone https://git.trustedfirmware.org/TF-A/tf-a-tests.git
- cd tf-a-tests
- make CROSS_COMPILE=aarch64-none-elf- PLAT=fvp DEBUG=1 ENABLE_REALM_PAYLOAD_TESTS=1 all
- This produces a TF-A Tests binary (**tftf.bin**) with Realm payload packaged
- and **sp_layout.json** in the **build/fvp/debug** directory.
- **3. Build RME Enabled TF-A**
- The `TF-A Getting Started`_ has the necessary instructions to setup Host
- machine and build TF-A.
- To build for RME, set ``ENABLE_RME`` build option to 1 and provide the path to
- the `RMM`_ binary ``rmm.img`` using ``RMM`` build option.
- .. note::
- ENABLE_RME build option is currently experimental.
- .. note::
- If the ``RMM`` option is not specified, TF-A builds the TRP to load and
- run at R-EL2.
- .. code:: shell
- git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
- cd trusted-firmware-a
- make CROSS_COMPILE=aarch64-none-elf- \
- PLAT=fvp \
- ENABLE_RME=1 \
- RMM=<path/to/rmm.img> \
- FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts \
- DEBUG=1 \
- BL33=<path/to/bl33> \
- all fip
- ``BL33`` can point to a Non Secure Bootloader like UEFI/U-Boot or
- the TF-A Tests binary(**tftf.bin**) from the previous step.
- This produces **bl1.bin** and **fip.bin** binaries in the **build/fvp/debug**
- directory.
- TF-A can also directly boot Linux kernel on the FVP. The kernel needs to be
- `preloaded` to a suitable memory location and this needs to be specified via
- ``PRELOADED_BL33_BASE`` build option. Also TF-A should implement the Linux
- kernel register conventions for boot and this can be set using the
- ``ARM_LINUX_KERNEL_AS_BL33`` option.
- .. code-block:: shell
- cd trusted-firmware-a
- make CROSS_COMPILE=aarch64-none-elf- \
- PLAT=fvp \
- ENABLE_RME=1 \
- RMM=<path/to/rmm.img> \
- FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts \
- DEBUG=1 \
- ARM_LINUX_KERNEL_AS_BL33=1 \
- PRELOADED_BL33_BASE=0x84000000 \
- all fip
- The above command assumes that the Linux kernel will be placed in FVP
- memory at 0x84000000 via suitable FVP option (see the next step).
- .. _fvp_3_world_cmd:
- **4. Running FVP for 3 world setup**
- Use the following command to run the tests on FVP.
- .. code:: shell
- FVP_Base_RevC-2xAEMvA \
- -C bp.refcounter.non_arch_start_at_default=1 \
- -C bp.secureflashloader.fname=<path/to/bl1.bin> \
- -C bp.flashloader0.fname=<path/to/fip.bin> \
- -C bp.refcounter.use_real_time=0 \
- -C bp.ve_sysregs.exit_on_shutdown=1 \
- -C cache_state_modelled=1 \
- -C bp.dram_size=4 \
- -C bp.secure_memory=0 \
- -C pci.pci_smmuv3.mmu.SMMU_ROOT_IDR0=3 \
- -C pci.pci_smmuv3.mmu.SMMU_ROOT_IIDR=0x43B \
- -C pci.pci_smmuv3.mmu.root_register_page_offset=0x20000 \
- -C cluster0.NUM_CORES=4 \
- -C cluster0.PA_SIZE=48 \
- -C cluster0.ecv_support_level=2 \
- -C cluster0.gicv3.cpuintf-mmap-access-level=2 \
- -C cluster0.gicv3.without-DS-support=1 \
- -C cluster0.gicv4.mask-virtual-interrupt=1 \
- -C cluster0.has_arm_v8-6=1 \
- -C cluster0.has_amu=1 \
- -C cluster0.has_branch_target_exception=1 \
- -C cluster0.rme_support_level=2 \
- -C cluster0.has_rndr=1 \
- -C cluster0.has_v8_7_pmu_extension=2 \
- -C cluster0.max_32bit_el=-1 \
- -C cluster0.stage12_tlb_size=1024 \
- -C cluster0.check_memory_attributes=0 \
- -C cluster0.ish_is_osh=1 \
- -C cluster0.restriction_on_speculative_execution=2 \
- -C cluster0.restriction_on_speculative_execution_aarch32=2 \
- -C cluster1.NUM_CORES=4 \
- -C cluster1.PA_SIZE=48 \
- -C cluster1.ecv_support_level=2 \
- -C cluster1.gicv3.cpuintf-mmap-access-level=2 \
- -C cluster1.gicv3.without-DS-support=1 \
- -C cluster1.gicv4.mask-virtual-interrupt=1 \
- -C cluster1.has_arm_v8-6=1 \
- -C cluster1.has_amu=1 \
- -C cluster1.has_branch_target_exception=1 \
- -C cluster1.rme_support_level=2 \
- -C cluster1.has_rndr=1 \
- -C cluster1.has_v8_7_pmu_extension=2 \
- -C cluster1.max_32bit_el=-1 \
- -C cluster1.stage12_tlb_size=1024 \
- -C cluster1.check_memory_attributes=0 \
- -C cluster1.ish_is_osh=1 \
- -C cluster1.restriction_on_speculative_execution=2 \
- -C cluster1.restriction_on_speculative_execution_aarch32=2 \
- -C pctl.startup=0.0.0.0 \
- -C bp.smsc_91c111.enabled=1 \
- -C bp.hostbridge.userNetworking=1 \
- -C bp.virtioblockdevice.image_path=<path/to/rootfs.ext4>
- The ``bp.virtioblockdevice.image_path`` option presents the rootfs as a
- virtio block device to Linux kernel. It can be ignored if NS Host is
- TF-A-Tests or rootfs is accessed by some other mechanism.
- If TF-A was built to expect a preloaded Linux kernel, then use the following
- FVP argument to load the kernel image at the expected address.
- .. code-block:: shell
- --data cluster0.cpu0=<path_to_kernel_Image>@0x84000000 \
- .. tip::
- Tips to boot and run Linux faster on the FVP :
- 1. Set the FVP option ``cache_state_modelled`` to 0.
- 2. Disable the CPU Idle driver in Linux either by setting the kernel command line
- parameter "cpuidle.off=1" or by disabling the ``CONFIG_CPU_IDLE`` kernel config.
- If the NS Host is TF-A-Tests, then the default test suite in TFTF
- will execute on the FVP and this includes Realm world tests. The
- tail of the output from *uart0* should look something like the following.
- .. code-block:: shell
- ...
- > Test suite 'FF-A Interrupt'
- Passed
- > Test suite 'SMMUv3 tests'
- Passed
- > Test suite 'PMU Leakage'
- Passed
- > Test suite 'DebugFS'
- Passed
- > Test suite 'RMI and SPM tests'
- Passed
- > Test suite 'Realm payload at EL1'
- Passed
- > Test suite 'Invalid memory access'
- Passed
- ...
- Four-world execution
- ********************
- Four-world execution involves software components in each security state: root,
- secure, realm and non-secure. This section describes how to build TF-A
- with four-world support.
- We use TF-A as the root firmware, `Hafnium SPM`_ is the reference Secure world
- component running at S-EL2. `RMM`_ can be built as described in previous
- section. The examples below assume TF-A-Tests as the NS Host and utilize SPs
- from TF-A-Tests.
- **1. Obtain and build Hafnium SPM**
- .. code:: shell
- git clone --recurse-submodules https://git.trustedfirmware.org/hafnium/hafnium.git
- cd hafnium
- # Use the default prebuilt LLVM/clang toolchain
- PATH=$PWD/prebuilts/linux-x64/clang/bin:$PWD/prebuilts/linux-x64/dtc:$PATH
- Feature MTE needs to be disabled in Hafnium build, apply following patch to
- project/reference submodule
- .. code:: diff
- diff --git a/BUILD.gn b/BUILD.gn
- index cc6a78f..234b20a 100644
- --- a/BUILD.gn
- +++ b/BUILD.gn
- @@ -83,7 +83,6 @@ aarch64_toolchains("secure_aem_v8a_fvp") {
- pl011_base_address = "0x1c090000"
- smmu_base_address = "0x2b400000"
- smmu_memory_size = "0x100000"
- - enable_mte = "1"
- plat_log_level = "LOG_LEVEL_INFO"
- }
- }
- .. code:: shell
- make PROJECT=reference
- The Hafnium binary should be located at
- *out/reference/secure_aem_v8a_fvp_clang/hafnium.bin*
- **2. Build RME enabled TF-A with SPM**
- Build TF-A with RME as well as SPM enabled.
- Use the ``sp_layout.json`` previously generated in TF-A Tests
- build to run SP tests.
- .. code:: shell
- make CROSS_COMPILE=aarch64-none-elf- \
- PLAT=fvp \
- ENABLE_RME=1 \
- FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts \
- SPD=spmd \
- BRANCH_PROTECTION=1 \
- CTX_INCLUDE_PAUTH_REGS=1 \
- DEBUG=1 \
- SP_LAYOUT_FILE=<path/to/sp_layout.json> \
- BL32=<path/to/hafnium.bin> \
- BL33=<path/to/tftf.bin> \
- RMM=<path/to/rmm.img> \
- all fip
- **3. Running the FVP for a 4 world setup**
- Use the following arguments in addition to the FVP options mentioned in
- :ref:`4. Running FVP for 3 world setup <fvp_3_world_cmd>` to run tests for
- 4 world setup.
- .. code:: shell
- -C pci.pci_smmuv3.mmu.SMMU_AIDR=2 \
- -C pci.pci_smmuv3.mmu.SMMU_IDR0=0x0046123B \
- -C pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002 \
- -C pci.pci_smmuv3.mmu.SMMU_IDR3=0x1714 \
- -C pci.pci_smmuv3.mmu.SMMU_IDR5=0xFFFF0475 \
- -C pci.pci_smmuv3.mmu.SMMU_S_IDR1=0xA0000002 \
- -C pci.pci_smmuv3.mmu.SMMU_S_IDR2=0 \
- -C pci.pci_smmuv3.mmu.SMMU_S_IDR3=0
- .. _Arm Confidential Compute Architecture (Arm CCA): https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
- .. _Arm Architecture Models website: https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
- .. _TF-A Getting Started: https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/index.html
- .. _TF-A Tests: https://trustedfirmware-a-tests.readthedocs.io/en/latest
- .. _TFTF Getting Started: https://trustedfirmware-a-tests.readthedocs.io/en/latest/getting_started/index.html
- .. _Hafnium SPM: https://www.trustedfirmware.org/projects/hafnium
- .. _RMM Getting Started: https://tf-rmm.readthedocs.io/en/latest/getting_started/index.html
- .. _RMM: https://www.trustedfirmware.org/projects/tf-rmm/
|