123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898 |
- /* vi: set sw=4 ts=4: */
- /*
- * Utility routines.
- *
- * Copyright (C) 2010 Denys Vlasenko
- *
- * Licensed under GPLv2 or later, see file LICENSE in this source tree.
- */
- #include "libbb.h"
- /* gcc 4.2.1 optimizes rotr64 better with inline than with macro
- * (for rotX32, there is no difference). Why? My guess is that
- * macro requires clever common subexpression elimination heuristics
- * in gcc, while inline basically forces it to happen.
- */
- //#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
- static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n)
- {
- return (x << n) | (x >> (32 - n));
- }
- //#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
- static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n)
- {
- return (x >> n) | (x << (32 - n));
- }
- /* rotr64 in needed for sha512 only: */
- //#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
- static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n)
- {
- return (x >> n) | (x << (64 - n));
- }
- /* Feed data through a temporary buffer.
- * The internal buffer remembers previous data until it has 64
- * bytes worth to pass on.
- */
- static void FAST_FUNC common64_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
- {
- unsigned bufpos = ctx->total64 & 63;
- ctx->total64 += len;
- while (1) {
- unsigned remaining = 64 - bufpos;
- if (remaining > len)
- remaining = len;
- /* Copy data into aligned buffer */
- memcpy(ctx->wbuffer + bufpos, buffer, remaining);
- len -= remaining;
- buffer = (const char *)buffer + remaining;
- bufpos += remaining;
- /* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */
- bufpos -= 64;
- if (bufpos != 0)
- break;
- /* Buffer is filled up, process it */
- ctx->process_block(ctx);
- /*bufpos = 0; - already is */
- }
- }
- /* Process the remaining bytes in the buffer */
- static void FAST_FUNC common64_end(md5_ctx_t *ctx, int swap_needed)
- {
- unsigned bufpos = ctx->total64 & 63;
- /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
- ctx->wbuffer[bufpos++] = 0x80;
- /* This loop iterates either once or twice, no more, no less */
- while (1) {
- unsigned remaining = 64 - bufpos;
- memset(ctx->wbuffer + bufpos, 0, remaining);
- /* Do we have enough space for the length count? */
- if (remaining >= 8) {
- /* Store the 64-bit counter of bits in the buffer */
- uint64_t t = ctx->total64 << 3;
- if (swap_needed)
- t = bb_bswap_64(t);
- /* wbuffer is suitably aligned for this */
- *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
- }
- ctx->process_block(ctx);
- if (remaining >= 8)
- break;
- bufpos = 0;
- }
- }
- /*
- * Compute MD5 checksum of strings according to the
- * definition of MD5 in RFC 1321 from April 1992.
- *
- * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
- *
- * Copyright (C) 1995-1999 Free Software Foundation, Inc.
- * Copyright (C) 2001 Manuel Novoa III
- * Copyright (C) 2003 Glenn L. McGrath
- * Copyright (C) 2003 Erik Andersen
- *
- * Licensed under GPLv2 or later, see file LICENSE in this source tree.
- */
- /* 0: fastest, 3: smallest */
- #if CONFIG_MD5_SIZE_VS_SPEED < 0
- # define MD5_SIZE_VS_SPEED 0
- #elif CONFIG_MD5_SIZE_VS_SPEED > 3
- # define MD5_SIZE_VS_SPEED 3
- #else
- # define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED
- #endif
- /* These are the four functions used in the four steps of the MD5 algorithm
- * and defined in the RFC 1321. The first function is a little bit optimized
- * (as found in Colin Plumbs public domain implementation).
- * #define FF(b, c, d) ((b & c) | (~b & d))
- */
- #undef FF
- #undef FG
- #undef FH
- #undef FI
- #define FF(b, c, d) (d ^ (b & (c ^ d)))
- #define FG(b, c, d) FF(d, b, c)
- #define FH(b, c, d) (b ^ c ^ d)
- #define FI(b, c, d) (c ^ (b | ~d))
- /* Hash a single block, 64 bytes long and 4-byte aligned */
- static void FAST_FUNC md5_process_block64(md5_ctx_t *ctx)
- {
- #if MD5_SIZE_VS_SPEED > 0
- /* Before we start, one word to the strange constants.
- They are defined in RFC 1321 as
- T[i] = (int)(4294967296.0 * fabs(sin(i))), i=1..64
- */
- static const uint32_t C_array[] = {
- /* round 1 */
- 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
- 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
- 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
- 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
- /* round 2 */
- 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
- 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
- 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
- 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
- /* round 3 */
- 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
- 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
- 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
- 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
- /* round 4 */
- 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
- 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
- 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
- 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
- };
- static const char P_array[] ALIGN1 = {
- # if MD5_SIZE_VS_SPEED > 1
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
- # endif
- 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
- 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
- 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
- };
- #endif
- uint32_t *words = (void*) ctx->wbuffer;
- uint32_t A = ctx->hash[0];
- uint32_t B = ctx->hash[1];
- uint32_t C = ctx->hash[2];
- uint32_t D = ctx->hash[3];
- #if MD5_SIZE_VS_SPEED >= 2 /* 2 or 3 */
- static const char S_array[] ALIGN1 = {
- 7, 12, 17, 22,
- 5, 9, 14, 20,
- 4, 11, 16, 23,
- 6, 10, 15, 21
- };
- const uint32_t *pc;
- const char *pp;
- const char *ps;
- int i;
- uint32_t temp;
- # if BB_BIG_ENDIAN
- for (i = 0; i < 16; i++)
- words[i] = SWAP_LE32(words[i]);
- # endif
- # if MD5_SIZE_VS_SPEED == 3
- pc = C_array;
- pp = P_array;
- ps = S_array - 4;
- for (i = 0; i < 64; i++) {
- if ((i & 0x0f) == 0)
- ps += 4;
- temp = A;
- switch (i >> 4) {
- case 0:
- temp += FF(B, C, D);
- break;
- case 1:
- temp += FG(B, C, D);
- break;
- case 2:
- temp += FH(B, C, D);
- break;
- case 3:
- temp += FI(B, C, D);
- }
- temp += words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- # else /* MD5_SIZE_VS_SPEED == 2 */
- pc = C_array;
- pp = P_array;
- ps = S_array;
- for (i = 0; i < 16; i++) {
- temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- ps += 4;
- for (i = 0; i < 16; i++) {
- temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- ps += 4;
- for (i = 0; i < 16; i++) {
- temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- ps += 4;
- for (i = 0; i < 16; i++) {
- temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- # endif
- /* Add checksum to the starting values */
- ctx->hash[0] += A;
- ctx->hash[1] += B;
- ctx->hash[2] += C;
- ctx->hash[3] += D;
- #else /* MD5_SIZE_VS_SPEED == 0 or 1 */
- uint32_t A_save = A;
- uint32_t B_save = B;
- uint32_t C_save = C;
- uint32_t D_save = D;
- # if MD5_SIZE_VS_SPEED == 1
- const uint32_t *pc;
- const char *pp;
- int i;
- # endif
- /* First round: using the given function, the context and a constant
- the next context is computed. Because the algorithm's processing
- unit is a 32-bit word and it is determined to work on words in
- little endian byte order we perhaps have to change the byte order
- before the computation. To reduce the work for the next steps
- we save swapped words in WORDS array. */
- # undef OP
- # define OP(a, b, c, d, s, T) \
- do { \
- a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
- words++; \
- a = rotl32(a, s); \
- a += b; \
- } while (0)
- /* Round 1 */
- # if MD5_SIZE_VS_SPEED == 1
- pc = C_array;
- for (i = 0; i < 4; i++) {
- OP(A, B, C, D, 7, *pc++);
- OP(D, A, B, C, 12, *pc++);
- OP(C, D, A, B, 17, *pc++);
- OP(B, C, D, A, 22, *pc++);
- }
- # else
- OP(A, B, C, D, 7, 0xd76aa478);
- OP(D, A, B, C, 12, 0xe8c7b756);
- OP(C, D, A, B, 17, 0x242070db);
- OP(B, C, D, A, 22, 0xc1bdceee);
- OP(A, B, C, D, 7, 0xf57c0faf);
- OP(D, A, B, C, 12, 0x4787c62a);
- OP(C, D, A, B, 17, 0xa8304613);
- OP(B, C, D, A, 22, 0xfd469501);
- OP(A, B, C, D, 7, 0x698098d8);
- OP(D, A, B, C, 12, 0x8b44f7af);
- OP(C, D, A, B, 17, 0xffff5bb1);
- OP(B, C, D, A, 22, 0x895cd7be);
- OP(A, B, C, D, 7, 0x6b901122);
- OP(D, A, B, C, 12, 0xfd987193);
- OP(C, D, A, B, 17, 0xa679438e);
- OP(B, C, D, A, 22, 0x49b40821);
- # endif
- words -= 16;
- /* For the second to fourth round we have the possibly swapped words
- in WORDS. Redefine the macro to take an additional first
- argument specifying the function to use. */
- # undef OP
- # define OP(f, a, b, c, d, k, s, T) \
- do { \
- a += f(b, c, d) + words[k] + T; \
- a = rotl32(a, s); \
- a += b; \
- } while (0)
- /* Round 2 */
- # if MD5_SIZE_VS_SPEED == 1
- pp = P_array;
- for (i = 0; i < 4; i++) {
- OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
- OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
- OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
- OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
- }
- # else
- OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
- OP(FG, D, A, B, C, 6, 9, 0xc040b340);
- OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
- OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
- OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
- OP(FG, D, A, B, C, 10, 9, 0x02441453);
- OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
- OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
- OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
- OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
- OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
- OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
- OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
- OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
- OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
- OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
- # endif
- /* Round 3 */
- # if MD5_SIZE_VS_SPEED == 1
- for (i = 0; i < 4; i++) {
- OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
- OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
- OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
- OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
- }
- # else
- OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
- OP(FH, D, A, B, C, 8, 11, 0x8771f681);
- OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
- OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
- OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
- OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
- OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
- OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
- OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
- OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
- OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
- OP(FH, B, C, D, A, 6, 23, 0x04881d05);
- OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
- OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
- OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
- OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
- # endif
- /* Round 4 */
- # if MD5_SIZE_VS_SPEED == 1
- for (i = 0; i < 4; i++) {
- OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
- OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
- OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
- OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
- }
- # else
- OP(FI, A, B, C, D, 0, 6, 0xf4292244);
- OP(FI, D, A, B, C, 7, 10, 0x432aff97);
- OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
- OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
- OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
- OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
- OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
- OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
- OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
- OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
- OP(FI, C, D, A, B, 6, 15, 0xa3014314);
- OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
- OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
- OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
- OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
- OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
- # undef OP
- # endif
- /* Add checksum to the starting values */
- ctx->hash[0] = A_save + A;
- ctx->hash[1] = B_save + B;
- ctx->hash[2] = C_save + C;
- ctx->hash[3] = D_save + D;
- #endif
- }
- #undef FF
- #undef FG
- #undef FH
- #undef FI
- /* Initialize structure containing state of computation.
- * (RFC 1321, 3.3: Step 3)
- */
- void FAST_FUNC md5_begin(md5_ctx_t *ctx)
- {
- ctx->hash[0] = 0x67452301;
- ctx->hash[1] = 0xefcdab89;
- ctx->hash[2] = 0x98badcfe;
- ctx->hash[3] = 0x10325476;
- ctx->total64 = 0;
- ctx->process_block = md5_process_block64;
- }
- /* Used also for sha1 and sha256 */
- void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
- {
- common64_hash(ctx, buffer, len);
- }
- /* Process the remaining bytes in the buffer and put result from CTX
- * in first 16 bytes following RESBUF. The result is always in little
- * endian byte order, so that a byte-wise output yields to the wanted
- * ASCII representation of the message digest.
- */
- void FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
- {
- /* MD5 stores total in LE, need to swap on BE arches: */
- common64_end(ctx, /*swap_needed:*/ BB_BIG_ENDIAN);
- /* The MD5 result is in little endian byte order */
- #if BB_BIG_ENDIAN
- ctx->hash[0] = SWAP_LE32(ctx->hash[0]);
- ctx->hash[1] = SWAP_LE32(ctx->hash[1]);
- ctx->hash[2] = SWAP_LE32(ctx->hash[2]);
- ctx->hash[3] = SWAP_LE32(ctx->hash[3]);
- #endif
- memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * 4);
- }
- /*
- * SHA1 part is:
- * Copyright 2007 Rob Landley <rob@landley.net>
- *
- * Based on the public domain SHA-1 in C by Steve Reid <steve@edmweb.com>
- * from http://www.mirrors.wiretapped.net/security/cryptography/hashes/sha1/
- *
- * Licensed under GPLv2, see file LICENSE in this source tree.
- *
- * ---------------------------------------------------------------------------
- *
- * SHA256 and SHA512 parts are:
- * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
- * Shrank by Denys Vlasenko.
- *
- * ---------------------------------------------------------------------------
- *
- * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c
- * and replace "4096" with something like "2000 + time(NULL) % 2097",
- * then rebuild and compare "shaNNNsum bigfile" results.
- */
- static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
- {
- static const uint32_t rconsts[] = {
- 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
- };
- int i, j;
- int cnt;
- uint32_t W[16+16];
- uint32_t a, b, c, d, e;
- /* On-stack work buffer frees up one register in the main loop
- * which otherwise will be needed to hold ctx pointer */
- for (i = 0; i < 16; i++)
- W[i] = W[i+16] = SWAP_BE32(((uint32_t*)ctx->wbuffer)[i]);
- a = ctx->hash[0];
- b = ctx->hash[1];
- c = ctx->hash[2];
- d = ctx->hash[3];
- e = ctx->hash[4];
- /* 4 rounds of 20 operations each */
- cnt = 0;
- for (i = 0; i < 4; i++) {
- j = 19;
- do {
- uint32_t work;
- work = c ^ d;
- if (i == 0) {
- work = (work & b) ^ d;
- if (j <= 3)
- goto ge16;
- /* Used to do SWAP_BE32 here, but this
- * requires ctx (see comment above) */
- work += W[cnt];
- } else {
- if (i == 2)
- work = ((b | c) & d) | (b & c);
- else /* i = 1 or 3 */
- work ^= b;
- ge16:
- W[cnt] = W[cnt+16] = rotl32(W[cnt+13] ^ W[cnt+8] ^ W[cnt+2] ^ W[cnt], 1);
- work += W[cnt];
- }
- work += e + rotl32(a, 5) + rconsts[i];
- /* Rotate by one for next time */
- e = d;
- d = c;
- c = /* b = */ rotl32(b, 30);
- b = a;
- a = work;
- cnt = (cnt + 1) & 15;
- } while (--j >= 0);
- }
- ctx->hash[0] += a;
- ctx->hash[1] += b;
- ctx->hash[2] += c;
- ctx->hash[3] += d;
- ctx->hash[4] += e;
- }
- /* Constants for SHA512 from FIPS 180-2:4.2.3.
- * SHA256 constants from FIPS 180-2:4.2.2
- * are the most significant half of first 64 elements
- * of the same array.
- */
- static const uint64_t sha_K[80] = {
- 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
- 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
- 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
- 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
- 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
- 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
- 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
- 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
- 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
- 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
- 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
- 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
- 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
- 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
- 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
- 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
- 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
- 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
- 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
- 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
- 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
- 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
- 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
- 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
- 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
- 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
- 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
- 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
- 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
- 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
- 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
- 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
- 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */
- 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
- 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
- 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
- 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
- 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
- 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
- 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
- };
- #undef Ch
- #undef Maj
- #undef S0
- #undef S1
- #undef R0
- #undef R1
- static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
- {
- unsigned t;
- uint32_t W[64], a, b, c, d, e, f, g, h;
- const uint32_t *words = (uint32_t*) ctx->wbuffer;
- /* Operators defined in FIPS 180-2:4.1.2. */
- #define Ch(x, y, z) ((x & y) ^ (~x & z))
- #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
- #define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
- #define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
- #define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
- #define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
- /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
- for (t = 0; t < 16; ++t)
- W[t] = SWAP_BE32(words[t]);
- for (/*t = 16*/; t < 64; ++t)
- W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
- a = ctx->hash[0];
- b = ctx->hash[1];
- c = ctx->hash[2];
- d = ctx->hash[3];
- e = ctx->hash[4];
- f = ctx->hash[5];
- g = ctx->hash[6];
- h = ctx->hash[7];
- /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
- for (t = 0; t < 64; ++t) {
- /* Need to fetch upper half of sha_K[t]
- * (I hope compiler is clever enough to just fetch
- * upper half)
- */
- uint32_t K_t = sha_K[t] >> 32;
- uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t];
- uint32_t T2 = S0(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- }
- #undef Ch
- #undef Maj
- #undef S0
- #undef S1
- #undef R0
- #undef R1
- /* Add the starting values of the context according to FIPS 180-2:6.2.2
- step 4. */
- ctx->hash[0] += a;
- ctx->hash[1] += b;
- ctx->hash[2] += c;
- ctx->hash[3] += d;
- ctx->hash[4] += e;
- ctx->hash[5] += f;
- ctx->hash[6] += g;
- ctx->hash[7] += h;
- }
- static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
- {
- unsigned t;
- uint64_t W[80];
- /* On i386, having assignments here (not later as sha256 does)
- * produces 99 bytes smaller code with gcc 4.3.1
- */
- uint64_t a = ctx->hash[0];
- uint64_t b = ctx->hash[1];
- uint64_t c = ctx->hash[2];
- uint64_t d = ctx->hash[3];
- uint64_t e = ctx->hash[4];
- uint64_t f = ctx->hash[5];
- uint64_t g = ctx->hash[6];
- uint64_t h = ctx->hash[7];
- const uint64_t *words = (uint64_t*) ctx->wbuffer;
- /* Operators defined in FIPS 180-2:4.1.2. */
- #define Ch(x, y, z) ((x & y) ^ (~x & z))
- #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
- #define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
- #define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
- #define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
- #define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
- /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
- for (t = 0; t < 16; ++t)
- W[t] = SWAP_BE64(words[t]);
- for (/*t = 16*/; t < 80; ++t)
- W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
- /* The actual computation according to FIPS 180-2:6.3.2 step 3. */
- for (t = 0; t < 80; ++t) {
- uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t];
- uint64_t T2 = S0(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- }
- #undef Ch
- #undef Maj
- #undef S0
- #undef S1
- #undef R0
- #undef R1
- /* Add the starting values of the context according to FIPS 180-2:6.3.2
- step 4. */
- ctx->hash[0] += a;
- ctx->hash[1] += b;
- ctx->hash[2] += c;
- ctx->hash[3] += d;
- ctx->hash[4] += e;
- ctx->hash[5] += f;
- ctx->hash[6] += g;
- ctx->hash[7] += h;
- }
- void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
- {
- ctx->hash[0] = 0x67452301;
- ctx->hash[1] = 0xefcdab89;
- ctx->hash[2] = 0x98badcfe;
- ctx->hash[3] = 0x10325476;
- ctx->hash[4] = 0xc3d2e1f0;
- ctx->total64 = 0;
- ctx->process_block = sha1_process_block64;
- }
- static const uint32_t init256[] = {
- 0,
- 0,
- 0x6a09e667,
- 0xbb67ae85,
- 0x3c6ef372,
- 0xa54ff53a,
- 0x510e527f,
- 0x9b05688c,
- 0x1f83d9ab,
- 0x5be0cd19,
- };
- static const uint32_t init512_lo[] = {
- 0,
- 0,
- 0xf3bcc908,
- 0x84caa73b,
- 0xfe94f82b,
- 0x5f1d36f1,
- 0xade682d1,
- 0x2b3e6c1f,
- 0xfb41bd6b,
- 0x137e2179,
- };
- /* Initialize structure containing state of computation.
- (FIPS 180-2:5.3.2) */
- void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
- {
- memcpy(&ctx->total64, init256, sizeof(init256));
- /*ctx->total64 = 0; - done by prepending two 32-bit zeros to init256 */
- ctx->process_block = sha256_process_block64;
- }
- /* Initialize structure containing state of computation.
- (FIPS 180-2:5.3.3) */
- void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
- {
- int i;
- /* Two extra iterations zero out ctx->total64[2] */
- uint64_t *tp = ctx->total64;
- for (i = 0; i < 2+8; i++)
- tp[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
- /*ctx->total64[0] = ctx->total64[1] = 0; - already done */
- }
- void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
- {
- unsigned bufpos = ctx->total64[0] & 127;
- unsigned remaining;
- /* First increment the byte count. FIPS 180-2 specifies the possible
- length of the file up to 2^128 _bits_.
- We compute the number of _bytes_ and convert to bits later. */
- ctx->total64[0] += len;
- if (ctx->total64[0] < len)
- ctx->total64[1]++;
- #if 0
- remaining = 128 - bufpos;
- /* Hash whole blocks */
- while (len >= remaining) {
- memcpy(ctx->wbuffer + bufpos, buffer, remaining);
- buffer = (const char *)buffer + remaining;
- len -= remaining;
- remaining = 128;
- bufpos = 0;
- sha512_process_block128(ctx);
- }
- /* Save last, partial blosk */
- memcpy(ctx->wbuffer + bufpos, buffer, len);
- #else
- while (1) {
- remaining = 128 - bufpos;
- if (remaining > len)
- remaining = len;
- /* Copy data into aligned buffer */
- memcpy(ctx->wbuffer + bufpos, buffer, remaining);
- len -= remaining;
- buffer = (const char *)buffer + remaining;
- bufpos += remaining;
- /* clever way to do "if (bufpos != 128) break; ... ; bufpos = 0;" */
- bufpos -= 128;
- if (bufpos != 0)
- break;
- /* Buffer is filled up, process it */
- sha512_process_block128(ctx);
- /*bufpos = 0; - already is */
- }
- #endif
- }
- /* Used also for sha256 */
- void FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf)
- {
- unsigned hash_size;
- /* SHA stores total in BE, need to swap on LE arches: */
- common64_end(ctx, /*swap_needed:*/ BB_LITTLE_ENDIAN);
- hash_size = (ctx->process_block == sha1_process_block64) ? 5 : 8;
- /* This way we do not impose alignment constraints on resbuf: */
- if (BB_LITTLE_ENDIAN) {
- unsigned i;
- for (i = 0; i < hash_size; ++i)
- ctx->hash[i] = SWAP_BE32(ctx->hash[i]);
- }
- memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * hash_size);
- }
- void FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf)
- {
- unsigned bufpos = ctx->total64[0] & 127;
- /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */
- ctx->wbuffer[bufpos++] = 0x80;
- while (1) {
- unsigned remaining = 128 - bufpos;
- memset(ctx->wbuffer + bufpos, 0, remaining);
- if (remaining >= 16) {
- /* Store the 128-bit counter of bits in the buffer in BE format */
- uint64_t t;
- t = ctx->total64[0] << 3;
- t = SWAP_BE64(t);
- *(uint64_t *) (&ctx->wbuffer[128 - 8]) = t;
- t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61);
- t = SWAP_BE64(t);
- *(uint64_t *) (&ctx->wbuffer[128 - 16]) = t;
- }
- sha512_process_block128(ctx);
- if (remaining >= 16)
- break;
- bufpos = 0;
- }
- if (BB_LITTLE_ENDIAN) {
- unsigned i;
- for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i)
- ctx->hash[i] = SWAP_BE64(ctx->hash[i]);
- }
- memcpy(resbuf, ctx->hash, sizeof(ctx->hash));
- }
|