#!/bin/sh # We don't regenerate it on every "make" invocation - only by hand. # The reason is that the changes to generated code are difficult # to visualize by looking only at this script, it helps when the commit # also contains the diff of the generated file. exec >hash_sha1_x86-64.S # Based on http://arctic.org/~dean/crypto/sha1.html. # ("This SHA1 implementation is public domain.") # # x86-64 has at least SSE2 vector insns always available. # We can use them without any CPUID checks (and without a need # for a fallback code if needed insns are not available). # This code uses them to calculate W[] ahead of time. # # Unfortunately, results are passed from vector unit to # integer ALUs on the stack. MOVD/Q insns to move them directly # from vector to integer registers are slower than store-to-load # forwarding in LSU (on Skylake at least). # # The win against a purely integer code is small on Skylake, # only about 7-8%. We offload about 1/3 of our operations to the vector unit. # It can do 4 ops at once in one 128-bit register, # but we have to use x2 of them because of W[0] complication, # SSE2 has no "rotate each word by N bits" insns, # moving data to/from vector unit is clunky, and Skylake # has four integer ALUs unified with three vector ALUs, # which makes pure integer code rather fast, and makes # vector ops compete with integer ones. # # Zen3, with its separate vector ALUs, wins more, about 12%. xmmT1="%xmm4" xmmT2="%xmm5" xmmRCONST="%xmm6" xmmALLRCONST="%xmm7" T=`printf '\t'` # SSE instructions are longer than 4 bytes on average. # Intel CPUs (up to Tiger Lake at least) can't decode # more than 16 bytes of code in one cycle. # By interleaving SSE code and integer code # we mostly achieve a situation where 16-byte decode fetch window # contains 4 (or more) insns. # # However. On Skylake, there was no observed difference, # but on Zen3, non-interleaved code is ~3% faster # (822 Mb/s versus 795 Mb/s hashing speed). # Off for now: interleave=false INTERLEAVE() { $interleave || \ { # Generate non-interleaved code # (it should work correctly too) echo "$1" echo "$2" return } ( echo "$1" | grep -v '^$' >"$0.temp1" echo "$2" | grep -v '^$' >"$0.temp2" exec 3<"$0.temp1" exec 4<"$0.temp2" IFS='' while :; do line1='' line2='' while :; do read -r line1 <&3 if test "${line1:0:1}" != "#" && test "${line1:0:2}" != "$T#"; then break fi echo "$line1" done while :; do read -r line2 <&4 if test "${line2:0:4}" = "${T}lea"; then # We use 7-8 byte long forms of LEA. # Do not interleave them with SSE insns # which are also long. echo "$line2" read -r line2 <&4 echo "$line2" continue fi if test "${line2:0:1}" != "#" && test "${line2:0:2}" != "$T#"; then break fi echo "$line2" done test "$line1$line2" || break echo "$line1" echo "$line2" done rm "$0.temp1" "$0.temp2" ) } # movaps bswap32_mask(%rip), $xmmT1 # Load W[] to xmm0..3, byteswapping on the fly. # For iterations 0..15, we pass RCONST+W[] in rsi,r8..r14 # for use in RD1As instead of spilling them to stack. # (We use rsi instead of rN because this makes two # ADDs in two first RD1As shorter by one byte). # movups 16*0(%rdi), %xmm0 # pshufb $xmmT1, %xmm0 #SSSE3 insn # movaps %xmm0, $xmmT2 # paddd $xmmRCONST, $xmmT2 # movq $xmmT2, %rsi # #pextrq \$1, $xmmT2, %r8 #SSE4.1 insn # #movhpd $xmmT2, %r8 #can only move to mem, not to reg # shufps \$0x0e, $xmmT2, $xmmT2 # have to use two-insn sequence # movq $xmmT2, %r8 # instead # ... # # ... #- leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n] #+ addl %esi, %e$e # e += RCONST + W[n] # ^^^^^^^^^^^^^^^^^^^^^^^^ # The above is -97 bytes of code... # ...but pshufb is a SSSE3 insn. Can't use it. echo \ "### Generated by hash_sha1_x86-64.S.sh ### #if CONFIG_SHA1_SMALL == 0 && defined(__GNUC__) && defined(__x86_64__) #ifdef __linux__ .section .note.GNU-stack, \"\", @progbits #endif .section .text.sha1_process_block64, \"ax\", @progbits .globl sha1_process_block64 .hidden sha1_process_block64 .type sha1_process_block64, @function .balign 8 # allow decoders to fetch at least 5 first insns sha1_process_block64: pushq %rbp # 1 byte insn pushq %rbx # 1 byte insn # pushq %r15 # 2 byte insn pushq %r14 # 2 byte insn pushq %r13 # 2 byte insn pushq %r12 # 2 byte insn pushq %rdi # we need ctx at the end #Register and stack use: # eax..edx: a..d # ebp: e # esi,edi,r8..r14: temps # r15: unused # xmm0..xmm3: W[] # xmm4,xmm5: temps # xmm6: current round constant # xmm7: all round constants # -64(%rsp): area for passing RCONST + W[] from vector to integer units movl 80(%rdi), %eax # a = ctx->hash[0] movl 84(%rdi), %ebx # b = ctx->hash[1] movl 88(%rdi), %ecx # c = ctx->hash[2] movl 92(%rdi), %edx # d = ctx->hash[3] movl 96(%rdi), %ebp # e = ctx->hash[4] movaps sha1const(%rip), $xmmALLRCONST pshufd \$0x00, $xmmALLRCONST, $xmmRCONST # Load W[] to xmm0..3, byteswapping on the fly. # # For iterations 0..15, we pass W[] in rsi,r8..r14 # for use in RD1As instead of spilling them to stack. # We lose parallelized addition of RCONST, but LEA # can do two additions at once, so it is probably a wash. # (We use rsi instead of rN because this makes two # LEAs in two first RD1As shorter by one byte). movq 4*0(%rdi), %rsi movq 4*2(%rdi), %r8 bswapq %rsi bswapq %r8 rolq \$32, %rsi # rsi = W[1]:W[0] rolq \$32, %r8 # r8 = W[3]:W[2] movq %rsi, %xmm0 movq %r8, $xmmT1 punpcklqdq $xmmT1, %xmm0 # xmm0 = r8:rsi = (W[0],W[1],W[2],W[3]) # movaps %xmm0, $xmmT1 # add RCONST, spill to stack # paddd $xmmRCONST, $xmmT1 # movups $xmmT1, -64+16*0(%rsp) movq 4*4(%rdi), %r9 movq 4*6(%rdi), %r10 bswapq %r9 bswapq %r10 rolq \$32, %r9 # r9 = W[5]:W[4] rolq \$32, %r10 # r10 = W[7]:W[6] movq %r9, %xmm1 movq %r10, $xmmT1 punpcklqdq $xmmT1, %xmm1 # xmm1 = r10:r9 = (W[4],W[5],W[6],W[7]) movq 4*8(%rdi), %r11 movq 4*10(%rdi), %r12 bswapq %r11 bswapq %r12 rolq \$32, %r11 # r11 = W[9]:W[8] rolq \$32, %r12 # r12 = W[11]:W[10] movq %r11, %xmm2 movq %r12, $xmmT1 punpcklqdq $xmmT1, %xmm2 # xmm2 = r12:r11 = (W[8],W[9],W[10],W[11]) movq 4*12(%rdi), %r13 movq 4*14(%rdi), %r14 bswapq %r13 bswapq %r14 rolq \$32, %r13 # r13 = W[13]:W[12] rolq \$32, %r14 # r14 = W[15]:W[14] movq %r13, %xmm3 movq %r14, $xmmT1 punpcklqdq $xmmT1, %xmm3 # xmm3 = r14:r13 = (W[12],W[13],W[14],W[15]) " PREP() { local xmmW0=$1 local xmmW4=$2 local xmmW8=$3 local xmmW12=$4 # the above must be %xmm0..3 in some permutation local dstmem=$5 #W[0] = rol(W[13] ^ W[8] ^ W[2] ^ W[0], 1); #W[1] = rol(W[14] ^ W[9] ^ W[3] ^ W[1], 1); #W[2] = rol(W[15] ^ W[10] ^ W[4] ^ W[2], 1); #W[3] = rol( 0 ^ W[11] ^ W[5] ^ W[3], 1); #W[3] ^= rol(W[0], 1); echo "# PREP $@ movaps $xmmW12, $xmmT1 psrldq \$4, $xmmT1 # rshift by 4 bytes: T1 = ([13],[14],[15],0) # pshufd \$0x4e, $xmmW0, $xmmT2 # 01001110=2,3,0,1 shuffle, ([2],[3],x,x) # punpcklqdq $xmmW4, $xmmT2 # T2 = W4[0..63]:T2[0..63] = ([2],[3],[4],[5]) # same result as above, but shorter and faster: # pshufd/shufps are subtly different: pshufd takes all dwords from source operand, # shufps takes dwords 0,1 from *2nd* operand, and dwords 2,3 from 1st one! movaps $xmmW0, $xmmT2 shufps \$0x4e, $xmmW4, $xmmT2 # 01001110=(T2.dw[2], T2.dw[3], W4.dw[0], W4.dw[1]) = ([2],[3],[4],[5]) xorps $xmmW8, $xmmW0 # ([8],[9],[10],[11]) ^ ([0],[1],[2],[3]) xorps $xmmT1, $xmmT2 # ([13],[14],[15],0) ^ ([2],[3],[4],[5]) xorps $xmmT2, $xmmW0 # ^ # W0 = unrotated (W[0]..W[3]), still needs W[3] fixup movaps $xmmW0, $xmmT2 xorps $xmmT1, $xmmT1 # rol(W0,1): pcmpgtd $xmmW0, $xmmT1 # ffffffff for elements <0 (ones with msb bit 1) paddd $xmmW0, $xmmW0 # shift left by 1 psubd $xmmT1, $xmmW0 # add 1 to those who had msb bit 1 # W0 = rotated (W[0]..W[3]), still needs W[3] fixup pslldq \$12, $xmmT2 # lshift by 12 bytes: T2 = (0,0,0,unrotW[0]) movaps $xmmT2, $xmmT1 pslld \$2, $xmmT2 psrld \$30, $xmmT1 # xorps $xmmT1, $xmmT2 # rol((0,0,0,unrotW[0]),2) xorps $xmmT1, $xmmW0 # same result, but does not depend on/does not modify T2 xorps $xmmT2, $xmmW0 # W0 = rol(W[0]..W[3],1) ^ (0,0,0,rol(unrotW[0],2)) " # movq $xmmW0, %r8 # high latency (~6 cycles) # movaps $xmmW0, $xmmT1 # psrldq \$8, $xmmT1 # rshift by 8 bytes: move upper 64 bits to lower # movq $xmmT1, %r10 # high latency # movq %r8, %r9 # movq %r10, %r11 # shrq \$32, %r9 # shrq \$32, %r11 # ^^^ slower than passing the results on stack (!!!) echo " movaps $xmmW0, $xmmT2 paddd $xmmRCONST, $xmmT2 movups $xmmT2, $dstmem " } # It's possible to interleave integer insns in rounds to mostly eliminate # dependency chains, but this likely to only help old Pentium-based # CPUs (ones without OOO, which can only simultaneously execute a pair # of _adjacent_ insns). # Testing on old-ish Silvermont CPU (which has OOO window of only # about ~8 insns) shows very small (~1%) speedup. RD1A() { local a=$1;local b=$2;local c=$3;local d=$4;local e=$5 local n=$(($6)) local n0=$(((n+0) & 15)) local rN=$((7+n0/2)) echo " # $n ";test $n0 = 0 && echo " leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n] shrq \$32, %rsi ";test $n0 = 1 && echo " leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n] ";test $n0 -ge 2 && test $((n0 & 1)) = 0 && echo " leal $RCONST(%r$e,%r$rN), %e$e # e += RCONST + W[n] shrq \$32, %r$rN ";test $n0 -ge 2 && test $((n0 & 1)) = 1 && echo " leal $RCONST(%r$e,%r$rN), %e$e # e += RCONST + W[n] ";echo " movl %e$c, %edi # c xorl %e$d, %edi # ^d andl %e$b, %edi # &b xorl %e$d, %edi # (((c ^ d) & b) ^ d) addl %edi, %e$e # e += (((c ^ d) & b) ^ d) movl %e$a, %edi # roll \$5, %edi # rotl32(a,5) addl %edi, %e$e # e += rotl32(a,5) rorl \$2, %e$b # b = rotl32(b,30) " } RD1B() { local a=$1;local b=$2;local c=$3;local d=$4;local e=$5 local n=$(($6)) local n13=$(((n+13) & 15)) local n8=$(((n+8) & 15)) local n2=$(((n+2) & 15)) local n0=$(((n+0) & 15)) echo " # $n movl %e$c, %edi # c xorl %e$d, %edi # ^d andl %e$b, %edi # &b xorl %e$d, %edi # (((c ^ d) & b) ^ d) addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15] addl %edi, %e$e # e += (((c ^ d) & b) ^ d) movl %e$a, %esi # roll \$5, %esi # rotl32(a,5) addl %esi, %e$e # e += rotl32(a,5) rorl \$2, %e$b # b = rotl32(b,30) " } RD2() { local a=$1;local b=$2;local c=$3;local d=$4;local e=$5 local n=$(($6)) local n13=$(((n+13) & 15)) local n8=$(((n+8) & 15)) local n2=$(((n+2) & 15)) local n0=$(((n+0) & 15)) echo " # $n movl %e$c, %edi # c xorl %e$d, %edi # ^d xorl %e$b, %edi # ^b addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15] addl %edi, %e$e # e += (c ^ d ^ b) movl %e$a, %esi # roll \$5, %esi # rotl32(a,5) addl %esi, %e$e # e += rotl32(a,5) rorl \$2, %e$b # b = rotl32(b,30) " } RD3() { local a=$1;local b=$2;local c=$3;local d=$4;local e=$5 local n=$(($6)) local n13=$(((n+13) & 15)) local n8=$(((n+8) & 15)) local n2=$(((n+2) & 15)) local n0=$(((n+0) & 15)) echo " # $n movl %e$b, %edi # di: b movl %e$b, %esi # si: b orl %e$c, %edi # di: b | c andl %e$c, %esi # si: b & c andl %e$d, %edi # di: (b | c) & d orl %esi, %edi # ((b | c) & d) | (b & c) addl %edi, %e$e # += ((b | c) & d) | (b & c) addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15] movl %e$a, %esi # roll \$5, %esi # rotl32(a,5) addl %esi, %e$e # e += rotl32(a,5) rorl \$2, %e$b # b = rotl32(b,30) " } { # Round 1 RCONST=0x5A827999 RD1A ax bx cx dx bp 0; RD1A bp ax bx cx dx 1; RD1A dx bp ax bx cx 2; RD1A cx dx bp ax bx 3; RD1A bx cx dx bp ax 4; RD1A ax bx cx dx bp 5; RD1A bp ax bx cx dx 6; RD1A dx bp ax bx cx 7; a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"` b=`RD1A cx dx bp ax bx 8; RD1A bx cx dx bp ax 9; RD1A ax bx cx dx bp 10; RD1A bp ax bx cx dx 11;` INTERLEAVE "$a" "$b" a=`echo " pshufd \\$0x55, $xmmALLRCONST, $xmmRCONST" PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"` b=`RD1A dx bp ax bx cx 12; RD1A cx dx bp ax bx 13; RD1A bx cx dx bp ax 14; RD1A ax bx cx dx bp 15;` INTERLEAVE "$a" "$b" a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"` b=`RD1B bp ax bx cx dx 16; RD1B dx bp ax bx cx 17; RD1B cx dx bp ax bx 18; RD1B bx cx dx bp ax 19;` INTERLEAVE "$a" "$b" # Round 2 RCONST=0x6ED9EBA1 a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"` b=`RD2 ax bx cx dx bp 20; RD2 bp ax bx cx dx 21; RD2 dx bp ax bx cx 22; RD2 cx dx bp ax bx 23;` INTERLEAVE "$a" "$b" a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"` b=`RD2 bx cx dx bp ax 24; RD2 ax bx cx dx bp 25; RD2 bp ax bx cx dx 26; RD2 dx bp ax bx cx 27;` INTERLEAVE "$a" "$b" a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"` b=`RD2 cx dx bp ax bx 28; RD2 bx cx dx bp ax 29; RD2 ax bx cx dx bp 30; RD2 bp ax bx cx dx 31;` INTERLEAVE "$a" "$b" a=`echo " pshufd \\$0xaa, $xmmALLRCONST, $xmmRCONST" PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"` b=`RD2 dx bp ax bx cx 32; RD2 cx dx bp ax bx 33; RD2 bx cx dx bp ax 34; RD2 ax bx cx dx bp 35;` INTERLEAVE "$a" "$b" a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"` b=`RD2 bp ax bx cx dx 36; RD2 dx bp ax bx cx 37; RD2 cx dx bp ax bx 38; RD2 bx cx dx bp ax 39;` INTERLEAVE "$a" "$b" # Round 3 RCONST=0x8F1BBCDC a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"` b=`RD3 ax bx cx dx bp 40; RD3 bp ax bx cx dx 41; RD3 dx bp ax bx cx 42; RD3 cx dx bp ax bx 43;` INTERLEAVE "$a" "$b" a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"` b=`RD3 bx cx dx bp ax 44; RD3 ax bx cx dx bp 45; RD3 bp ax bx cx dx 46; RD3 dx bp ax bx cx 47;` INTERLEAVE "$a" "$b" a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"` b=`RD3 cx dx bp ax bx 48; RD3 bx cx dx bp ax 49; RD3 ax bx cx dx bp 50; RD3 bp ax bx cx dx 51;` INTERLEAVE "$a" "$b" a=`echo " pshufd \\$0xff, $xmmALLRCONST, $xmmRCONST" PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"` b=`RD3 dx bp ax bx cx 52; RD3 cx dx bp ax bx 53; RD3 bx cx dx bp ax 54; RD3 ax bx cx dx bp 55;` INTERLEAVE "$a" "$b" a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"` b=`RD3 bp ax bx cx dx 56; RD3 dx bp ax bx cx 57; RD3 cx dx bp ax bx 58; RD3 bx cx dx bp ax 59;` INTERLEAVE "$a" "$b" # Round 4 has the same logic as round 2, only n and RCONST are different RCONST=0xCA62C1D6 a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"` b=`RD2 ax bx cx dx bp 60; RD2 bp ax bx cx dx 61; RD2 dx bp ax bx cx 62; RD2 cx dx bp ax bx 63;` INTERLEAVE "$a" "$b" a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"` b=`RD2 bx cx dx bp ax 64; RD2 ax bx cx dx bp 65; RD2 bp ax bx cx dx 66; RD2 dx bp ax bx cx 67;` INTERLEAVE "$a" "$b" a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"` b=`RD2 cx dx bp ax bx 68; RD2 bx cx dx bp ax 69; RD2 ax bx cx dx bp 70; RD2 bp ax bx cx dx 71;` INTERLEAVE "$a" "$b" RD2 dx bp ax bx cx 72; RD2 cx dx bp ax bx 73; RD2 bx cx dx bp ax 74; RD2 ax bx cx dx bp 75; RD2 bp ax bx cx dx 76; RD2 dx bp ax bx cx 77; RD2 cx dx bp ax bx 78; RD2 bx cx dx bp ax 79; } | grep -v '^$' echo " popq %rdi # popq %r12 # addl %eax, 80(%rdi) # ctx->hash[0] += a popq %r13 # addl %ebx, 84(%rdi) # ctx->hash[1] += b popq %r14 # addl %ecx, 88(%rdi) # ctx->hash[2] += c # popq %r15 # addl %edx, 92(%rdi) # ctx->hash[3] += d popq %rbx # addl %ebp, 96(%rdi) # ctx->hash[4] += e popq %rbp # ret .size sha1_process_block64, .-sha1_process_block64 .section .rodata.cst16.sha1const, \"aM\", @progbits, 16 .balign 16 sha1const: .long 0x5A827999 .long 0x6ED9EBA1 .long 0x8F1BBCDC .long 0xCA62C1D6 #endif"