123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- /* vi: set sw=4 ts=4: */
- /*
- * Based on shasum from http://www.netsw.org/crypto/hash/
- * Majorly hacked up to use Dr Brian Gladman's sha1 code
- *
- * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- * Copyright (C) 2003 Glenn L. McGrath
- * Copyright (C) 2003 Erik Andersen
- *
- * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
- *
- * ---------------------------------------------------------------------------
- * Issue Date: 10/11/2002
- *
- * This is a byte oriented version of SHA1 that operates on arrays of bytes
- * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
- */
- #include "libbb.h"
- #define SHA1_BLOCK_SIZE 64
- #define SHA1_DIGEST_SIZE 20
- #define SHA1_HASH_SIZE SHA1_DIGEST_SIZE
- #define SHA2_GOOD 0
- #define SHA2_BAD 1
- #define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
- #define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
- /* reverse byte order in 32-bit words */
- #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
- #define parity(x,y,z) ((x) ^ (y) ^ (z))
- #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
- /* A normal version as set out in the FIPS. This version uses */
- /* partial loop unrolling and is optimised for the Pentium 4 */
- #define rnd(f,k) \
- do { \
- t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
- e = d; d = c; c = rotl32(b, 30); b = t; \
- } while (0)
- static void sha1_compile(sha1_ctx_t *ctx)
- {
- uint32_t w[80], i, a, b, c, d, e, t;
- /* note that words are compiled from the buffer into 32-bit */
- /* words in big-endian order so an order reversal is needed */
- /* here on little endian machines */
- for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
- w[i] = htonl(ctx->wbuf[i]);
- for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
- w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);
- a = ctx->hash[0];
- b = ctx->hash[1];
- c = ctx->hash[2];
- d = ctx->hash[3];
- e = ctx->hash[4];
- for (i = 0; i < 20; ++i) {
- rnd(ch, 0x5a827999);
- }
- for (i = 20; i < 40; ++i) {
- rnd(parity, 0x6ed9eba1);
- }
- for (i = 40; i < 60; ++i) {
- rnd(maj, 0x8f1bbcdc);
- }
- for (i = 60; i < 80; ++i) {
- rnd(parity, 0xca62c1d6);
- }
- ctx->hash[0] += a;
- ctx->hash[1] += b;
- ctx->hash[2] += c;
- ctx->hash[3] += d;
- ctx->hash[4] += e;
- }
- void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
- {
- ctx->count[0] = ctx->count[1] = 0;
- ctx->hash[0] = 0x67452301;
- ctx->hash[1] = 0xefcdab89;
- ctx->hash[2] = 0x98badcfe;
- ctx->hash[3] = 0x10325476;
- ctx->hash[4] = 0xc3d2e1f0;
- }
- /* SHA1 hash data in an array of bytes into hash buffer and call the */
- /* hash_compile function as required. */
- void FAST_FUNC sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx)
- {
- uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
- uint32_t freeb = SHA1_BLOCK_SIZE - pos;
- const unsigned char *sp = data;
- if ((ctx->count[0] += length) < length)
- ++(ctx->count[1]);
- while (length >= freeb) { /* tranfer whole blocks while possible */
- memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
- sp += freeb;
- length -= freeb;
- freeb = SHA1_BLOCK_SIZE;
- pos = 0;
- sha1_compile(ctx);
- }
- memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length);
- }
- void* FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx)
- {
- /* SHA1 Final padding and digest calculation */
- #if BB_BIG_ENDIAN
- static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
- static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
- #else
- static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
- static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
- #endif
- uint8_t *hval = resbuf;
- uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);
- /* mask out the rest of any partial 32-bit word and then set */
- /* the next byte to 0x80. On big-endian machines any bytes in */
- /* the buffer will be at the top end of 32 bit words, on little */
- /* endian machines they will be at the bottom. Hence the AND */
- /* and OR masks above are reversed for little endian systems */
- ctx->wbuf[cnt >> 2] =
- (ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
- /* we need 9 or more empty positions, one for the padding byte */
- /* (above) and eight for the length count. If there is not */
- /* enough space pad and empty the buffer */
- if (cnt > SHA1_BLOCK_SIZE - 9) {
- if (cnt < 60)
- ctx->wbuf[15] = 0;
- sha1_compile(ctx);
- cnt = 0;
- } else /* compute a word index for the empty buffer positions */
- cnt = (cnt >> 2) + 1;
- while (cnt < 14) /* and zero pad all but last two positions */
- ctx->wbuf[cnt++] = 0;
- /* assemble the eight byte counter in the buffer in big-endian */
- /* format */
- ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29));
- ctx->wbuf[15] = htonl(ctx->count[0] << 3);
- sha1_compile(ctx);
- /* extract the hash value as bytes in case the hash buffer is */
- /* misaligned for 32-bit words */
- for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
- hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
- return resbuf;
- }
|