123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # turn_off_core.S
- #
- # Copyright (c) 2018, Andre Przywara <osp@andrep.de>
- # SPDX-License-Identifier: BSD-3-Clause
- #
- # OpenRISC assembly to turn off an ARM core on an Allwinner SoC from
- # the arisc management controller.
- # Generate a binary representation with:
- # $ or1k-elf-as -c -o turn_off_core.o turn_off_core.S
- # $ or1k-elf-objcopy -O binary --reverse-bytes=4 turn_off_core.o \
- # turn_off_core.bin
- # The encoded instructions go into an array defined in
- # plat/allwinner/sun50i_*/include/core_off_arisc.h, to be handed off to
- # the arisc processor.
- #
- # This routine is meant to be called directly from arisc reset (put the
- # start address in the reset vector), to be actually triggered by that
- # very ARM core to be turned off.
- # It expects the core number presented as a mask in the upper half of
- # r3, so to be patched in the lower 16 bits of the first instruction,
- # overwriting the 0 in this code here.
- # The code will do the following:
- # - Read the C_CPU_STATUS register, which contains the status of the WFI
- # lines of each of the four A53 cores.
- # - Loop until the core in question reaches WFI.
- # - Using that mask, activate the core output clamps by setting the
- # respective core bit in CPUX_PWROFF_GATING_REG (0x1f01500).
- # Note that the clamp for core 0 covers more than just the core, activating
- # it hangs the whole system. So we skip this step for core 0.
- # - Using the negated mask, assert the core's reset line by clearing the
- # respective bit in C_RST_CTRL (0x1f01c30).
- # - Finally turn off the core's power switch by writing 0xff to the
- # respective CPUx_PWR_SWITCH_REG (0x1f01540 ff.)
- # - Assert the arisc's own reset to end execution.
- # This also signals other arisc users that the chip is free again.
- # So in C this would look like:
- # while (!(readl(0x1700030) & (1U << core_nr)))
- # ;
- # if (core_nr != 0)
- # writel(readl(0x1f01500) | (1U << core_nr), 0x1f01500);
- # writel(readl(0x1f01c30) & ~(1U << core_nr), 0x1f01c30);
- # writel(0xff, 0x1f01540 + (core_nr * 4));
- # (using A64/H5 addresses)
- .text
- _start:
- l.movhi r3, 0 # FIXUP! with core mask
- l.movhi r0, 0 # clear r0
- l.movhi r13, 0x170 # r13: CPU_CFG_BASE=0x01700000
- wait_wfi:
- l.lwz r5, 0x30(r13) # load C_CPU_STATUS
- l.and r5, r5, r3 # mask requested core
- l.sfeq r5, r0 # is it not yet in WFI?
- l.bf wait_wfi # try again
- l.srli r6, r3, 16 # move mask to lower 16 bits
- l.sfeqi r6, 1 # core 0 is special
- l.bf 1f # don't touch the bit for core 0
- l.movhi r13, 0x1f0 # address of R_CPUCFG (delay)
- l.lwz r5, 0x1500(r13) # core output clamps
- l.or r5, r5, r6 # set bit to ...
- l.sw 0x1500(r13), r5 # ... activate for our core
- 1: l.lwz r5, 0x1c30(r13) # CPU power-on reset
- l.xori r6, r6, -1 # negate core mask
- l.and r5, r5, r6 # clear bit to ...
- l.sw 0x1c30(r13), r5 # ... assert for our core
- l.ff1 r6, r3 # get core number from high mask
- l.addi r6, r6, -17 # convert to 0-3
- l.slli r6, r6, 2 # r5: core number*4 (0-12)
- l.add r6, r6, r13 # add to base address
- l.ori r5, r0, 0xff # 0xff means all switches off
- l.sw 0x1540(r6), r5 # core power switch registers
- reset: l.sw 0x1c00(r13),r0 # pull down our own reset line
- l.j reset # just in case ....
- l.nop 0x0 # (delay slot)
- # same as above, but with the MMIO addresses matching the H6 SoC
- _start_h6:
- l.movhi r3, 0 # FIXUP! with core mask
- l.movhi r0, 0 # clear r0
- l.movhi r13, 0x901 # r13: CPU_CFG_BASE=0x09010000
- 1:
- l.lwz r5, 0x80(r13) # load C_CPU_STATUS
- l.and r5, r5, r3 # mask requested core
- l.sfeq r5, r0 # is it not yet in WFI?
- l.bf 1b # try again
- l.srli r6, r3, 16 # move mask to lower 16 bits(ds)
- l.sfeqi r6, 1 # core 0 is special
- l.bf 1f # don't touch the bit for core 0
- l.movhi r13, 0x700 # address of R_CPUCFG (ds)
- l.lwz r5, 0x0444(r13) # core output clamps
- l.or r5, r5, r6 # set bit to ...
- l.sw 0x0444(r13), r5 # ... activate for our core
- 1: l.lwz r5, 0x0440(r13) # CPU power-on reset
- l.xori r6, r6, -1 # negate core mask
- l.and r5, r5, r6 # clear bit to ...
- l.sw 0x0440(r13), r5 # ... assert for our core
- l.ff1 r6, r3 # get core number from high mask
- l.addi r6, r6, -17 # convert to 0-3
- l.slli r6, r6, 2 # r5: core number*4 (0-12)
- l.add r6, r6, r13 # add to base address
- l.ori r5, r0, 0xff # 0xff means all switches off
- l.sw 0x0450(r6), r5 # core power switch registers
- 1: l.sw 0x0400(r13),r0 # pull down our own reset line
- l.j 1b # just in case ...
- l.nop 0x0 # (delay slot)
|