1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468 |
- /* vi: set sw=4 ts=4: */
- /*
- * Utility routines.
- *
- * Copyright (C) 2010 Denys Vlasenko
- *
- * Licensed under GPLv2 or later, see file LICENSE in this source tree.
- */
- #include "libbb.h"
- #define NEED_SHA512 (ENABLE_SHA512SUM || ENABLE_USE_BB_CRYPT_SHA)
- /* gcc 4.2.1 optimizes rotr64 better with inline than with macro
- * (for rotX32, there is no difference). Why? My guess is that
- * macro requires clever common subexpression elimination heuristics
- * in gcc, while inline basically forces it to happen.
- */
- //#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
- static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n)
- {
- return (x << n) | (x >> (32 - n));
- }
- //#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
- static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n)
- {
- return (x >> n) | (x << (32 - n));
- }
- /* rotr64 in needed for sha512 only: */
- //#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
- static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n)
- {
- return (x >> n) | (x << (64 - n));
- }
- /* rotl64 only used for sha3 currently */
- static ALWAYS_INLINE uint64_t rotl64(uint64_t x, unsigned n)
- {
- return (x << n) | (x >> (64 - n));
- }
- /* Process the remaining bytes in the buffer */
- static void FAST_FUNC common64_end(md5_ctx_t *ctx, int swap_needed)
- {
- unsigned bufpos = ctx->total64 & 63;
- /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
- ctx->wbuffer[bufpos++] = 0x80;
- /* This loop iterates either once or twice, no more, no less */
- while (1) {
- unsigned remaining = 64 - bufpos;
- memset(ctx->wbuffer + bufpos, 0, remaining);
- /* Do we have enough space for the length count? */
- if (remaining >= 8) {
- /* Store the 64-bit counter of bits in the buffer */
- uint64_t t = ctx->total64 << 3;
- if (swap_needed)
- t = bb_bswap_64(t);
- /* wbuffer is suitably aligned for this */
- *(bb__aliased_uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
- }
- ctx->process_block(ctx);
- if (remaining >= 8)
- break;
- bufpos = 0;
- }
- }
- /*
- * Compute MD5 checksum of strings according to the
- * definition of MD5 in RFC 1321 from April 1992.
- *
- * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
- *
- * Copyright (C) 1995-1999 Free Software Foundation, Inc.
- * Copyright (C) 2001 Manuel Novoa III
- * Copyright (C) 2003 Glenn L. McGrath
- * Copyright (C) 2003 Erik Andersen
- *
- * Licensed under GPLv2 or later, see file LICENSE in this source tree.
- */
- /* 0: fastest, 3: smallest */
- #if CONFIG_MD5_SMALL < 0
- # define MD5_SMALL 0
- #elif CONFIG_MD5_SMALL > 3
- # define MD5_SMALL 3
- #else
- # define MD5_SMALL CONFIG_MD5_SMALL
- #endif
- /* These are the four functions used in the four steps of the MD5 algorithm
- * and defined in the RFC 1321. The first function is a little bit optimized
- * (as found in Colin Plumbs public domain implementation).
- * #define FF(b, c, d) ((b & c) | (~b & d))
- */
- #undef FF
- #undef FG
- #undef FH
- #undef FI
- #define FF(b, c, d) (d ^ (b & (c ^ d)))
- #define FG(b, c, d) FF(d, b, c)
- #define FH(b, c, d) (b ^ c ^ d)
- #define FI(b, c, d) (c ^ (b | ~d))
- /* Hash a single block, 64 bytes long and 4-byte aligned */
- static void FAST_FUNC md5_process_block64(md5_ctx_t *ctx)
- {
- #if MD5_SMALL > 0
- /* Before we start, one word to the strange constants.
- They are defined in RFC 1321 as
- T[i] = (int)(2^32 * fabs(sin(i))), i=1..64
- */
- static const uint32_t C_array[] ALIGN4 = {
- /* round 1 */
- 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
- 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
- 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
- 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
- /* round 2 */
- 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
- 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
- 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
- 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
- /* round 3 */
- 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
- 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
- 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
- 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
- /* round 4 */
- 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
- 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
- 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
- 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
- };
- static const char P_array[] ALIGN1 = {
- # if MD5_SMALL > 1
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
- # endif
- 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
- 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
- 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
- };
- #endif
- uint32_t *words = (void*) ctx->wbuffer;
- uint32_t A = ctx->hash[0];
- uint32_t B = ctx->hash[1];
- uint32_t C = ctx->hash[2];
- uint32_t D = ctx->hash[3];
- #if MD5_SMALL >= 2 /* 2 or 3 */
- static const char S_array[] ALIGN1 = {
- 7, 12, 17, 22,
- 5, 9, 14, 20,
- 4, 11, 16, 23,
- 6, 10, 15, 21
- };
- const uint32_t *pc;
- const char *pp;
- const char *ps;
- int i;
- uint32_t temp;
- if (BB_BIG_ENDIAN)
- for (i = 0; i < 16; i++)
- words[i] = SWAP_LE32(words[i]);
- # if MD5_SMALL == 3
- pc = C_array;
- pp = P_array;
- ps = S_array - 4;
- for (i = 0; i < 64; i++) {
- if ((i & 0x0f) == 0)
- ps += 4;
- temp = A;
- switch (i >> 4) {
- case 0:
- temp += FF(B, C, D);
- break;
- case 1:
- temp += FG(B, C, D);
- break;
- case 2:
- temp += FH(B, C, D);
- break;
- default: /* case 3 */
- temp += FI(B, C, D);
- }
- temp += words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- # else /* MD5_SMALL == 2 */
- pc = C_array;
- pp = P_array;
- ps = S_array;
- for (i = 0; i < 16; i++) {
- temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- ps += 4;
- for (i = 0; i < 16; i++) {
- temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- ps += 4;
- for (i = 0; i < 16; i++) {
- temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- ps += 4;
- for (i = 0; i < 16; i++) {
- temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
- temp = rotl32(temp, ps[i & 3]);
- temp += B;
- A = D;
- D = C;
- C = B;
- B = temp;
- }
- # endif
- /* Add checksum to the starting values */
- ctx->hash[0] += A;
- ctx->hash[1] += B;
- ctx->hash[2] += C;
- ctx->hash[3] += D;
- #else /* MD5_SMALL == 0 or 1 */
- # if MD5_SMALL == 1
- const uint32_t *pc;
- const char *pp;
- int i;
- # endif
- /* First round: using the given function, the context and a constant
- the next context is computed. Because the algorithm's processing
- unit is a 32-bit word and it is determined to work on words in
- little endian byte order we perhaps have to change the byte order
- before the computation. To reduce the work for the next steps
- we save swapped words in WORDS array. */
- # undef OP
- # define OP(a, b, c, d, s, T) \
- do { \
- a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
- words++; \
- a = rotl32(a, s); \
- a += b; \
- } while (0)
- /* Round 1 */
- # if MD5_SMALL == 1
- pc = C_array;
- for (i = 0; i < 4; i++) {
- OP(A, B, C, D, 7, *pc++);
- OP(D, A, B, C, 12, *pc++);
- OP(C, D, A, B, 17, *pc++);
- OP(B, C, D, A, 22, *pc++);
- }
- # else
- OP(A, B, C, D, 7, 0xd76aa478);
- OP(D, A, B, C, 12, 0xe8c7b756);
- OP(C, D, A, B, 17, 0x242070db);
- OP(B, C, D, A, 22, 0xc1bdceee);
- OP(A, B, C, D, 7, 0xf57c0faf);
- OP(D, A, B, C, 12, 0x4787c62a);
- OP(C, D, A, B, 17, 0xa8304613);
- OP(B, C, D, A, 22, 0xfd469501);
- OP(A, B, C, D, 7, 0x698098d8);
- OP(D, A, B, C, 12, 0x8b44f7af);
- OP(C, D, A, B, 17, 0xffff5bb1);
- OP(B, C, D, A, 22, 0x895cd7be);
- OP(A, B, C, D, 7, 0x6b901122);
- OP(D, A, B, C, 12, 0xfd987193);
- OP(C, D, A, B, 17, 0xa679438e);
- OP(B, C, D, A, 22, 0x49b40821);
- # endif
- words -= 16;
- /* For the second to fourth round we have the possibly swapped words
- in WORDS. Redefine the macro to take an additional first
- argument specifying the function to use. */
- # undef OP
- # define OP(f, a, b, c, d, k, s, T) \
- do { \
- a += f(b, c, d) + words[k] + T; \
- a = rotl32(a, s); \
- a += b; \
- } while (0)
- /* Round 2 */
- # if MD5_SMALL == 1
- pp = P_array;
- for (i = 0; i < 4; i++) {
- OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
- OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
- OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
- OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
- }
- # else
- OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
- OP(FG, D, A, B, C, 6, 9, 0xc040b340);
- OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
- OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
- OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
- OP(FG, D, A, B, C, 10, 9, 0x02441453);
- OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
- OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
- OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
- OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
- OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
- OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
- OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
- OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
- OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
- OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
- # endif
- /* Round 3 */
- # if MD5_SMALL == 1
- for (i = 0; i < 4; i++) {
- OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
- OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
- OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
- OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
- }
- # else
- OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
- OP(FH, D, A, B, C, 8, 11, 0x8771f681);
- OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
- OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
- OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
- OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
- OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
- OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
- OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
- OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
- OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
- OP(FH, B, C, D, A, 6, 23, 0x04881d05);
- OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
- OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
- OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
- OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
- # endif
- /* Round 4 */
- # if MD5_SMALL == 1
- for (i = 0; i < 4; i++) {
- OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
- OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
- OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
- OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
- }
- # else
- OP(FI, A, B, C, D, 0, 6, 0xf4292244);
- OP(FI, D, A, B, C, 7, 10, 0x432aff97);
- OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
- OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
- OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
- OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
- OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
- OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
- OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
- OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
- OP(FI, C, D, A, B, 6, 15, 0xa3014314);
- OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
- OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
- OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
- OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
- OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
- # undef OP
- # endif
- /* Add checksum to the starting values */
- ctx->hash[0] += A;
- ctx->hash[1] += B;
- ctx->hash[2] += C;
- ctx->hash[3] += D;
- #endif
- }
- #undef FF
- #undef FG
- #undef FH
- #undef FI
- /* Initialize structure containing state of computation.
- * (RFC 1321, 3.3: Step 3)
- */
- void FAST_FUNC md5_begin(md5_ctx_t *ctx)
- {
- ctx->hash[0] = 0x67452301;
- ctx->hash[1] = 0xefcdab89;
- ctx->hash[2] = 0x98badcfe;
- ctx->hash[3] = 0x10325476;
- ctx->total64 = 0;
- ctx->process_block = md5_process_block64;
- }
- /* Used also for sha1 and sha256 */
- void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
- {
- unsigned bufpos = ctx->total64 & 63;
- ctx->total64 += len;
- while (1) {
- unsigned remaining = 64 - bufpos;
- if (remaining > len)
- remaining = len;
- /* Copy data into aligned buffer */
- memcpy(ctx->wbuffer + bufpos, buffer, remaining);
- len -= remaining;
- buffer = (const char *)buffer + remaining;
- bufpos += remaining;
- /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
- bufpos -= 64;
- if (bufpos != 0)
- break;
- /* Buffer is filled up, process it */
- ctx->process_block(ctx);
- /*bufpos = 0; - already is */
- }
- }
- /* Process the remaining bytes in the buffer and put result from CTX
- * in first 16 bytes following RESBUF. The result is always in little
- * endian byte order, so that a byte-wise output yields to the wanted
- * ASCII representation of the message digest.
- */
- unsigned FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
- {
- /* MD5 stores total in LE, need to swap on BE arches: */
- common64_end(ctx, /*swap_needed:*/ BB_BIG_ENDIAN);
- /* The MD5 result is in little endian byte order */
- if (BB_BIG_ENDIAN) {
- ctx->hash[0] = SWAP_LE32(ctx->hash[0]);
- ctx->hash[1] = SWAP_LE32(ctx->hash[1]);
- ctx->hash[2] = SWAP_LE32(ctx->hash[2]);
- ctx->hash[3] = SWAP_LE32(ctx->hash[3]);
- }
- memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * 4);
- return sizeof(ctx->hash[0]) * 4;
- }
- /*
- * SHA1 part is:
- * Copyright 2007 Rob Landley <rob@landley.net>
- *
- * Based on the public domain SHA-1 in C by Steve Reid <steve@edmweb.com>
- * from http://www.mirrors.wiretapped.net/security/cryptography/hashes/sha1/
- *
- * Licensed under GPLv2, see file LICENSE in this source tree.
- *
- * ---------------------------------------------------------------------------
- *
- * SHA256 and SHA512 parts are:
- * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
- * Shrank by Denys Vlasenko.
- *
- * ---------------------------------------------------------------------------
- *
- * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c
- * and replace "4096" with something like "2000 + time(NULL) % 2097",
- * then rebuild and compare "shaNNNsum bigfile" results.
- */
- static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
- {
- static const uint32_t rconsts[] ALIGN4 = {
- 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
- };
- int i, j;
- int cnt;
- uint32_t W[16+16];
- uint32_t a, b, c, d, e;
- /* On-stack work buffer frees up one register in the main loop
- * which otherwise will be needed to hold ctx pointer */
- for (i = 0; i < 16; i++)
- W[i] = W[i+16] = SWAP_BE32(((uint32_t*)ctx->wbuffer)[i]);
- a = ctx->hash[0];
- b = ctx->hash[1];
- c = ctx->hash[2];
- d = ctx->hash[3];
- e = ctx->hash[4];
- /* 4 rounds of 20 operations each */
- cnt = 0;
- for (i = 0; i < 4; i++) {
- j = 19;
- do {
- uint32_t work;
- work = c ^ d;
- if (i == 0) {
- work = (work & b) ^ d;
- if (j <= 3)
- goto ge16;
- /* Used to do SWAP_BE32 here, but this
- * requires ctx (see comment above) */
- work += W[cnt];
- } else {
- if (i == 2)
- work = ((b | c) & d) | (b & c);
- else /* i = 1 or 3 */
- work ^= b;
- ge16:
- W[cnt] = W[cnt+16] = rotl32(W[cnt+13] ^ W[cnt+8] ^ W[cnt+2] ^ W[cnt], 1);
- work += W[cnt];
- }
- work += e + rotl32(a, 5) + rconsts[i];
- /* Rotate by one for next time */
- e = d;
- d = c;
- c = /* b = */ rotl32(b, 30);
- b = a;
- a = work;
- cnt = (cnt + 1) & 15;
- } while (--j >= 0);
- }
- ctx->hash[0] += a;
- ctx->hash[1] += b;
- ctx->hash[2] += c;
- ctx->hash[3] += d;
- ctx->hash[4] += e;
- }
- /* Constants for SHA512 from FIPS 180-2:4.2.3.
- * SHA256 constants from FIPS 180-2:4.2.2
- * are the most significant half of first 64 elements
- * of the same array.
- */
- #undef K
- #if NEED_SHA512
- typedef uint64_t sha_K_int;
- # define K(v) v
- #else
- typedef uint32_t sha_K_int;
- # define K(v) (uint32_t)(v >> 32)
- #endif
- static const sha_K_int sha_K[] ALIGN8 = {
- K(0x428a2f98d728ae22ULL), K(0x7137449123ef65cdULL),
- K(0xb5c0fbcfec4d3b2fULL), K(0xe9b5dba58189dbbcULL),
- K(0x3956c25bf348b538ULL), K(0x59f111f1b605d019ULL),
- K(0x923f82a4af194f9bULL), K(0xab1c5ed5da6d8118ULL),
- K(0xd807aa98a3030242ULL), K(0x12835b0145706fbeULL),
- K(0x243185be4ee4b28cULL), K(0x550c7dc3d5ffb4e2ULL),
- K(0x72be5d74f27b896fULL), K(0x80deb1fe3b1696b1ULL),
- K(0x9bdc06a725c71235ULL), K(0xc19bf174cf692694ULL),
- K(0xe49b69c19ef14ad2ULL), K(0xefbe4786384f25e3ULL),
- K(0x0fc19dc68b8cd5b5ULL), K(0x240ca1cc77ac9c65ULL),
- K(0x2de92c6f592b0275ULL), K(0x4a7484aa6ea6e483ULL),
- K(0x5cb0a9dcbd41fbd4ULL), K(0x76f988da831153b5ULL),
- K(0x983e5152ee66dfabULL), K(0xa831c66d2db43210ULL),
- K(0xb00327c898fb213fULL), K(0xbf597fc7beef0ee4ULL),
- K(0xc6e00bf33da88fc2ULL), K(0xd5a79147930aa725ULL),
- K(0x06ca6351e003826fULL), K(0x142929670a0e6e70ULL),
- K(0x27b70a8546d22ffcULL), K(0x2e1b21385c26c926ULL),
- K(0x4d2c6dfc5ac42aedULL), K(0x53380d139d95b3dfULL),
- K(0x650a73548baf63deULL), K(0x766a0abb3c77b2a8ULL),
- K(0x81c2c92e47edaee6ULL), K(0x92722c851482353bULL),
- K(0xa2bfe8a14cf10364ULL), K(0xa81a664bbc423001ULL),
- K(0xc24b8b70d0f89791ULL), K(0xc76c51a30654be30ULL),
- K(0xd192e819d6ef5218ULL), K(0xd69906245565a910ULL),
- K(0xf40e35855771202aULL), K(0x106aa07032bbd1b8ULL),
- K(0x19a4c116b8d2d0c8ULL), K(0x1e376c085141ab53ULL),
- K(0x2748774cdf8eeb99ULL), K(0x34b0bcb5e19b48a8ULL),
- K(0x391c0cb3c5c95a63ULL), K(0x4ed8aa4ae3418acbULL),
- K(0x5b9cca4f7763e373ULL), K(0x682e6ff3d6b2b8a3ULL),
- K(0x748f82ee5defb2fcULL), K(0x78a5636f43172f60ULL),
- K(0x84c87814a1f0ab72ULL), K(0x8cc702081a6439ecULL),
- K(0x90befffa23631e28ULL), K(0xa4506cebde82bde9ULL),
- K(0xbef9a3f7b2c67915ULL), K(0xc67178f2e372532bULL),
- #if NEED_SHA512 /* [64]+ are used for sha512 only */
- K(0xca273eceea26619cULL), K(0xd186b8c721c0c207ULL),
- K(0xeada7dd6cde0eb1eULL), K(0xf57d4f7fee6ed178ULL),
- K(0x06f067aa72176fbaULL), K(0x0a637dc5a2c898a6ULL),
- K(0x113f9804bef90daeULL), K(0x1b710b35131c471bULL),
- K(0x28db77f523047d84ULL), K(0x32caab7b40c72493ULL),
- K(0x3c9ebe0a15c9bebcULL), K(0x431d67c49c100d4cULL),
- K(0x4cc5d4becb3e42b6ULL), K(0x597f299cfc657e2aULL),
- K(0x5fcb6fab3ad6faecULL), K(0x6c44198c4a475817ULL),
- #endif
- };
- #undef K
- #undef Ch
- #undef Maj
- #undef S0
- #undef S1
- #undef R0
- #undef R1
- static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
- {
- unsigned t;
- uint32_t W[64], a, b, c, d, e, f, g, h;
- const uint32_t *words = (uint32_t*) ctx->wbuffer;
- /* Operators defined in FIPS 180-2:4.1.2. */
- #define Ch(x, y, z) ((x & y) ^ (~x & z))
- #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
- #define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
- #define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
- #define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
- #define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
- /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
- for (t = 0; t < 16; ++t)
- W[t] = SWAP_BE32(words[t]);
- for (/*t = 16*/; t < 64; ++t)
- W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
- a = ctx->hash[0];
- b = ctx->hash[1];
- c = ctx->hash[2];
- d = ctx->hash[3];
- e = ctx->hash[4];
- f = ctx->hash[5];
- g = ctx->hash[6];
- h = ctx->hash[7];
- /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
- for (t = 0; t < 64; ++t) {
- /* Need to fetch upper half of sha_K[t]
- * (I hope compiler is clever enough to just fetch
- * upper half)
- */
- uint32_t K_t = NEED_SHA512 ? (sha_K[t] >> 32) : sha_K[t];
- uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t];
- uint32_t T2 = S0(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- }
- #undef Ch
- #undef Maj
- #undef S0
- #undef S1
- #undef R0
- #undef R1
- /* Add the starting values of the context according to FIPS 180-2:6.2.2
- step 4. */
- ctx->hash[0] += a;
- ctx->hash[1] += b;
- ctx->hash[2] += c;
- ctx->hash[3] += d;
- ctx->hash[4] += e;
- ctx->hash[5] += f;
- ctx->hash[6] += g;
- ctx->hash[7] += h;
- }
- #if NEED_SHA512
- static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
- {
- unsigned t;
- uint64_t W[80];
- /* On i386, having assignments here (not later as sha256 does)
- * produces 99 bytes smaller code with gcc 4.3.1
- */
- uint64_t a = ctx->hash[0];
- uint64_t b = ctx->hash[1];
- uint64_t c = ctx->hash[2];
- uint64_t d = ctx->hash[3];
- uint64_t e = ctx->hash[4];
- uint64_t f = ctx->hash[5];
- uint64_t g = ctx->hash[6];
- uint64_t h = ctx->hash[7];
- const uint64_t *words = (uint64_t*) ctx->wbuffer;
- /* Operators defined in FIPS 180-2:4.1.2. */
- #define Ch(x, y, z) ((x & y) ^ (~x & z))
- #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
- #define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
- #define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
- #define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
- #define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
- /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
- for (t = 0; t < 16; ++t)
- W[t] = SWAP_BE64(words[t]);
- for (/*t = 16*/; t < 80; ++t)
- W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
- /* The actual computation according to FIPS 180-2:6.3.2 step 3. */
- for (t = 0; t < 80; ++t) {
- uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t];
- uint64_t T2 = S0(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- }
- #undef Ch
- #undef Maj
- #undef S0
- #undef S1
- #undef R0
- #undef R1
- /* Add the starting values of the context according to FIPS 180-2:6.3.2
- step 4. */
- ctx->hash[0] += a;
- ctx->hash[1] += b;
- ctx->hash[2] += c;
- ctx->hash[3] += d;
- ctx->hash[4] += e;
- ctx->hash[5] += f;
- ctx->hash[6] += g;
- ctx->hash[7] += h;
- }
- #endif /* NEED_SHA512 */
- void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
- {
- ctx->hash[0] = 0x67452301;
- ctx->hash[1] = 0xefcdab89;
- ctx->hash[2] = 0x98badcfe;
- ctx->hash[3] = 0x10325476;
- ctx->hash[4] = 0xc3d2e1f0;
- ctx->total64 = 0;
- ctx->process_block = sha1_process_block64;
- }
- static const uint32_t init256[] ALIGN4 = {
- 0,
- 0,
- 0x6a09e667,
- 0xbb67ae85,
- 0x3c6ef372,
- 0xa54ff53a,
- 0x510e527f,
- 0x9b05688c,
- 0x1f83d9ab,
- 0x5be0cd19,
- };
- #if NEED_SHA512
- static const uint32_t init512_lo[] ALIGN4 = {
- 0,
- 0,
- 0xf3bcc908,
- 0x84caa73b,
- 0xfe94f82b,
- 0x5f1d36f1,
- 0xade682d1,
- 0x2b3e6c1f,
- 0xfb41bd6b,
- 0x137e2179,
- };
- #endif /* NEED_SHA512 */
- // Note: SHA-384 is identical to SHA-512, except that initial hash values are
- // 0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939,
- // 0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4,
- // and the output is constructed by omitting last two 64-bit words of it.
- /* Initialize structure containing state of computation.
- (FIPS 180-2:5.3.2) */
- void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
- {
- memcpy(&ctx->total64, init256, sizeof(init256));
- /*ctx->total64 = 0; - done by prepending two 32-bit zeros to init256 */
- ctx->process_block = sha256_process_block64;
- }
- #if NEED_SHA512
- /* Initialize structure containing state of computation.
- (FIPS 180-2:5.3.3) */
- void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
- {
- int i;
- /* Two extra iterations zero out ctx->total64[2] */
- uint64_t *tp = ctx->total64;
- for (i = 0; i < 8 + 2; i++)
- tp[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
- /*ctx->total64[0] = ctx->total64[1] = 0; - already done */
- }
- void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
- {
- unsigned bufpos = ctx->total64[0] & 127;
- unsigned remaining;
- /* First increment the byte count. FIPS 180-2 specifies the possible
- length of the file up to 2^128 _bits_.
- We compute the number of _bytes_ and convert to bits later. */
- ctx->total64[0] += len;
- if (ctx->total64[0] < len)
- ctx->total64[1]++;
- while (1) {
- remaining = 128 - bufpos;
- if (remaining > len)
- remaining = len;
- /* Copy data into aligned buffer */
- memcpy(ctx->wbuffer + bufpos, buffer, remaining);
- len -= remaining;
- buffer = (const char *)buffer + remaining;
- bufpos += remaining;
- /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
- bufpos -= 128;
- if (bufpos != 0)
- break;
- /* Buffer is filled up, process it */
- sha512_process_block128(ctx);
- /*bufpos = 0; - already is */
- }
- }
- #endif /* NEED_SHA512 */
- /* Used also for sha256 */
- unsigned FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf)
- {
- unsigned hash_size;
- /* SHA stores total in BE, need to swap on LE arches: */
- common64_end(ctx, /*swap_needed:*/ BB_LITTLE_ENDIAN);
- hash_size = (ctx->process_block == sha1_process_block64) ? 5 : 8;
- /* This way we do not impose alignment constraints on resbuf: */
- if (BB_LITTLE_ENDIAN) {
- unsigned i;
- for (i = 0; i < hash_size; ++i)
- ctx->hash[i] = SWAP_BE32(ctx->hash[i]);
- }
- hash_size *= sizeof(ctx->hash[0]);
- memcpy(resbuf, ctx->hash, hash_size);
- return hash_size;
- }
- #if NEED_SHA512
- unsigned FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf)
- {
- unsigned bufpos = ctx->total64[0] & 127;
- /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */
- ctx->wbuffer[bufpos++] = 0x80;
- while (1) {
- unsigned remaining = 128 - bufpos;
- memset(ctx->wbuffer + bufpos, 0, remaining);
- if (remaining >= 16) {
- /* Store the 128-bit counter of bits in the buffer in BE format */
- uint64_t t;
- t = ctx->total64[0] << 3;
- t = SWAP_BE64(t);
- *(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 8]) = t;
- t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61);
- t = SWAP_BE64(t);
- *(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 16]) = t;
- }
- sha512_process_block128(ctx);
- if (remaining >= 16)
- break;
- bufpos = 0;
- }
- if (BB_LITTLE_ENDIAN) {
- unsigned i;
- for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i)
- ctx->hash[i] = SWAP_BE64(ctx->hash[i]);
- }
- memcpy(resbuf, ctx->hash, sizeof(ctx->hash));
- return sizeof(ctx->hash);
- }
- #endif /* NEED_SHA512 */
- /*
- * The Keccak sponge function, designed by Guido Bertoni, Joan Daemen,
- * Michael Peeters and Gilles Van Assche. For more information, feedback or
- * questions, please refer to our website: http://keccak.noekeon.org/
- *
- * Implementation by Ronny Van Keer,
- * hereby denoted as "the implementer".
- *
- * To the extent possible under law, the implementer has waived all copyright
- * and related or neighboring rights to the source code in this file.
- * http://creativecommons.org/publicdomain/zero/1.0/
- *
- * Busybox modifications (C) Lauri Kasanen, under the GPLv2.
- */
- #if CONFIG_SHA3_SMALL < 0
- # define SHA3_SMALL 0
- #elif CONFIG_SHA3_SMALL > 1
- # define SHA3_SMALL 1
- #else
- # define SHA3_SMALL CONFIG_SHA3_SMALL
- #endif
- #define OPTIMIZE_SHA3_FOR_32 0
- /*
- * SHA3 can be optimized for 32-bit CPUs with bit-slicing:
- * every 64-bit word of state[] can be split into two 32-bit words
- * by even/odd bits. In this form, all rotations of sha3 round
- * are 32-bit - and there are lots of them.
- * However, it requires either splitting/combining state words
- * before/after sha3 round (code does this now)
- * or shuffling bits before xor'ing them into state and in sha3_end.
- * Without shuffling, bit-slicing results in -130 bytes of code
- * and marginal speedup (but of course it gives wrong result).
- * With shuffling it works, but +260 code bytes, and slower.
- * Disabled for now:
- */
- #if 0 /* LONG_MAX == 0x7fffffff */
- # undef OPTIMIZE_SHA3_FOR_32
- # define OPTIMIZE_SHA3_FOR_32 1
- #endif
- #if OPTIMIZE_SHA3_FOR_32
- /* This splits every 64-bit word into a pair of 32-bit words,
- * even bits go into first word, odd bits go to second one.
- * The conversion is done in-place.
- */
- static void split_halves(uint64_t *state)
- {
- /* Credit: Henry S. Warren, Hacker's Delight, Addison-Wesley, 2002 */
- uint32_t *s32 = (uint32_t*)state;
- uint32_t t, x0, x1;
- int i;
- for (i = 24; i >= 0; --i) {
- x0 = s32[0];
- t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
- t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
- t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
- t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
- x1 = s32[1];
- t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
- t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
- t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
- t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
- *s32++ = (x0 & 0x0000FFFF) | (x1 << 16);
- *s32++ = (x0 >> 16) | (x1 & 0xFFFF0000);
- }
- }
- /* The reverse operation */
- static void combine_halves(uint64_t *state)
- {
- uint32_t *s32 = (uint32_t*)state;
- uint32_t t, x0, x1;
- int i;
- for (i = 24; i >= 0; --i) {
- x0 = s32[0];
- x1 = s32[1];
- t = (x0 & 0x0000FFFF) | (x1 << 16);
- x1 = (x0 >> 16) | (x1 & 0xFFFF0000);
- x0 = t;
- t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
- t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
- t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
- t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
- *s32++ = x0;
- t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
- t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
- t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
- t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
- *s32++ = x1;
- }
- }
- #endif
- /*
- * In the crypto literature this function is usually called Keccak-f().
- */
- static void sha3_process_block72(uint64_t *state)
- {
- enum { NROUNDS = 24 };
- #if OPTIMIZE_SHA3_FOR_32
- /*
- static const uint32_t IOTA_CONST_0[NROUNDS] ALIGN4 = {
- 0x00000001UL,
- 0x00000000UL,
- 0x00000000UL,
- 0x00000000UL,
- 0x00000001UL,
- 0x00000001UL,
- 0x00000001UL,
- 0x00000001UL,
- 0x00000000UL,
- 0x00000000UL,
- 0x00000001UL,
- 0x00000000UL,
- 0x00000001UL,
- 0x00000001UL,
- 0x00000001UL,
- 0x00000001UL,
- 0x00000000UL,
- 0x00000000UL,
- 0x00000000UL,
- 0x00000000UL,
- 0x00000001UL,
- 0x00000000UL,
- 0x00000001UL,
- 0x00000000UL,
- };
- ** bits are in lsb: 0101 0000 1111 0100 1111 0001
- */
- uint32_t IOTA_CONST_0bits = (uint32_t)(0x0050f4f1);
- static const uint32_t IOTA_CONST_1[NROUNDS] ALIGN4 = {
- 0x00000000UL,
- 0x00000089UL,
- 0x8000008bUL,
- 0x80008080UL,
- 0x0000008bUL,
- 0x00008000UL,
- 0x80008088UL,
- 0x80000082UL,
- 0x0000000bUL,
- 0x0000000aUL,
- 0x00008082UL,
- 0x00008003UL,
- 0x0000808bUL,
- 0x8000000bUL,
- 0x8000008aUL,
- 0x80000081UL,
- 0x80000081UL,
- 0x80000008UL,
- 0x00000083UL,
- 0x80008003UL,
- 0x80008088UL,
- 0x80000088UL,
- 0x00008000UL,
- 0x80008082UL,
- };
- uint32_t *const s32 = (uint32_t*)state;
- unsigned round;
- split_halves(state);
- for (round = 0; round < NROUNDS; round++) {
- unsigned x;
- /* Theta */
- {
- uint32_t BC[20];
- for (x = 0; x < 10; ++x) {
- BC[x+10] = BC[x] = s32[x]^s32[x+10]^s32[x+20]^s32[x+30]^s32[x+40];
- }
- for (x = 0; x < 10; x += 2) {
- uint32_t ta, tb;
- ta = BC[x+8] ^ rotl32(BC[x+3], 1);
- tb = BC[x+9] ^ BC[x+2];
- s32[x+0] ^= ta;
- s32[x+1] ^= tb;
- s32[x+10] ^= ta;
- s32[x+11] ^= tb;
- s32[x+20] ^= ta;
- s32[x+21] ^= tb;
- s32[x+30] ^= ta;
- s32[x+31] ^= tb;
- s32[x+40] ^= ta;
- s32[x+41] ^= tb;
- }
- }
- /* RhoPi */
- {
- uint32_t t0a,t0b, t1a,t1b;
- t1a = s32[1*2+0];
- t1b = s32[1*2+1];
- #define RhoPi(PI_LANE, ROT_CONST) \
- t0a = s32[PI_LANE*2+0];\
- t0b = s32[PI_LANE*2+1];\
- if (ROT_CONST & 1) {\
- s32[PI_LANE*2+0] = rotl32(t1b, ROT_CONST/2+1);\
- s32[PI_LANE*2+1] = ROT_CONST == 1 ? t1a : rotl32(t1a, ROT_CONST/2+0);\
- } else {\
- s32[PI_LANE*2+0] = rotl32(t1a, ROT_CONST/2);\
- s32[PI_LANE*2+1] = rotl32(t1b, ROT_CONST/2);\
- }\
- t1a = t0a; t1b = t0b;
- RhoPi(10, 1)
- RhoPi( 7, 3)
- RhoPi(11, 6)
- RhoPi(17,10)
- RhoPi(18,15)
- RhoPi( 3,21)
- RhoPi( 5,28)
- RhoPi(16,36)
- RhoPi( 8,45)
- RhoPi(21,55)
- RhoPi(24, 2)
- RhoPi( 4,14)
- RhoPi(15,27)
- RhoPi(23,41)
- RhoPi(19,56)
- RhoPi(13, 8)
- RhoPi(12,25)
- RhoPi( 2,43)
- RhoPi(20,62)
- RhoPi(14,18)
- RhoPi(22,39)
- RhoPi( 9,61)
- RhoPi( 6,20)
- RhoPi( 1,44)
- #undef RhoPi
- }
- /* Chi */
- for (x = 0; x <= 40;) {
- uint32_t BC0, BC1, BC2, BC3, BC4;
- BC0 = s32[x + 0*2];
- BC1 = s32[x + 1*2];
- BC2 = s32[x + 2*2];
- s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
- BC3 = s32[x + 3*2];
- s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
- BC4 = s32[x + 4*2];
- s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
- s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
- s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
- x++;
- BC0 = s32[x + 0*2];
- BC1 = s32[x + 1*2];
- BC2 = s32[x + 2*2];
- s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
- BC3 = s32[x + 3*2];
- s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
- BC4 = s32[x + 4*2];
- s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
- s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
- s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
- x += 9;
- }
- /* Iota */
- s32[0] ^= IOTA_CONST_0bits & 1;
- IOTA_CONST_0bits >>= 1;
- s32[1] ^= IOTA_CONST_1[round];
- }
- combine_halves(state);
- #else
- /* Native 64-bit algorithm */
- static const uint16_t IOTA_CONST[NROUNDS] ALIGN2 = {
- /* Elements should be 64-bit, but top half is always zero
- * or 0x80000000. We encode 63rd bits in a separate word below.
- * Same is true for 31th bits, which lets us use 16-bit table
- * instead of 64-bit. The speed penalty is lost in the noise.
- */
- 0x0001,
- 0x8082,
- 0x808a,
- 0x8000,
- 0x808b,
- 0x0001,
- 0x8081,
- 0x8009,
- 0x008a,
- 0x0088,
- 0x8009,
- 0x000a,
- 0x808b,
- 0x008b,
- 0x8089,
- 0x8003,
- 0x8002,
- 0x0080,
- 0x800a,
- 0x000a,
- 0x8081,
- 0x8080,
- 0x0001,
- 0x8008,
- };
- /* bit for CONST[0] is in msb: 0011 0011 0000 0111 1101 1101 */
- const uint32_t IOTA_CONST_bit63 = (uint32_t)(0x3307dd00);
- /* bit for CONST[0] is in msb: 0001 0110 0011 1000 0001 1011 */
- const uint32_t IOTA_CONST_bit31 = (uint32_t)(0x16381b00);
- static const uint8_t ROT_CONST[24] ALIGN1 = {
- 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
- 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44,
- };
- static const uint8_t PI_LANE[24] ALIGN1 = {
- 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
- 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1,
- };
- /*static const uint8_t MOD5[10] ALIGN1 = { 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, };*/
- unsigned x;
- unsigned round;
- if (BB_BIG_ENDIAN) {
- for (x = 0; x < 25; x++) {
- state[x] = SWAP_LE64(state[x]);
- }
- }
- for (round = 0; round < NROUNDS; ++round) {
- /* Theta */
- {
- uint64_t BC[10];
- for (x = 0; x < 5; ++x) {
- BC[x + 5] = BC[x] = state[x]
- ^ state[x + 5] ^ state[x + 10]
- ^ state[x + 15] ^ state[x + 20];
- }
- /* Using 2x5 vector above eliminates the need to use
- * BC[MOD5[x+N]] trick below to fetch BC[(x+N) % 5],
- * and the code is a bit _smaller_.
- */
- for (x = 0; x < 5; ++x) {
- uint64_t temp = BC[x + 4] ^ rotl64(BC[x + 1], 1);
- state[x] ^= temp;
- state[x + 5] ^= temp;
- state[x + 10] ^= temp;
- state[x + 15] ^= temp;
- state[x + 20] ^= temp;
- }
- }
- /* Rho Pi */
- if (SHA3_SMALL) {
- uint64_t t1 = state[1];
- for (x = 0; x < 24; ++x) {
- uint64_t t0 = state[PI_LANE[x]];
- state[PI_LANE[x]] = rotl64(t1, ROT_CONST[x]);
- t1 = t0;
- }
- } else {
- /* Especially large benefit for 32-bit arch (75% faster):
- * 64-bit rotations by non-constant usually are SLOW on those.
- * We resort to unrolling here.
- * This optimizes out PI_LANE[] and ROT_CONST[],
- * but generates 300-500 more bytes of code.
- */
- uint64_t t0;
- uint64_t t1 = state[1];
- #define RhoPi_twice(x) \
- t0 = state[PI_LANE[x ]]; \
- state[PI_LANE[x ]] = rotl64(t1, ROT_CONST[x ]); \
- t1 = state[PI_LANE[x+1]]; \
- state[PI_LANE[x+1]] = rotl64(t0, ROT_CONST[x+1]);
- RhoPi_twice(0); RhoPi_twice(2);
- RhoPi_twice(4); RhoPi_twice(6);
- RhoPi_twice(8); RhoPi_twice(10);
- RhoPi_twice(12); RhoPi_twice(14);
- RhoPi_twice(16); RhoPi_twice(18);
- RhoPi_twice(20); RhoPi_twice(22);
- #undef RhoPi_twice
- }
- /* Chi */
- # if LONG_MAX > 0x7fffffff
- for (x = 0; x <= 20; x += 5) {
- uint64_t BC0, BC1, BC2, BC3, BC4;
- BC0 = state[x + 0];
- BC1 = state[x + 1];
- BC2 = state[x + 2];
- state[x + 0] = BC0 ^ ((~BC1) & BC2);
- BC3 = state[x + 3];
- state[x + 1] = BC1 ^ ((~BC2) & BC3);
- BC4 = state[x + 4];
- state[x + 2] = BC2 ^ ((~BC3) & BC4);
- state[x + 3] = BC3 ^ ((~BC4) & BC0);
- state[x + 4] = BC4 ^ ((~BC0) & BC1);
- }
- # else
- /* Reduced register pressure version
- * for register-starved 32-bit arches
- * (i386: -95 bytes, and it is _faster_)
- */
- for (x = 0; x <= 40;) {
- uint32_t BC0, BC1, BC2, BC3, BC4;
- uint32_t *const s32 = (uint32_t*)state;
- # if SHA3_SMALL
- do_half:
- # endif
- BC0 = s32[x + 0*2];
- BC1 = s32[x + 1*2];
- BC2 = s32[x + 2*2];
- s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
- BC3 = s32[x + 3*2];
- s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
- BC4 = s32[x + 4*2];
- s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
- s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
- s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
- x++;
- # if SHA3_SMALL
- if (x & 1)
- goto do_half;
- x += 8;
- # else
- BC0 = s32[x + 0*2];
- BC1 = s32[x + 1*2];
- BC2 = s32[x + 2*2];
- s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
- BC3 = s32[x + 3*2];
- s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
- BC4 = s32[x + 4*2];
- s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
- s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
- s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
- x += 9;
- # endif
- }
- # endif /* long is 32-bit */
- /* Iota */
- state[0] ^= IOTA_CONST[round]
- | (uint32_t)((IOTA_CONST_bit31 << round) & 0x80000000)
- | (uint64_t)((IOTA_CONST_bit63 << round) & 0x80000000) << 32;
- }
- if (BB_BIG_ENDIAN) {
- for (x = 0; x < 25; x++) {
- state[x] = SWAP_LE64(state[x]);
- }
- }
- #endif
- }
- void FAST_FUNC sha3_begin(sha3_ctx_t *ctx)
- {
- memset(ctx, 0, sizeof(*ctx));
- /* SHA3-512, user can override */
- ctx->input_block_bytes = (1600 - 512*2) / 8; /* 72 bytes */
- }
- void FAST_FUNC sha3_hash(sha3_ctx_t *ctx, const void *buffer, size_t len)
- {
- #if SHA3_SMALL
- const uint8_t *data = buffer;
- unsigned bufpos = ctx->bytes_queued;
- while (1) {
- unsigned remaining = ctx->input_block_bytes - bufpos;
- if (remaining > len)
- remaining = len;
- len -= remaining;
- /* XOR data into buffer */
- while (remaining != 0) {
- uint8_t *buf = (uint8_t*)ctx->state;
- buf[bufpos] ^= *data++;
- bufpos++;
- remaining--;
- }
- /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
- bufpos -= ctx->input_block_bytes;
- if (bufpos != 0)
- break;
- /* Buffer is filled up, process it */
- sha3_process_block72(ctx->state);
- /*bufpos = 0; - already is */
- }
- ctx->bytes_queued = bufpos + ctx->input_block_bytes;
- #else
- /* +50 bytes code size, but a bit faster because of long-sized XORs */
- const uint8_t *data = buffer;
- unsigned bufpos = ctx->bytes_queued;
- unsigned iblk_bytes = ctx->input_block_bytes;
- /* If already data in queue, continue queuing first */
- if (bufpos != 0) {
- while (len != 0) {
- uint8_t *buf = (uint8_t*)ctx->state;
- buf[bufpos] ^= *data++;
- len--;
- bufpos++;
- if (bufpos == iblk_bytes) {
- bufpos = 0;
- goto do_block;
- }
- }
- }
- /* Absorb complete blocks */
- while (len >= iblk_bytes) {
- /* XOR data onto beginning of state[].
- * We try to be efficient - operate one word at a time, not byte.
- * Careful wrt unaligned access: can't just use "*(long*)data"!
- */
- unsigned count = iblk_bytes / sizeof(long);
- long *buf = (long*)ctx->state;
- do {
- long v;
- move_from_unaligned_long(v, (long*)data);
- *buf++ ^= v;
- data += sizeof(long);
- } while (--count);
- len -= iblk_bytes;
- do_block:
- sha3_process_block72(ctx->state);
- }
- /* Queue remaining data bytes */
- while (len != 0) {
- uint8_t *buf = (uint8_t*)ctx->state;
- buf[bufpos] ^= *data++;
- bufpos++;
- len--;
- }
- ctx->bytes_queued = bufpos;
- #endif
- }
- unsigned FAST_FUNC sha3_end(sha3_ctx_t *ctx, void *resbuf)
- {
- /* Padding */
- uint8_t *buf = (uint8_t*)ctx->state;
- /*
- * Keccak block padding is: add 1 bit after last bit of input,
- * then add zero bits until the end of block, and add the last 1 bit
- * (the last bit in the block) - the "10*1" pattern.
- * SHA3 standard appends additional two bits, 01, before that padding:
- *
- * SHA3-224(M) = KECCAK[448](M||01, 224)
- * SHA3-256(M) = KECCAK[512](M||01, 256)
- * SHA3-384(M) = KECCAK[768](M||01, 384)
- * SHA3-512(M) = KECCAK[1024](M||01, 512)
- * (M is the input, || is bit concatenation)
- *
- * The 6 below contains 01 "SHA3" bits and the first 1 "Keccak" bit:
- */
- buf[ctx->bytes_queued] ^= 6; /* bit pattern 00000110 */
- buf[ctx->input_block_bytes - 1] ^= 0x80;
- sha3_process_block72(ctx->state);
- /* Output */
- memcpy(resbuf, ctx->state, 64);
- return 64;
- }
|