123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460 |
- /*
- * Copyright (C) 2017 Denys Vlasenko
- *
- * Licensed under GPLv2, see file LICENSE in this source tree.
- */
- /* This AES implementation is derived from tiny-AES128-C code,
- * which was put by its author into public domain:
- *
- * tiny-AES128-C/unlicense.txt, Dec 8, 2014
- * """
- * This is free and unencumbered software released into the public domain.
- *
- * Anyone is free to copy, modify, publish, use, compile, sell, or
- * distribute this software, either in source code form or as a compiled
- * binary, for any purpose, commercial or non-commercial, and by any
- * means.
- *
- * In jurisdictions that recognize copyright laws, the author or authors
- * of this software dedicate any and all copyright interest in the
- * software to the public domain. We make this dedication for the benefit
- * of the public at large and to the detriment of our heirs and
- * successors. We intend this dedication to be an overt act of
- * relinquishment in perpetuity of all present and future rights to this
- * software under copyright law.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
- * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- * """
- */
- /* Note that only original tiny-AES128-C code is public domain.
- * The derived code in this file has been expanded to also implement aes192
- * and aes256 and use more efficient word-sized operations in many places,
- * and put under GPLv2 license.
- */
- #include "tls.h"
- /* TODO: grep for this and move to libbb */
- #define get_unaligned_be32(buf) ({ uint32_t v; move_from_unaligned32(v, buf); SWAP_BE32(v); })
- // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
- // The numbers below can be computed dynamically trading ROM for RAM -
- // This can be useful in (embedded) bootloader applications, where ROM is often limited.
- static const uint8_t sbox[] = {
- 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
- 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
- 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
- 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
- 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
- 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
- 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
- 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
- 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
- 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
- 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
- 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
- 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
- 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
- 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
- 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
- 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
- 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
- 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
- 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
- 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
- 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
- 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
- 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
- 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
- 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
- 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
- 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
- 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
- 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
- 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
- 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
- };
- static const uint8_t rsbox[] = {
- 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
- 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
- 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
- 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
- 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
- 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
- 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
- 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
- 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
- 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
- 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
- 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
- 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
- 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
- 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
- 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
- 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
- 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
- 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
- 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
- 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
- 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
- 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
- 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
- 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
- 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
- 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
- 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
- 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
- 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
- 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
- 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
- };
- // SubWord() is a function that takes a four-byte input word and
- // applies the S-box to each of the four bytes to produce an output word.
- static uint32_t Subword(uint32_t x)
- {
- return (sbox[(x >> 24) ] << 24)
- | (sbox[(x >> 16) & 255] << 16)
- | (sbox[(x >> 8 ) & 255] << 8 )
- | (sbox[(x ) & 255] );
- }
- // This function produces Nb(Nr+1) round keys.
- // The round keys are used in each round to decrypt the states.
- static int KeyExpansion(uint32_t *RoundKey, const void *key, unsigned key_len)
- {
- // The round constant word array, Rcon[i], contains the values given by
- // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8).
- // Note that i starts at 2, not 0.
- static const uint8_t Rcon[] = {
- 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
- //..... 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6,...
- // but aes256 only uses values up to 0x36
- };
- int rounds, words_key, words_RoundKey;
- int i, j, k;
- // key_len 16: aes128, rounds 10, words_key 4, words_RoundKey 44
- // key_len 24: aes192, rounds 12, words_key 6, words_RoundKey 52
- // key_len 32: aes256, rounds 14, words_key 8, words_RoundKey 60
- words_key = key_len / 4;
- rounds = 6 + (key_len / 4);
- words_RoundKey = 28 + key_len;
- // The first round key is the key itself.
- for (i = 0; i < words_key; i++)
- RoundKey[i] = get_unaligned_be32((uint32_t*)key + i);
- // i == words_key now
- // All other round keys are found from the previous round keys.
- j = k = 0;
- for (; i < words_RoundKey; i++) {
- uint32_t tempa;
- tempa = RoundKey[i - 1];
- if (j == 0) {
- // RotWord(): rotates the 4 bytes in a word to the left once.
- tempa = (tempa << 8) | (tempa >> 24);
- tempa = Subword(tempa);
- tempa ^= (uint32_t)Rcon[k] << 24;
- } else if (words_key > 6 && j == 4) {
- tempa = Subword(tempa);
- }
- RoundKey[i] = RoundKey[i - words_key] ^ tempa;
- j++;
- if (j == words_key) {
- j = 0;
- k++;
- }
- }
- return rounds;
- }
- // This function adds the round key to state.
- // The round key is added to the state by an XOR function.
- static void AddRoundKey(unsigned astate[16], const uint32_t *RoundKeys)
- {
- int i;
- for (i = 0; i < 16; i += 4) {
- uint32_t n = *RoundKeys++;
- astate[i + 0] ^= (n >> 24);
- astate[i + 1] ^= (n >> 16) & 255;
- astate[i + 2] ^= (n >> 8) & 255;
- astate[i + 3] ^= n & 255;
- }
- }
- // The SubBytes Function Substitutes the values in the
- // state matrix with values in an S-box.
- static void SubBytes(unsigned astate[16])
- {
- int i;
- for (i = 0; i < 16; i++)
- astate[i] = sbox[astate[i]];
- }
- // Our code actually stores "columns" (in aes encryption terminology)
- // of state in rows: first 4 elements are "row 0, col 0", "row 1, col 0".
- // "row 2, col 0", "row 3, col 0". The fifth element is "row 0, col 1",
- // and so on.
- #define ASTATE(col,row) astate[(col)*4 + (row)]
- // The ShiftRows() function shifts the rows in the state to the left.
- // Each row is shifted with different offset.
- // Offset = Row number. So the first row is not shifted.
- static void ShiftRows(unsigned astate[16])
- {
- unsigned v;
- // Rotate first row 1 columns to left
- v = ASTATE(0,1);
- ASTATE(0,1) = ASTATE(1,1);
- ASTATE(1,1) = ASTATE(2,1);
- ASTATE(2,1) = ASTATE(3,1);
- ASTATE(3,1) = v;
- // Rotate second row 2 columns to left
- v = ASTATE(0,2); ASTATE(0,2) = ASTATE(2,2); ASTATE(2,2) = v;
- v = ASTATE(1,2); ASTATE(1,2) = ASTATE(3,2); ASTATE(3,2) = v;
- // Rotate third row 3 columns to left
- v = ASTATE(3,3);
- ASTATE(3,3) = ASTATE(2,3);
- ASTATE(2,3) = ASTATE(1,3);
- ASTATE(1,3) = ASTATE(0,3);
- ASTATE(0,3) = v;
- }
- // MixColumns function mixes the columns of the state matrix
- static void MixColumns(unsigned astate[16])
- {
- int i;
- for (i = 0; i < 16; i += 4) {
- unsigned a, b, c, d;
- unsigned x, y, z, t;
- a = astate[i + 0];
- b = astate[i + 1];
- c = astate[i + 2];
- d = astate[i + 3];
- x = (a << 1) ^ b ^ (b << 1) ^ c ^ d;
- y = a ^ (b << 1) ^ c ^ (c << 1) ^ d;
- z = a ^ b ^ (c << 1) ^ d ^ (d << 1);
- t = a ^ (a << 1) ^ b ^ c ^ (d << 1);
- astate[i + 0] = x ^ ((-(int)(x >> 8)) & 0x11b);
- astate[i + 1] = y ^ ((-(int)(y >> 8)) & 0x11b);
- astate[i + 2] = z ^ ((-(int)(z >> 8)) & 0x11b);
- astate[i + 3] = t ^ ((-(int)(t >> 8)) & 0x11b);
- }
- }
- // The SubBytes Function Substitutes the values in the
- // state matrix with values in an S-box.
- static void InvSubBytes(unsigned astate[16])
- {
- int i;
- for (i = 0; i < 16; i++)
- astate[i] = rsbox[astate[i]];
- }
- static void InvShiftRows(unsigned astate[16])
- {
- unsigned v;
- // Rotate first row 1 columns to right
- v = ASTATE(3,1);
- ASTATE(3,1) = ASTATE(2,1);
- ASTATE(2,1) = ASTATE(1,1);
- ASTATE(1,1) = ASTATE(0,1);
- ASTATE(0,1) = v;
- // Rotate second row 2 columns to right
- v = ASTATE(0,2); ASTATE(0,2) = ASTATE(2,2); ASTATE(2,2) = v;
- v = ASTATE(1,2); ASTATE(1,2) = ASTATE(3,2); ASTATE(3,2) = v;
- // Rotate third row 3 columns to right
- v = ASTATE(0,3);
- ASTATE(0,3) = ASTATE(1,3);
- ASTATE(1,3) = ASTATE(2,3);
- ASTATE(2,3) = ASTATE(3,3);
- ASTATE(3,3) = v;
- }
- static ALWAYS_INLINE unsigned Multiply(unsigned x)
- {
- unsigned y;
- y = x >> 8;
- return (x ^ y ^ (y << 1) ^ (y << 3) ^ (y << 4)) & 255;
- }
- // MixColumns function mixes the columns of the state matrix.
- // The method used to multiply may be difficult to understand for the inexperienced.
- // Please use the references to gain more information.
- static void InvMixColumns(unsigned astate[16])
- {
- int i;
- for (i = 0; i < 16; i += 4) {
- unsigned a, b, c, d;
- unsigned x, y, z, t;
- a = astate[i + 0];
- b = astate[i + 1];
- c = astate[i + 2];
- d = astate[i + 3];
- x = (a << 1) ^ (a << 2) ^ (a << 3) ^ b ^ (b << 1) ^ (b << 3)
- /***/ ^ c ^ (c << 2) ^ (c << 3) ^ d ^ (d << 3);
- y = a ^ (a << 3) ^ (b << 1) ^ (b << 2) ^ (b << 3)
- /***/ ^ c ^ (c << 1) ^ (c << 3) ^ d ^ (d << 2) ^ (d << 3);
- z = a ^ (a << 2) ^ (a << 3) ^ b ^ (b << 3)
- /***/ ^ (c << 1) ^ (c << 2) ^ (c << 3) ^ d ^ (d << 1) ^ (d << 3);
- t = a ^ (a << 1) ^ (a << 3) ^ b ^ (b << 2) ^ (b << 3)
- /***/ ^ c ^ (c << 3) ^ (d << 1) ^ (d << 2) ^ (d << 3);
- astate[i + 0] = Multiply(x);
- astate[i + 1] = Multiply(y);
- astate[i + 2] = Multiply(z);
- astate[i + 3] = Multiply(t);
- }
- }
- static void aes_encrypt_1(unsigned astate[16], unsigned rounds, const uint32_t *RoundKey)
- {
- for (;;) {
- AddRoundKey(astate, RoundKey);
- RoundKey += 4;
- SubBytes(astate);
- ShiftRows(astate);
- if (--rounds == 0)
- break;
- MixColumns(astate);
- }
- AddRoundKey(astate, RoundKey);
- }
- #if 0 // UNUSED
- static void aes_encrypt_one_block(unsigned rounds, const uint32_t *RoundKey, const void *data, void *dst)
- {
- unsigned astate[16];
- unsigned i;
- const uint8_t *pt = data;
- uint8_t *ct = dst;
- for (i = 0; i < 16; i++)
- astate[i] = pt[i];
- aes_encrypt_1(astate, rounds, RoundKey);
- for (i = 0; i < 16; i++)
- ct[i] = astate[i];
- }
- #endif
- void aes_cbc_encrypt(const void *key, int klen, void *iv, const void *data, size_t len, void *dst)
- {
- uint32_t RoundKey[60];
- uint8_t iv2[16];
- unsigned rounds;
- const uint8_t *pt = data;
- uint8_t *ct = dst;
- memcpy(iv2, iv, 16);
- rounds = KeyExpansion(RoundKey, key, klen);
- while (len > 0) {
- {
- /* almost aes_encrypt_one_block(rounds, RoundKey, pt, ct);
- * but xor'ing of IV with plaintext[] is combined
- * with plaintext[] -> astate[]
- */
- int i;
- unsigned astate[16];
- for (i = 0; i < 16; i++)
- astate[i] = pt[i] ^ iv2[i];
- aes_encrypt_1(astate, rounds, RoundKey);
- for (i = 0; i < 16; i++)
- iv2[i] = ct[i] = astate[i];
- }
- ct += 16;
- pt += 16;
- len -= 16;
- }
- }
- static void aes_decrypt_1(unsigned astate[16], unsigned rounds, const uint32_t *RoundKey)
- {
- RoundKey += rounds * 4;
- AddRoundKey(astate, RoundKey);
- for (;;) {
- InvShiftRows(astate);
- InvSubBytes(astate);
- RoundKey -= 4;
- AddRoundKey(astate, RoundKey);
- if (--rounds == 0)
- break;
- InvMixColumns(astate);
- }
- }
- #if 0 //UNUSED
- static void aes_decrypt_one_block(unsigned rounds, const uint32_t *RoundKey, const void *data, void *dst)
- {
- unsigned astate[16];
- unsigned i;
- const uint8_t *ct = data;
- uint8_t *pt = dst;
- for (i = 0; i < 16; i++)
- astate[i] = ct[i];
- aes_decrypt_1(astate, rounds, RoundKey);
- for (i = 0; i < 16; i++)
- pt[i] = astate[i];
- }
- #endif
- void aes_cbc_decrypt(const void *key, int klen, void *iv, const void *data, size_t len, void *dst)
- {
- uint32_t RoundKey[60];
- uint8_t iv2[16];
- uint8_t iv3[16];
- unsigned rounds;
- uint8_t *ivbuf;
- uint8_t *ivnext;
- const uint8_t *ct = data;
- uint8_t *pt = dst;
- rounds = KeyExpansion(RoundKey, key, klen);
- ivbuf = memcpy(iv2, iv, 16);
- while (len) {
- ivnext = (ivbuf==iv2) ? iv3 : iv2;
- {
- /* almost aes_decrypt_one_block(rounds, RoundKey, ct, pt)
- * but xor'ing of ivbuf is combined with astate[] -> plaintext[]
- */
- int i;
- unsigned astate[16];
- for (i = 0; i < 16; i++)
- ivnext[i] = astate[i] = ct[i];
- aes_decrypt_1(astate, rounds, RoundKey);
- for (i = 0; i < 16; i++)
- pt[i] = astate[i] ^ ivbuf[i];
- }
- ivbuf = ivnext;
- ct += 16;
- pt += 16;
- len -= 16;
- }
- }
|