1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498 |
- /*
- * Copyright (C) 2021 Denys Vlasenko
- *
- * Licensed under GPLv2, see file LICENSE in this source tree.
- */
- #include "tls.h"
- #define SP_DEBUG 0
- #define FIXED_SECRET 0
- #define FIXED_PEER_PUBKEY 0
- #define ALLOW_ASM 1
- #if SP_DEBUG
- # define dbg(...) fprintf(stderr, __VA_ARGS__)
- static void dump_hex(const char *fmt, const void *vp, int len)
- {
- char hexbuf[32 * 1024 + 4];
- const uint8_t *p = vp;
- bin2hex(hexbuf, (void*)p, len)[0] = '\0';
- dbg(fmt, hexbuf);
- }
- #else
- # define dbg(...) ((void)0)
- # define dump_hex(...) ((void)0)
- #endif
- typedef uint32_t sp_digit;
- typedef int32_t signed_sp_digit;
- /* 64-bit optimizations:
- * if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff,
- * then loads and stores can be done in 64-bit chunks.
- *
- * A narrower case is when arch is also little-endian (such as x86_64),
- * then "LSW first", uint32[8] and uint64[4] representations are equivalent,
- * and arithmetic can be done in 64 bits too.
- */
- #if defined(__GNUC__) && defined(__x86_64__)
- # define UNALIGNED_LE_64BIT 1
- #else
- # define UNALIGNED_LE_64BIT 0
- #endif
- /* The code below is taken from parts of
- * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c
- * and heavily modified.
- */
- typedef struct sp_point {
- sp_digit x[8]
- #if ULONG_MAX > 0xffffffff
- /* Make sp_point[] arrays to not be 64-bit misaligned */
- ALIGNED(8)
- #endif
- ;
- sp_digit y[8];
- sp_digit z[8];
- int infinity;
- } sp_point;
- /* The modulus (prime) of the curve P256. */
- static const sp_digit p256_mod[8] ALIGNED(8) = {
- 0xffffffff,0xffffffff,0xffffffff,0x00000000,
- 0x00000000,0x00000000,0x00000001,0xffffffff,
- };
- #define p256_mp_mod ((sp_digit)0x000001)
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 32
- *
- * r A single precision integer.
- * a Byte array.
- */
- #if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff
- static void sp_256_to_bin_8(const sp_digit* rr, uint8_t* a)
- {
- int i;
- const uint64_t* r = (void*)rr;
- r += 4;
- for (i = 0; i < 4; i++) {
- r--;
- move_to_unaligned64(a, SWAP_BE64(*r));
- a += 8;
- }
- }
- #else
- static void sp_256_to_bin_8(const sp_digit* r, uint8_t* a)
- {
- int i;
- r += 8;
- for (i = 0; i < 8; i++) {
- r--;
- move_to_unaligned32(a, SWAP_BE32(*r));
- a += 4;
- }
- }
- #endif
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * a Byte array.
- * n Number of bytes in array to read.
- */
- #if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff
- static void sp_256_from_bin_8(sp_digit* rr, const uint8_t* a)
- {
- int i;
- uint64_t* r = (void*)rr;
- r += 4;
- for (i = 0; i < 4; i++) {
- uint64_t v;
- move_from_unaligned64(v, a);
- *--r = SWAP_BE64(v);
- a += 8;
- }
- }
- #else
- static void sp_256_from_bin_8(sp_digit* r, const uint8_t* a)
- {
- int i;
- r += 8;
- for (i = 0; i < 8; i++) {
- sp_digit v;
- move_from_unaligned32(v, a);
- *--r = SWAP_BE32(v);
- a += 4;
- }
- }
- #endif
- #if SP_DEBUG
- static void dump_256(const char *fmt, const sp_digit* r)
- {
- uint8_t b32[32];
- sp_256_to_bin_8(r, b32);
- dump_hex(fmt, b32, 32);
- }
- static void dump_512(const char *fmt, const sp_digit* r)
- {
- uint8_t b64[64];
- sp_256_to_bin_8(r, b64 + 32);
- sp_256_to_bin_8(r+8, b64);
- dump_hex(fmt, b64, 64);
- }
- #else
- # define dump_256(...) ((void)0)
- # define dump_512(...) ((void)0)
- #endif
- /* Convert a point of big-endian 32-byte x,y pair to type sp_point. */
- static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
- {
- memset(p, 0, sizeof(*p));
- /*p->infinity = 0;*/
- sp_256_from_bin_8(p->x, bin2x32);
- sp_256_from_bin_8(p->y, bin2x32 + 32);
- p->z[0] = 1; /* p->z = 1 */
- }
- /* Compare a with b.
- *
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- #if UNALIGNED_LE_64BIT
- static signed_sp_digit sp_256_cmp_8(const sp_digit* aa, const sp_digit* bb)
- {
- const uint64_t* a = (void*)aa;
- const uint64_t* b = (void*)bb;
- int i;
- for (i = 3; i >= 0; i--) {
- if (a[i] == b[i])
- continue;
- return (a[i] > b[i]) * 2 - 1;
- }
- return 0;
- }
- #else
- static signed_sp_digit sp_256_cmp_8(const sp_digit* a, const sp_digit* b)
- {
- int i;
- for (i = 7; i >= 0; i--) {
- /* signed_sp_digit r = a[i] - b[i];
- * if (r != 0)
- * return r;
- * does not work: think about a[i]=0, b[i]=0xffffffff
- */
- if (a[i] == b[i])
- continue;
- return (a[i] > b[i]) * 2 - 1;
- }
- return 0;
- }
- #endif
- /* Compare two numbers to determine if they are equal.
- *
- * return 1 when equal and 0 otherwise.
- */
- static int sp_256_cmp_equal_8(const sp_digit* a, const sp_digit* b)
- {
- return sp_256_cmp_8(a, b) == 0;
- }
- /* Add b to a into r. (r = a + b). Return !0 on overflow */
- static int sp_256_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
- {
- #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
- sp_digit reg;
- asm volatile (
- "\n movl (%0), %3"
- "\n addl (%1), %3"
- "\n movl %3, (%2)"
- "\n"
- "\n movl 1*4(%0), %3"
- "\n adcl 1*4(%1), %3"
- "\n movl %3, 1*4(%2)"
- "\n"
- "\n movl 2*4(%0), %3"
- "\n adcl 2*4(%1), %3"
- "\n movl %3, 2*4(%2)"
- "\n"
- "\n movl 3*4(%0), %3"
- "\n adcl 3*4(%1), %3"
- "\n movl %3, 3*4(%2)"
- "\n"
- "\n movl 4*4(%0), %3"
- "\n adcl 4*4(%1), %3"
- "\n movl %3, 4*4(%2)"
- "\n"
- "\n movl 5*4(%0), %3"
- "\n adcl 5*4(%1), %3"
- "\n movl %3, 5*4(%2)"
- "\n"
- "\n movl 6*4(%0), %3"
- "\n adcl 6*4(%1), %3"
- "\n movl %3, 6*4(%2)"
- "\n"
- "\n movl 7*4(%0), %3"
- "\n adcl 7*4(%1), %3"
- "\n movl %3, 7*4(%2)"
- "\n"
- "\n sbbl %3, %3"
- "\n"
- : "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
- : "0" (a), "1" (b), "2" (r)
- : "memory"
- );
- return reg;
- #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
- uint64_t reg;
- asm volatile (
- "\n movq (%0), %3"
- "\n addq (%1), %3"
- "\n movq %3, (%2)"
- "\n"
- "\n movq 1*8(%0), %3"
- "\n adcq 1*8(%1), %3"
- "\n movq %3, 1*8(%2)"
- "\n"
- "\n movq 2*8(%0), %3"
- "\n adcq 2*8(%1), %3"
- "\n movq %3, 2*8(%2)"
- "\n"
- "\n movq 3*8(%0), %3"
- "\n adcq 3*8(%1), %3"
- "\n movq %3, 3*8(%2)"
- "\n"
- "\n sbbq %3, %3"
- "\n"
- : "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
- : "0" (a), "1" (b), "2" (r)
- : "memory"
- );
- return reg;
- #else
- int i;
- sp_digit carry;
- carry = 0;
- for (i = 0; i < 8; i++) {
- sp_digit w, v;
- w = b[i] + carry;
- v = a[i];
- if (w != 0) {
- v = a[i] + w;
- carry = (v < a[i]);
- /* hope compiler detects above as "carry flag set" */
- }
- /* else: b + carry == 0, two cases:
- * b:ffffffff, carry:1
- * b:00000000, carry:0
- * in either case, r[i] = a[i] and carry remains unchanged
- */
- r[i] = v;
- }
- return carry;
- #endif
- }
- /* Sub b from a into r. (r = a - b). Return !0 on underflow */
- static int sp_256_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
- {
- #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
- sp_digit reg;
- asm volatile (
- "\n movl (%0), %3"
- "\n subl (%1), %3"
- "\n movl %3, (%2)"
- "\n"
- "\n movl 1*4(%0), %3"
- "\n sbbl 1*4(%1), %3"
- "\n movl %3, 1*4(%2)"
- "\n"
- "\n movl 2*4(%0), %3"
- "\n sbbl 2*4(%1), %3"
- "\n movl %3, 2*4(%2)"
- "\n"
- "\n movl 3*4(%0), %3"
- "\n sbbl 3*4(%1), %3"
- "\n movl %3, 3*4(%2)"
- "\n"
- "\n movl 4*4(%0), %3"
- "\n sbbl 4*4(%1), %3"
- "\n movl %3, 4*4(%2)"
- "\n"
- "\n movl 5*4(%0), %3"
- "\n sbbl 5*4(%1), %3"
- "\n movl %3, 5*4(%2)"
- "\n"
- "\n movl 6*4(%0), %3"
- "\n sbbl 6*4(%1), %3"
- "\n movl %3, 6*4(%2)"
- "\n"
- "\n movl 7*4(%0), %3"
- "\n sbbl 7*4(%1), %3"
- "\n movl %3, 7*4(%2)"
- "\n"
- "\n sbbl %3, %3"
- "\n"
- : "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
- : "0" (a), "1" (b), "2" (r)
- : "memory"
- );
- return reg;
- #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
- uint64_t reg;
- asm volatile (
- "\n movq (%0), %3"
- "\n subq (%1), %3"
- "\n movq %3, (%2)"
- "\n"
- "\n movq 1*8(%0), %3"
- "\n sbbq 1*8(%1), %3"
- "\n movq %3, 1*8(%2)"
- "\n"
- "\n movq 2*8(%0), %3"
- "\n sbbq 2*8(%1), %3"
- "\n movq %3, 2*8(%2)"
- "\n"
- "\n movq 3*8(%0), %3"
- "\n sbbq 3*8(%1), %3"
- "\n movq %3, 3*8(%2)"
- "\n"
- "\n sbbq %3, %3"
- "\n"
- : "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
- : "0" (a), "1" (b), "2" (r)
- : "memory"
- );
- return reg;
- #else
- int i;
- sp_digit borrow;
- borrow = 0;
- for (i = 0; i < 8; i++) {
- sp_digit w, v;
- w = b[i] + borrow;
- v = a[i];
- if (w != 0) {
- v = a[i] - w;
- borrow = (v > a[i]);
- /* hope compiler detects above as "carry flag set" */
- }
- /* else: b + borrow == 0, two cases:
- * b:ffffffff, borrow:1
- * b:00000000, borrow:0
- * in either case, r[i] = a[i] and borrow remains unchanged
- */
- r[i] = v;
- }
- return borrow;
- #endif
- }
- /* Sub p256_mod from r. (r = r - p256_mod). */
- #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
- static void sp_256_sub_8_p256_mod(sp_digit* r)
- {
- //p256_mod[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
- asm volatile (
- "\n subl $0xffffffff, (%0)"
- "\n sbbl $0xffffffff, 1*4(%0)"
- "\n sbbl $0xffffffff, 2*4(%0)"
- "\n sbbl $0, 3*4(%0)"
- "\n sbbl $0, 4*4(%0)"
- "\n sbbl $0, 5*4(%0)"
- "\n sbbl $1, 6*4(%0)"
- "\n sbbl $0xffffffff, 7*4(%0)"
- "\n"
- : "=r" (r)
- : "0" (r)
- : "memory"
- );
- }
- #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
- static void sp_256_sub_8_p256_mod(sp_digit* r)
- {
- uint64_t reg;
- uint64_t ooff;
- //p256_mod[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff
- asm volatile (
- "\n addq $1, (%0)" // adding 1 is the same as subtracting ffffffffffffffff
- "\n cmc" // only carry bit needs inverting
- "\n"
- "\n sbbq %1, 1*8(%0)" // %1 holds 00000000ffffffff
- "\n"
- "\n sbbq $0, 2*8(%0)"
- "\n"
- "\n movq 3*8(%0), %2"
- "\n sbbq $0, %2" // adding 00000000ffffffff (in %1)
- "\n addq %1, %2" // is the same as subtracting ffffffff00000001
- "\n movq %2, 3*8(%0)"
- "\n"
- : "=r" (r), "=r" (ooff), "=r" (reg)
- : "0" (r), "1" (0x00000000ffffffff)
- : "memory"
- );
- }
- #else
- static void sp_256_sub_8_p256_mod(sp_digit* r)
- {
- sp_256_sub_8(r, r, p256_mod);
- }
- #endif
- /* Multiply a and b into r. (r = a * b)
- * r should be [16] array (512 bits), and must not coincide with a or b.
- */
- static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
- {
- #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
- int k;
- uint32_t accl;
- uint32_t acch;
- acch = accl = 0;
- for (k = 0; k < 15; k++) {
- int i, j;
- uint32_t acc_hi;
- i = k - 7;
- if (i < 0)
- i = 0;
- j = k - i;
- acc_hi = 0;
- do {
- ////////////////////////
- // uint64_t m = ((uint64_t)a[i]) * b[j];
- // acc_hi:acch:accl += m;
- asm volatile (
- // a[i] is already loaded in %%eax
- "\n mull %7"
- "\n addl %%eax, %0"
- "\n adcl %%edx, %1"
- "\n adcl $0, %2"
- : "=rm" (accl), "=rm" (acch), "=rm" (acc_hi)
- : "0" (accl), "1" (acch), "2" (acc_hi), "a" (a[i]), "m" (b[j])
- : "cc", "dx"
- );
- ////////////////////////
- j--;
- i++;
- } while (i != 8 && i <= k);
- r[k] = accl;
- accl = acch;
- acch = acc_hi;
- }
- r[15] = accl;
- #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
- const uint64_t* aa = (const void*)a;
- const uint64_t* bb = (const void*)b;
- uint64_t* rr = (void*)r;
- int k;
- uint64_t accl;
- uint64_t acch;
- acch = accl = 0;
- for (k = 0; k < 7; k++) {
- int i, j;
- uint64_t acc_hi;
- i = k - 3;
- if (i < 0)
- i = 0;
- j = k - i;
- acc_hi = 0;
- do {
- ////////////////////////
- // uint128_t m = ((uint128_t)a[i]) * b[j];
- // acc_hi:acch:accl += m;
- asm volatile (
- // aa[i] is already loaded in %%rax
- "\n mulq %7"
- "\n addq %%rax, %0"
- "\n adcq %%rdx, %1"
- "\n adcq $0, %2"
- : "=rm" (accl), "=rm" (acch), "=rm" (acc_hi)
- : "0" (accl), "1" (acch), "2" (acc_hi), "a" (aa[i]), "m" (bb[j])
- : "cc", "dx"
- );
- ////////////////////////
- j--;
- i++;
- } while (i != 4 && i <= k);
- rr[k] = accl;
- accl = acch;
- acch = acc_hi;
- }
- rr[7] = accl;
- #elif 0
- //TODO: arm assembly (untested)
- asm volatile (
- "\n mov r5, #0"
- "\n mov r6, #0"
- "\n mov r7, #0"
- "\n mov r8, #0"
- "\n 1:"
- "\n subs r3, r5, #28"
- "\n movcc r3, #0"
- "\n sub r4, r5, r3"
- "\n 2:"
- "\n ldr r14, [%[a], r3]"
- "\n ldr r12, [%[b], r4]"
- "\n umull r9, r10, r14, r12"
- "\n adds r6, r6, r9"
- "\n adcs r7, r7, r10"
- "\n adc r8, r8, #0"
- "\n add r3, r3, #4"
- "\n sub r4, r4, #4"
- "\n cmp r3, #32"
- "\n beq 3f"
- "\n cmp r3, r5"
- "\n ble 2b"
- "\n 3:"
- "\n str r6, [%[r], r5]"
- "\n mov r6, r7"
- "\n mov r7, r8"
- "\n mov r8, #0"
- "\n add r5, r5, #4"
- "\n cmp r5, #56"
- "\n ble 1b"
- "\n str r6, [%[r], r5]"
- : [r] "r" (r), [a] "r" (a), [b] "r" (b)
- : "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r12", "r14"
- );
- #else
- int i, j, k;
- uint64_t acc;
- acc = 0;
- for (k = 0; k < 15; k++) {
- uint32_t acc_hi;
- i = k - 7;
- if (i < 0)
- i = 0;
- j = k - i;
- acc_hi = 0;
- do {
- uint64_t m = ((uint64_t)a[i]) * b[j];
- acc += m;
- if (acc < m)
- acc_hi++;
- j--;
- i++;
- } while (i != 8 && i <= k);
- r[k] = acc;
- acc = (acc >> 32) | ((uint64_t)acc_hi << 32);
- }
- r[15] = acc;
- #endif
- }
- /* Shift number right one bit. Bottom bit is lost. */
- #if UNALIGNED_LE_64BIT
- static void sp_256_rshift1_8(sp_digit* rr, uint64_t carry)
- {
- uint64_t *r = (void*)rr;
- int i;
- carry = (((uint64_t)!!carry) << 63);
- for (i = 3; i >= 0; i--) {
- uint64_t c = r[i] << 63;
- r[i] = (r[i] >> 1) | carry;
- carry = c;
- }
- }
- #else
- static void sp_256_rshift1_8(sp_digit* r, sp_digit carry)
- {
- int i;
- carry = (((sp_digit)!!carry) << 31);
- for (i = 7; i >= 0; i--) {
- sp_digit c = r[i] << 31;
- r[i] = (r[i] >> 1) | carry;
- carry = c;
- }
- }
- #endif
- /* Divide the number by 2 mod the modulus (prime). (r = (r / 2) % m) */
- static void sp_256_div2_8(sp_digit* r /*, const sp_digit* m*/)
- {
- const sp_digit* m = p256_mod;
- int carry = 0;
- if (r[0] & 1)
- carry = sp_256_add_8(r, r, m);
- sp_256_rshift1_8(r, carry);
- }
- /* Add two Montgomery form numbers (r = a + b % m) */
- static void sp_256_mont_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b
- /*, const sp_digit* m*/)
- {
- // const sp_digit* m = p256_mod;
- int carry = sp_256_add_8(r, a, b);
- if (carry) {
- sp_256_sub_8_p256_mod(r);
- }
- }
- /* Subtract two Montgomery form numbers (r = a - b % m) */
- static void sp_256_mont_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b
- /*, const sp_digit* m*/)
- {
- const sp_digit* m = p256_mod;
- int borrow;
- borrow = sp_256_sub_8(r, a, b);
- if (borrow) {
- sp_256_add_8(r, r, m);
- }
- }
- /* Double a Montgomery form number (r = a + a % m) */
- static void sp_256_mont_dbl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m*/)
- {
- // const sp_digit* m = p256_mod;
- int carry = sp_256_add_8(r, a, a);
- if (carry)
- sp_256_sub_8_p256_mod(r);
- }
- /* Triple a Montgomery form number (r = a + a + a % m) */
- static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m*/)
- {
- // const sp_digit* m = p256_mod;
- int carry = sp_256_add_8(r, a, a);
- if (carry) {
- sp_256_sub_8_p256_mod(r);
- }
- carry = sp_256_add_8(r, r, a);
- if (carry) {
- sp_256_sub_8_p256_mod(r);
- }
- }
- /* Shift the result in the high 256 bits down to the bottom. */
- static void sp_512to256_mont_shift_8(sp_digit* r, sp_digit* a)
- {
- memcpy(r, a + 8, sizeof(*r) * 8);
- }
- #if UNALIGNED_LE_64BIT
- /* 64-bit little-endian optimized version.
- * See generic 32-bit version below for explanation.
- * The benefit of this version is: even though r[3] calculation is atrocious,
- * we call sp_256_mul_add_4() four times, not 8.
- * Measured run time improvement of curve_P256_compute_pubkey_and_premaster()
- * call on x86-64: from ~1500us to ~900us. Code size +32 bytes.
- */
- static int sp_256_mul_add_4(uint64_t *r /*, const uint64_t* a, uint64_t b*/)
- {
- uint64_t b = r[0];
- # if 0
- const uint64_t* a = (const void*)p256_mod;
- //a[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff
- uint128_t t;
- int i;
- t = 0;
- for (i = 0; i < 4; i++) {
- uint32_t t_hi;
- uint128_t m = ((uint128_t)b * a[i]) + r[i];
- t += m;
- t_hi = (t < m);
- r[i] = (uint64_t)t;
- t = (t >> 64) | ((uint128_t)t_hi << 64);
- }
- r[4] += (uint64_t)t;
- return (r[4] < (uint64_t)t); /* 1 if addition overflowed */
- # else
- // Unroll, then optimize the above loop:
- //uint32_t t_hi;
- //uint128_t m;
- uint64_t t64, t64u;
- //m = ((uint128_t)b * a[0]) + r[0];
- // Since b is r[0] and a[0] is ffffffffffffffff, the above optimizes to:
- // m = r[0] * ffffffffffffffff + r[0] = (r[0] << 64 - r[0]) + r[0] = r[0] << 64;
- //t += m;
- // t = r[0] << 64 = b << 64;
- //t_hi = (t < m);
- // t_hi = 0;
- //r[0] = (uint64_t)t;
- // r[0] = 0;
- //the store can be eliminated since caller won't look at lower 256 bits of the result
- //t = (t >> 64) | ((uint128_t)t_hi << 64);
- // t = b;
- //m = ((uint128_t)b * a[1]) + r[1];
- // Since a[1] is 00000000ffffffff, the above optimizes to:
- // m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1];
- //t += m;
- // t = b + (b << 32) - b + r[1] = (b << 32) + r[1];
- //t_hi = (t < m);
- // t_hi = 0;
- //r[1] = (uint64_t)t;
- r[1] += (b << 32);
- //t = (t >> 64) | ((uint128_t)t_hi << 64);
- t64 = (r[1] < (b << 32));
- t64 += (b >> 32);
- //m = ((uint128_t)b * a[2]) + r[2];
- // Since a[2] is 0000000000000000, the above optimizes to:
- // m = b * 0 + r[2] = r[2];
- //t += m;
- // t = t64 + r[2];
- //t_hi = (t < m);
- // t_hi = 0;
- //r[2] = (uint64_t)t;
- r[2] += t64;
- //t = (t >> 64) | ((uint128_t)t_hi << 64);
- t64 = (r[2] < t64);
- //m = ((uint128_t)b * a[3]) + r[3];
- // Since a[3] is ffffffff00000001, the above optimizes to:
- // m = b * ffffffff00000001 + r[3];
- // m = b + b*ffffffff00000000 + r[3]
- // m = b + (b*ffffffff << 32) + r[3]
- // m = b + (((b<<32) - b) << 32) + r[3]
- //t += m;
- // t = t64 + (uint128_t)b + ((((uint128_t)b << 32) - b) << 32) + r[3];
- t64 += b;
- t64u = (t64 < b);
- t64 += r[3];
- t64u += (t64 < r[3]);
- { // add ((((uint128_t)b << 32) - b) << 32):
- uint64_t lo, hi;
- //lo = (((b << 32) - b) << 32
- //hi = (((uint128_t)b << 32) - b) >> 32
- //but without uint128_t:
- hi = (b << 32) - b; /* make lower 32 bits of "hi", part 1 */
- b = (b >> 32) - (/*borrowed above?*/(b << 32) < b); /* upper 32 bits of "hi" are in b */
- lo = hi << 32; /* (use "hi" value to calculate "lo",... */
- t64 += lo; /* ...consume... */
- t64u += (t64 < lo); /* ..."lo") */
- hi >>= 32; /* make lower 32 bits of "hi", part 2 */
- hi |= (b << 32); /* combine lower and upper 32 bits */
- t64u += hi; /* consume "hi" */
- }
- //t_hi = (t < m);
- // t_hi = 0;
- //r[3] = (uint64_t)t;
- r[3] = t64;
- //t = (t >> 64) | ((uint128_t)t_hi << 64);
- // t = t64u;
- r[4] += t64u;
- return (r[4] < t64u); /* 1 if addition overflowed */
- # endif
- }
- static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* aa/*, const sp_digit* m, sp_digit mp*/)
- {
- // const sp_digit* m = p256_mod;
- int i;
- uint64_t *a = (void*)aa;
- sp_digit carry = 0;
- for (i = 0; i < 4; i++) {
- // mu = a[i];
- if (sp_256_mul_add_4(a+i /*, m, mu*/)) {
- int j = i + 4;
- inc_next_word:
- if (++j > 7) { /* a[8] array has no more words? */
- carry++;
- continue;
- }
- if (++a[j] == 0) /* did this overflow too? */
- goto inc_next_word;
- }
- }
- sp_512to256_mont_shift_8(r, aa);
- if (carry != 0)
- sp_256_sub_8_p256_mod(r);
- }
- #else /* Generic 32-bit version */
- /* Mul a by scalar b and add into r. (r += a * b)
- * a = p256_mod
- * b = r[0]
- */
- static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/)
- {
- sp_digit b = r[0];
- uint64_t t;
- # if 0
- const sp_digit* a = p256_mod;
- //a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
- int i;
- t = 0;
- for (i = 0; i < 8; i++) {
- uint32_t t_hi;
- uint64_t m = ((uint64_t)b * a[i]) + r[i];
- t += m;
- t_hi = (t < m);
- r[i] = (sp_digit)t;
- t = (t >> 32) | ((uint64_t)t_hi << 32);
- }
- r[8] += (sp_digit)t;
- return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
- # else
- // Unroll, then optimize the above loop:
- //uint32_t t_hi;
- uint64_t m;
- uint32_t t32;
- //m = ((uint64_t)b * a[0]) + r[0];
- // Since b is r[0] and a[0] is ffffffff, the above optimizes to:
- // m = r[0] * ffffffff + r[0] = (r[0] * 100000000 - r[0]) + r[0] = r[0] << 32;
- //t += m;
- // t = r[0] << 32 = b << 32;
- //t_hi = (t < m);
- // t_hi = 0;
- //r[0] = (sp_digit)t;
- // r[0] = 0;
- //the store can be eliminated since caller won't look at lower 256 bits of the result
- //t = (t >> 32) | ((uint64_t)t_hi << 32);
- // t = b;
- //m = ((uint64_t)b * a[1]) + r[1];
- // Since a[1] is ffffffff, the above optimizes to:
- // m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1];
- //t += m;
- // t = b + (b << 32) - b + r[1] = (b << 32) + r[1];
- //t_hi = (t < m);
- // t_hi = 0;
- //r[1] = (sp_digit)t;
- // r[1] = r[1];
- //t = (t >> 32) | ((uint64_t)t_hi << 32);
- // t = b;
- //m = ((uint64_t)b * a[2]) + r[2];
- // Since a[2] is ffffffff, the above optimizes to:
- // m = b * ffffffff + r[2] = (b * 100000000 - b) + r[2] = (b << 32) - b + r[2];
- //t += m;
- // t = b + (b << 32) - b + r[2] = (b << 32) + r[2]
- //t_hi = (t < m);
- // t_hi = 0;
- //r[2] = (sp_digit)t;
- // r[2] = r[2];
- //t = (t >> 32) | ((uint64_t)t_hi << 32);
- // t = b;
- //m = ((uint64_t)b * a[3]) + r[3];
- // Since a[3] is 00000000, the above optimizes to:
- // m = b * 0 + r[3] = r[3];
- //t += m;
- // t = b + r[3];
- //t_hi = (t < m);
- // t_hi = 0;
- //r[3] = (sp_digit)t;
- r[3] = r[3] + b;
- //t = (t >> 32) | ((uint64_t)t_hi << 32);
- t32 = (r[3] < b); // 0 or 1
- //m = ((uint64_t)b * a[4]) + r[4];
- // Since a[4] is 00000000, the above optimizes to:
- // m = b * 0 + r[4] = r[4];
- //t += m;
- // t = t32 + r[4];
- //t_hi = (t < m);
- // t_hi = 0;
- //r[4] = (sp_digit)t;
- //t = (t >> 32) | ((uint64_t)t_hi << 32);
- if (t32 != 0) {
- r[4]++;
- t32 = (r[4] == 0); // 0 or 1
- //m = ((uint64_t)b * a[5]) + r[5];
- // Since a[5] is 00000000, the above optimizes to:
- // m = b * 0 + r[5] = r[5];
- //t += m;
- // t = t32 + r[5]; (t32 is 0 or 1)
- //t_hi = (t < m);
- // t_hi = 0;
- //r[5] = (sp_digit)t;
- //t = (t >> 32) | ((uint64_t)t_hi << 32);
- if (t32 != 0) {
- r[5]++;
- t32 = (r[5] == 0); // 0 or 1
- }
- }
- //m = ((uint64_t)b * a[6]) + r[6];
- // Since a[6] is 00000001, the above optimizes to:
- // m = (uint64_t)b + r[6]; // 33 bits at most
- //t += m;
- t = t32 + (uint64_t)b + r[6];
- //t_hi = (t < m);
- // t_hi = 0;
- r[6] = (sp_digit)t;
- //t = (t >> 32) | ((uint64_t)t_hi << 32);
- t = (t >> 32);
- //m = ((uint64_t)b * a[7]) + r[7];
- // Since a[7] is ffffffff, the above optimizes to:
- // m = b * ffffffff + r[7] = (b * 100000000 - b) + r[7]
- m = ((uint64_t)b << 32) - b + r[7];
- t += m;
- //t_hi = (t < m);
- // t_hi in fact is always 0 here (256bit * 32bit can't have more than 32 bits of overflow)
- r[7] = (sp_digit)t;
- //t = (t >> 32) | ((uint64_t)t_hi << 32);
- t = (t >> 32);
- r[8] += (sp_digit)t;
- return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
- # endif
- }
- /* Reduce the number back to 256 bits using Montgomery reduction.
- * Note: the result is NOT guaranteed to be less than p256_mod!
- * (it is only guaranteed to fit into 256 bits).
- *
- * r Result.
- * a Double-wide number to reduce. Clobbered.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- *
- * Montgomery reduction on multiprecision integers:
- * Montgomery reduction requires products modulo R.
- * When R is a power of B [in our case R=2^128, B=2^32], there is a variant
- * of Montgomery reduction which requires products only of machine word sized
- * integers. T is stored as an little-endian word array a[0..n]. The algorithm
- * reduces it one word at a time. First an appropriate multiple of modulus
- * is added to make T divisible by B. [In our case, it is p256_mp_mod * a[0].]
- * Then a multiple of modulus is added to make T divisible by B^2.
- * [In our case, it is (p256_mp_mod * a[1]) << 32.]
- * And so on. Eventually T is divisible by R, and after division by R
- * the algorithm is in the same place as the usual Montgomery reduction.
- */
- static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* a/*, const sp_digit* m, sp_digit mp*/)
- {
- // const sp_digit* m = p256_mod;
- sp_digit mp = p256_mp_mod;
- int i;
- // sp_digit mu;
- if (mp != 1) {
- sp_digit word16th = 0;
- for (i = 0; i < 8; i++) {
- // mu = (sp_digit)(a[i] * mp);
- if (sp_256_mul_add_8(a+i /*, m, mu*/)) {
- int j = i + 8;
- inc_next_word0:
- if (++j > 15) { /* a[16] array has no more words? */
- word16th++;
- continue;
- }
- if (++a[j] == 0) /* did this overflow too? */
- goto inc_next_word0;
- }
- }
- sp_512to256_mont_shift_8(r, a);
- if (word16th != 0)
- sp_256_sub_8_p256_mod(r);
- }
- else { /* Same code for explicit mp == 1 (which is always the case for P256) */
- sp_digit word16th = 0;
- for (i = 0; i < 8; i++) {
- // mu = a[i];
- if (sp_256_mul_add_8(a+i /*, m, mu*/)) {
- int j = i + 8;
- inc_next_word:
- if (++j > 15) { /* a[16] array has no more words? */
- word16th++;
- continue;
- }
- if (++a[j] == 0) /* did this overflow too? */
- goto inc_next_word;
- }
- }
- sp_512to256_mont_shift_8(r, a);
- if (word16th != 0)
- sp_256_sub_8_p256_mod(r);
- }
- }
- #endif
- /* Multiply two Montogmery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montogmery form.
- * b Second number to multiply in Montogmery form.
- * m Modulus (prime).
- * mp Montogmery multiplier.
- */
- static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b
- /*, const sp_digit* m, sp_digit mp*/)
- {
- //const sp_digit* m = p256_mod;
- //sp_digit mp = p256_mp_mod;
- sp_digit t[2 * 8];
- sp_256to512_mul_8(t, a, b);
- sp_512to256_mont_reduce_8(r, t /*, m, mp*/);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montogmery form.
- * m Modulus (prime).
- * mp Montogmery multiplier.
- */
- static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a
- /*, const sp_digit* m, sp_digit mp*/)
- {
- //const sp_digit* m = p256_mod;
- //sp_digit mp = p256_mp_mod;
- sp_256_mont_mul_8(r, a, a /*, m, mp*/);
- }
- static NOINLINE void sp_256_mont_mul_and_reduce_8(sp_digit* r,
- const sp_digit* a, const sp_digit* b
- /*, const sp_digit* m, sp_digit mp*/)
- {
- sp_digit rr[2 * 8];
- sp_256_mont_mul_8(rr, a, b /*, p256_mod, p256_mp_mod*/);
- memset(rr + 8, 0, sizeof(rr) / 2);
- sp_512to256_mont_reduce_8(r, rr /*, p256_mod, p256_mp_mod*/);
- }
- /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
- * P256 curve. (r = 1 / a mod m)
- *
- * r Inverse result. Must not coincide with a.
- * a Number to invert.
- */
- static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a)
- {
- int i;
- memcpy(r, a, sizeof(sp_digit) * 8);
- for (i = 254; i >= 0; i--) {
- sp_256_mont_sqr_8(r, r /*, p256_mod, p256_mp_mod*/);
- /* p256_mod - 2:
- * ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff - 2
- * Bit pattern:
- * 2 2 2 2 2 2 2 1...1
- * 5 5 4 3 2 1 0 9...0 9...1
- * 543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
- * 111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
- */
- /*if (p256_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
- if (i >= 224 || i == 192 || (i <= 95 && i != 1))
- sp_256_mont_mul_8(r, r, a /*, p256_mod, p256_mp_mod*/);
- }
- }
- /* Multiply a number by Montogmery normalizer mod modulus (prime).
- *
- * r The resulting Montgomery form number.
- * a The number to convert.
- */
- static void sp_256_mod_mul_norm_8(sp_digit* r, const sp_digit* a)
- {
- int64_t t[8];
- int32_t o;
- #define A(n) ((uint64_t)a[n])
- /* 1 1 0 -1 -1 -1 -1 0 */
- t[0] = 0 + A(0) + A(1) - A(3) - A(4) - A(5) - A(6);
- /* 0 1 1 0 -1 -1 -1 -1 */
- t[1] = 0 + A(1) + A(2) - A(4) - A(5) - A(6) - A(7);
- /* 0 0 1 1 0 -1 -1 -1 */
- t[2] = 0 + A(2) + A(3) - A(5) - A(6) - A(7);
- /* -1 -1 0 2 2 1 0 -1 */
- t[3] = 0 - A(0) - A(1) + 2 * A(3) + 2 * A(4) + A(5) - A(7);
- /* 0 -1 -1 0 2 2 1 0 */
- t[4] = 0 - A(1) - A(2) + 2 * A(4) + 2 * A(5) + A(6);
- /* 0 0 -1 -1 0 2 2 1 */
- t[5] = 0 - A(2) - A(3) + 2 * A(5) + 2 * A(6) + A(7);
- /* -1 -1 0 0 0 1 3 2 */
- t[6] = 0 - A(0) - A(1) + A(5) + 3 * A(6) + 2 * A(7);
- /* 1 0 -1 -1 -1 -1 0 3 */
- t[7] = 0 + A(0) - A(2) - A(3) - A(4) - A(5) + 3 * A(7);
- #undef A
- t[1] += t[0] >> 32; t[0] &= 0xffffffff;
- t[2] += t[1] >> 32; t[1] &= 0xffffffff;
- t[3] += t[2] >> 32; t[2] &= 0xffffffff;
- t[4] += t[3] >> 32; t[3] &= 0xffffffff;
- t[5] += t[4] >> 32; t[4] &= 0xffffffff;
- t[6] += t[5] >> 32; t[5] &= 0xffffffff;
- t[7] += t[6] >> 32; t[6] &= 0xffffffff;
- o = t[7] >> 32; //t[7] &= 0xffffffff;
- t[0] += o;
- t[3] -= o;
- t[6] -= o;
- t[7] += o;
- r[0] = (sp_digit)t[0];
- t[1] += t[0] >> 32;
- r[1] = (sp_digit)t[1];
- t[2] += t[1] >> 32;
- r[2] = (sp_digit)t[2];
- t[3] += t[2] >> 32;
- r[3] = (sp_digit)t[3];
- t[4] += t[3] >> 32;
- r[4] = (sp_digit)t[4];
- t[5] += t[4] >> 32;
- r[5] = (sp_digit)t[5];
- t[6] += t[5] >> 32;
- r[6] = (sp_digit)t[6];
- // t[7] += t[6] >> 32;
- // r[7] = (sp_digit)t[7];
- r[7] = (sp_digit)t[7] + (sp_digit)(t[6] >> 32);
- }
- /* Map the Montgomery form projective co-ordinate point to an affine point.
- *
- * r Resulting affine co-ordinate point.
- * p Montgomery form projective co-ordinate point.
- */
- static void sp_256_map_8(sp_point* r, sp_point* p)
- {
- sp_digit t1[8];
- sp_digit t2[8];
- sp_256_mont_inv_8(t1, p->z);
- sp_256_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/);
- /* x /= z^2 */
- sp_256_mont_mul_and_reduce_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/);
- /* Reduce x to less than modulus */
- if (sp_256_cmp_8(r->x, p256_mod) >= 0)
- sp_256_sub_8_p256_mod(r->x);
- /* y /= z^3 */
- sp_256_mont_mul_and_reduce_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/);
- /* Reduce y to less than modulus */
- if (sp_256_cmp_8(r->y, p256_mod) >= 0)
- sp_256_sub_8_p256_mod(r->y);
- memset(r->z, 0, sizeof(r->z));
- r->z[0] = 1;
- }
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- */
- static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p)
- {
- sp_digit t1[8];
- sp_digit t2[8];
- /* Put point to double into result */
- if (r != p)
- *r = *p; /* struct copy */
- if (r->infinity)
- return;
- /* T1 = Z * Z */
- sp_256_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/);
- /* Z = Y * Z */
- sp_256_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/);
- /* Z = 2Z */
- sp_256_mont_dbl_8(r->z, r->z /*, p256_mod*/);
- /* T2 = X - T1 */
- sp_256_mont_sub_8(t2, r->x, t1 /*, p256_mod*/);
- /* T1 = X + T1 */
- sp_256_mont_add_8(t1, r->x, t1 /*, p256_mod*/);
- /* T2 = T1 * T2 */
- sp_256_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/);
- /* T1 = 3T2 */
- sp_256_mont_tpl_8(t1, t2 /*, p256_mod*/);
- /* Y = 2Y */
- sp_256_mont_dbl_8(r->y, r->y /*, p256_mod*/);
- /* Y = Y * Y */
- sp_256_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/);
- /* T2 = Y * Y */
- sp_256_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/);
- /* T2 = T2/2 */
- sp_256_div2_8(t2 /*, p256_mod*/);
- /* Y = Y * X */
- sp_256_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/);
- /* X = T1 * T1 */
- sp_256_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/);
- /* X = X - Y */
- sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/);
- /* X = X - Y */
- sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/);
- /* Y = Y - X */
- sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/);
- /* Y = Y * T1 */
- sp_256_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/);
- /* Y = Y - T2 */
- sp_256_mont_sub_8(r->y, r->y, t2 /*, p256_mod*/);
- dump_512("y2 %s\n", r->y);
- }
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p Frist point to add.
- * q Second point to add.
- */
- static NOINLINE void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* q)
- {
- sp_digit t1[8];
- sp_digit t2[8];
- sp_digit t3[8];
- sp_digit t4[8];
- sp_digit t5[8];
- /* Ensure only the first point is the same as the result. */
- if (q == r) {
- sp_point* a = p;
- p = q;
- q = a;
- }
- /* Check double */
- sp_256_sub_8(t1, p256_mod, q->y);
- if (sp_256_cmp_equal_8(p->x, q->x)
- && sp_256_cmp_equal_8(p->z, q->z)
- && (sp_256_cmp_equal_8(p->y, q->y) || sp_256_cmp_equal_8(p->y, t1))
- ) {
- sp_256_proj_point_dbl_8(r, p);
- return;
- }
- if (p->infinity || q->infinity) {
- *r = p->infinity ? *q : *p; /* struct copy */
- return;
- }
- /* U1 = X1*Z2^2 */
- sp_256_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/);
- /* U2 = X2*Z1^2 */
- sp_256_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/);
- /* S1 = Y1*Z2^3 */
- sp_256_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/);
- /* S2 = Y2*Z1^3 */
- sp_256_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/);
- /* H = U2 - U1 */
- sp_256_mont_sub_8(t2, t2, t1 /*, p256_mod*/);
- /* R = S2 - S1 */
- sp_256_mont_sub_8(t4, t4, t3 /*, p256_mod*/);
- /* Z3 = H*Z1*Z2 */
- sp_256_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_256_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_sub_8(r->x, r->x, t5 /*, p256_mod*/);
- sp_256_mont_dbl_8(t1, r->y /*, p256_mod*/);
- sp_256_mont_sub_8(r->x, r->x, t1 /*, p256_mod*/);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/);
- sp_256_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/);
- sp_256_mont_sub_8(r->y, r->y, t5 /*, p256_mod*/);
- }
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine co-ordinates.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- */
- static void sp_256_ecc_mulmod_8(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/)
- {
- enum { map = 1 }; /* we always convert result to affine coordinates */
- sp_point t[3];
- sp_digit n = n; /* for compiler */
- int c, y;
- memset(t, 0, sizeof(t));
- /* t[0] = {0, 0, 1} * norm */
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- sp_256_mod_mul_norm_8(t[1].x, g->x);
- sp_256_mod_mul_norm_8(t[1].y, g->y);
- sp_256_mod_mul_norm_8(t[1].z, g->z);
- /* For every bit, starting from most significant... */
- k += 7;
- c = 256;
- for (;;) {
- if ((c & 0x1f) == 0) {
- if (c == 0)
- break;
- n = *k--;
- }
- y = (n >> 31);
- dbg("y:%d t[%d] = t[0]+t[1]\n", y, y^1);
- sp_256_proj_point_add_8(&t[y^1], &t[0], &t[1]);
- dump_512("t[0].x %s\n", t[0].x);
- dump_512("t[0].y %s\n", t[0].y);
- dump_512("t[0].z %s\n", t[0].z);
- dump_512("t[1].x %s\n", t[1].x);
- dump_512("t[1].y %s\n", t[1].y);
- dump_512("t[1].z %s\n", t[1].z);
- dbg("t[2] = t[%d]\n", y);
- t[2] = t[y]; /* struct copy */
- dbg("t[2] *= 2\n");
- sp_256_proj_point_dbl_8(&t[2], &t[2]);
- dump_512("t[2].x %s\n", t[2].x);
- dump_512("t[2].y %s\n", t[2].y);
- dump_512("t[2].z %s\n", t[2].z);
- t[y] = t[2]; /* struct copy */
- n <<= 1;
- c--;
- }
- if (map)
- sp_256_map_8(r, &t[0]);
- else
- *r = t[0]; /* struct copy */
- memset(t, 0, sizeof(t)); //paranoia
- }
- /* Multiply the base point of P256 by the scalar and return the result.
- * If map is true then convert result to affine co-ordinates.
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- */
- static void sp_256_ecc_mulmod_base_8(sp_point* r, sp_digit* k /*, int map*/)
- {
- /* Since this function is called only once, save space:
- * don't have "static const sp_point p256_base = {...}".
- */
- static const uint8_t p256_base_bin[] = {
- /* x (big-endian) */
- 0x6b,0x17,0xd1,0xf2,0xe1,0x2c,0x42,0x47,0xf8,0xbc,0xe6,0xe5,0x63,0xa4,0x40,0xf2,
- 0x77,0x03,0x7d,0x81,0x2d,0xeb,0x33,0xa0,0xf4,0xa1,0x39,0x45,0xd8,0x98,0xc2,0x96,
- /* y */
- 0x4f,0xe3,0x42,0xe2,0xfe,0x1a,0x7f,0x9b,0x8e,0xe7,0xeb,0x4a,0x7c,0x0f,0x9e,0x16,
- 0x2b,0xce,0x33,0x57,0x6b,0x31,0x5e,0xce,0xcb,0xb6,0x40,0x68,0x37,0xbf,0x51,0xf5,
- /* z will be set to 1, infinity flag to "false" */
- };
- sp_point p256_base;
- sp_256_point_from_bin2x32(&p256_base, p256_base_bin);
- sp_256_ecc_mulmod_8(r, &p256_base, k /*, map*/);
- }
- /* Multiply the point by the scalar and serialize the X ordinate.
- * The number is 0 padded to maximum size on output.
- *
- * priv Scalar to multiply the point by.
- * pub2x32 Point to multiply.
- * out32 Buffer to hold X ordinate.
- */
- static void sp_ecc_secret_gen_256(const sp_digit priv[8], const uint8_t *pub2x32, uint8_t* out32)
- {
- sp_point point[1];
- #if FIXED_PEER_PUBKEY
- memset((void*)pub2x32, 0x55, 64);
- #endif
- dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */
- dump_hex(" %s\n", pub2x32 + 32, 32);
- sp_256_point_from_bin2x32(point, pub2x32);
- dump_512("point->x %s\n", point->x);
- dump_512("point->y %s\n", point->y);
- sp_256_ecc_mulmod_8(point, point, priv);
- sp_256_to_bin_8(point->x, out32);
- dump_hex("out32: %s\n", out32, 32);
- }
- /* Generates a random scalar in [1..order-1] range. */
- static void sp_256_ecc_gen_k_8(sp_digit k[8])
- {
- /* Since 32-bit words are "dense", no need to use
- * sp_256_from_bin_8(k, buf) to convert random stream
- * to sp_digit array - just store random bits there directly.
- */
- tls_get_random(k, 8 * sizeof(k[0]));
- #if FIXED_SECRET
- memset(k, 0x77, 8 * sizeof(k[0]));
- #endif
- // If scalar is too large, try again (pseudo-code)
- // if (k >= 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 - 1) // order of P256
- // goto pick_another_random;
- // k++; // ensure non-zero
- /* Simpler alternative, at the cost of not choosing some valid
- * random values, and slightly non-uniform distribution */
- if (k[0] == 0)
- k[0] = 1;
- if (k[7] >= 0xffffffff)
- k[7] = 0xfffffffe;
- }
- /* Makes a random EC key pair. */
- static void sp_ecc_make_key_256(sp_digit privkey[8], uint8_t *pubkey)
- {
- sp_point point[1];
- sp_256_ecc_gen_k_8(privkey);
- dump_256("privkey %s\n", privkey);
- sp_256_ecc_mulmod_base_8(point, privkey);
- dump_512("point->x %s\n", point->x);
- dump_512("point->y %s\n", point->y);
- sp_256_to_bin_8(point->x, pubkey);
- sp_256_to_bin_8(point->y, pubkey + 32);
- memset(point, 0, sizeof(point)); //paranoia
- }
- void FAST_FUNC curve_P256_compute_pubkey_and_premaster(
- uint8_t *pubkey2x32, uint8_t *premaster32,
- const uint8_t *peerkey2x32)
- {
- sp_digit privkey[8];
- dump_hex("peerkey2x32: %s\n", peerkey2x32, 64);
- sp_ecc_make_key_256(privkey, pubkey2x32);
- dump_hex("pubkey: %s\n", pubkey2x32, 32);
- dump_hex(" %s\n", pubkey2x32 + 32, 32);
- /* Combine our privkey and peer's public key to generate premaster */
- sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32);
- dump_hex("premaster: %s\n", premaster32, 32);
- }
|