123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- /* SHA256 and SHA512-based Unix crypt implementation.
- * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
- */
- /* Prefix for optional rounds specification. */
- static const char str_rounds[] = "rounds=%u$";
- /* Maximum salt string length. */
- #define SALT_LEN_MAX 16
- /* Default number of rounds if not explicitly specified. */
- #define ROUNDS_DEFAULT 5000
- /* Minimum number of rounds. */
- #define ROUNDS_MIN 1000
- /* Maximum number of rounds. */
- #define ROUNDS_MAX 999999999
- static char *
- NOINLINE
- sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data)
- {
- void (*sha_begin)(void *ctx) FAST_FUNC;
- void (*sha_hash)(const void *buffer, size_t len, void *ctx) FAST_FUNC;
- void (*sha_end)(void *resbuf, void *ctx) FAST_FUNC;
- int _32or64;
- char *result, *resptr;
- /* btw, sha256 needs [32] and uint32_t only */
- struct {
- unsigned char alt_result[64];
- unsigned char temp_result[64];
- union {
- sha256_ctx_t x;
- sha512_ctx_t y;
- } ctx;
- union {
- sha256_ctx_t x;
- sha512_ctx_t y;
- } alt_ctx;
- } L __attribute__((__aligned__(__alignof__(uint64_t))));
- #define alt_result (L.alt_result )
- #define temp_result (L.temp_result)
- #define ctx (L.ctx )
- #define alt_ctx (L.alt_ctx )
- unsigned salt_len;
- unsigned key_len;
- unsigned cnt;
- unsigned rounds;
- char *cp;
- char is_sha512;
- /* Analyze salt, construct already known part of result */
- cnt = strlen(salt_data) + 1 + 43 + 1;
- is_sha512 = salt_data[1];
- if (is_sha512 == '6')
- cnt += 43;
- result = resptr = xzalloc(cnt); /* will provide NUL terminator */
- *resptr++ = '$';
- *resptr++ = is_sha512;
- *resptr++ = '$';
- rounds = ROUNDS_DEFAULT;
- salt_data += 3;
- if (strncmp(salt_data, str_rounds, 7) == 0) {
- /* 7 == strlen("rounds=") */
- char *endp;
- cnt = bb_strtou(salt_data + 7, &endp, 10);
- if (*endp == '$') {
- salt_data = endp + 1;
- rounds = cnt;
- if (rounds < ROUNDS_MIN)
- rounds = ROUNDS_MIN;
- if (rounds > ROUNDS_MAX)
- rounds = ROUNDS_MAX;
- /* add "rounds=NNNNN$" to result */
- resptr += sprintf(resptr, str_rounds, rounds);
- }
- }
- salt_len = strchrnul(salt_data, '$') - salt_data;
- if (salt_len > SALT_LEN_MAX)
- salt_len = SALT_LEN_MAX;
- /* xstrdup assures suitable alignment; also we will use it
- as a scratch space later. */
- salt_data = xstrndup(salt_data, salt_len);
- /* add "salt$" to result */
- strcpy(resptr, salt_data);
- resptr += salt_len;
- *resptr++ = '$';
- /* key data doesn't need much processing */
- key_len = strlen(key_data);
- key_data = xstrdup(key_data);
- /* Which flavor of SHAnnn ops to use? */
- sha_begin = (void*)sha256_begin;
- sha_hash = (void*)sha256_hash;
- sha_end = (void*)sha256_end;
- _32or64 = 32;
- if (is_sha512 == '6') {
- sha_begin = (void*)sha512_begin;
- sha_hash = (void*)sha512_hash;
- sha_end = (void*)sha512_end;
- _32or64 = 64;
- }
- /* Add KEY, SALT. */
- sha_begin(&ctx);
- sha_hash(key_data, key_len, &ctx);
- sha_hash(salt_data, salt_len, &ctx);
- /* Compute alternate SHA sum with input KEY, SALT, and KEY.
- The final result will be added to the first context. */
- sha_begin(&alt_ctx);
- sha_hash(key_data, key_len, &alt_ctx);
- sha_hash(salt_data, salt_len, &alt_ctx);
- sha_hash(key_data, key_len, &alt_ctx);
- sha_end(alt_result, &alt_ctx);
- /* Add result of this to the other context. */
- /* Add for any character in the key one byte of the alternate sum. */
- for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
- sha_hash(alt_result, _32or64, &ctx);
- sha_hash(alt_result, cnt, &ctx);
- /* Take the binary representation of the length of the key and for every
- 1 add the alternate sum, for every 0 the key. */
- for (cnt = key_len; cnt != 0; cnt >>= 1)
- if ((cnt & 1) != 0)
- sha_hash(alt_result, _32or64, &ctx);
- else
- sha_hash(key_data, key_len, &ctx);
- /* Create intermediate result. */
- sha_end(alt_result, &ctx);
- /* Start computation of P byte sequence. */
- /* For every character in the password add the entire password. */
- sha_begin(&alt_ctx);
- for (cnt = 0; cnt < key_len; ++cnt)
- sha_hash(key_data, key_len, &alt_ctx);
- sha_end(temp_result, &alt_ctx);
- /* NB: past this point, raw key_data is not used anymore */
- /* Create byte sequence P. */
- #define p_bytes key_data /* reuse the buffer as it is of the key_len size */
- cp = p_bytes; /* was: ... = alloca(key_len); */
- for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) {
- cp = memcpy(cp, temp_result, _32or64);
- cp += _32or64;
- }
- memcpy(cp, temp_result, cnt);
- /* Start computation of S byte sequence. */
- /* For every character in the password add the entire password. */
- sha_begin(&alt_ctx);
- for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
- sha_hash(salt_data, salt_len, &alt_ctx);
- sha_end(temp_result, &alt_ctx);
- /* NB: past this point, raw salt_data is not used anymore */
- /* Create byte sequence S. */
- #define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */
- cp = s_bytes; /* was: ... = alloca(salt_len); */
- for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) {
- cp = memcpy(cp, temp_result, _32or64);
- cp += _32or64;
- }
- memcpy(cp, temp_result, cnt);
- /* Repeatedly run the collected hash value through SHA to burn
- CPU cycles. */
- for (cnt = 0; cnt < rounds; ++cnt) {
- sha_begin(&ctx);
- /* Add key or last result. */
- if ((cnt & 1) != 0)
- sha_hash(p_bytes, key_len, &ctx);
- else
- sha_hash(alt_result, _32or64, &ctx);
- /* Add salt for numbers not divisible by 3. */
- if (cnt % 3 != 0)
- sha_hash(s_bytes, salt_len, &ctx);
- /* Add key for numbers not divisible by 7. */
- if (cnt % 7 != 0)
- sha_hash(p_bytes, key_len, &ctx);
- /* Add key or last result. */
- if ((cnt & 1) != 0)
- sha_hash(alt_result, _32or64, &ctx);
- else
- sha_hash(p_bytes, key_len, &ctx);
- sha_end(alt_result, &ctx);
- }
- /* Append encrypted password to result buffer */
- //TODO: replace with something like
- // bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64);
- #define b64_from_24bit(B2, B1, B0, N) \
- do { \
- unsigned w = ((B2) << 16) | ((B1) << 8) | (B0); \
- resptr = to64(resptr, w, N); \
- } while (0)
- if (is_sha512 == '5') {
- unsigned i = 0;
- while (1) {
- unsigned j = i + 10;
- unsigned k = i + 20;
- if (j >= 30) j -= 30;
- if (k >= 30) k -= 30;
- b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
- if (k == 29)
- break;
- i = k + 1;
- }
- b64_from_24bit(0, alt_result[31], alt_result[30], 3);
- /* was:
- b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
- b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
- b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
- b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
- b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
- b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
- b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
- b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
- b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
- b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
- b64_from_24bit(0, alt_result[31], alt_result[30], 3);
- */
- } else {
- unsigned i = 0;
- while (1) {
- unsigned j = i + 21;
- unsigned k = i + 42;
- if (j >= 63) j -= 63;
- if (k >= 63) k -= 63;
- b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
- if (j == 20)
- break;
- i = j + 1;
- }
- b64_from_24bit(0, 0, alt_result[63], 2);
- /* was:
- b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
- b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
- b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
- b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
- b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
- b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
- b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
- b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
- b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
- b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
- b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
- b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
- b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
- b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
- b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
- b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
- b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
- b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
- b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
- b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
- b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
- b64_from_24bit(0, 0, alt_result[63], 2);
- */
- }
- /* *resptr = '\0'; - xzalloc did it */
- #undef b64_from_24bit
- /* Clear the buffer for the intermediate result so that people
- attaching to processes or reading core dumps cannot get any
- information. */
- memset(&L, 0, sizeof(L)); /* [alt]_ctx and XXX_result buffers */
- memset(key_data, 0, key_len); /* also p_bytes */
- memset(salt_data, 0, salt_len); /* also s_bytes */
- free(key_data);
- free(salt_data);
- #undef p_bytes
- #undef s_bytes
- return result;
- #undef alt_result
- #undef temp_result
- #undef ctx
- #undef alt_ctx
- }
|