123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611 |
- /*
- * Copyright (C) 2018 Denys Vlasenko
- *
- * Licensed under GPLv2, see file LICENSE in this source tree.
- */
- #include "tls.h"
- typedef uint8_t byte;
- typedef uint16_t word16;
- typedef uint32_t word32;
- #define XMEMSET memset
- #define F25519_SIZE CURVE25519_KEYSIZE
- /* The code below is taken from wolfssl-3.15.3/wolfcrypt/src/fe_low_mem.c
- * Header comment is kept intact:
- */
- /* fe_low_mem.c
- *
- * Copyright (C) 2006-2017 wolfSSL Inc.
- *
- * This file is part of wolfSSL.
- *
- * wolfSSL is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * wolfSSL is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
- */
- /* Based from Daniel Beer's public domain work. */
- #if 0 //UNUSED
- static void fprime_copy(byte *x, const byte *a)
- {
- int i;
- for (i = 0; i < F25519_SIZE; i++)
- x[i] = a[i];
- }
- #endif
- static void lm_copy(byte* x, const byte* a)
- {
- int i;
- for (i = 0; i < F25519_SIZE; i++)
- x[i] = a[i];
- }
- #if 0 //UNUSED
- static void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition)
- {
- const byte mask = -condition;
- int i;
- for (i = 0; i < F25519_SIZE; i++)
- dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
- }
- #endif
- static void fe_select(byte *dst,
- const byte *zero, const byte *one,
- byte condition)
- {
- const byte mask = -condition;
- int i;
- for (i = 0; i < F25519_SIZE; i++)
- dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
- }
- #if 0 //UNUSED
- static void raw_add(byte *x, const byte *p)
- {
- word16 c = 0;
- int i;
- for (i = 0; i < F25519_SIZE; i++) {
- c += ((word16)x[i]) + ((word16)p[i]);
- x[i] = (byte)c;
- c >>= 8;
- }
- }
- #endif
- #if 0 //UNUSED
- static void raw_try_sub(byte *x, const byte *p)
- {
- byte minusp[F25519_SIZE];
- word16 c = 0;
- int i;
- for (i = 0; i < F25519_SIZE; i++) {
- c = ((word16)x[i]) - ((word16)p[i]) - c;
- minusp[i] = (byte)c;
- c = (c >> 8) & 1;
- }
- fprime_select(x, minusp, x, (byte)c);
- }
- #endif
- #if 0 //UNUSED
- static int prime_msb(const byte *p)
- {
- int i;
- byte x;
- int shift = 1;
- int z = F25519_SIZE - 1;
- /*
- Test for any hot bits.
- As soon as one instance is encountered set shift to 0.
- */
- for (i = F25519_SIZE - 1; i >= 0; i--) {
- shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1);
- z -= shift;
- }
- x = p[z];
- z <<= 3;
- shift = 1;
- for (i = 0; i < 8; i++) {
- shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1);
- z += shift;
- }
- return z - 1;
- }
- #endif
- #if 0 //UNUSED
- static void fprime_add(byte *r, const byte *a, const byte *modulus)
- {
- raw_add(r, a);
- raw_try_sub(r, modulus);
- }
- #endif
- #if 0 //UNUSED
- static void fprime_sub(byte *r, const byte *a, const byte *modulus)
- {
- raw_add(r, modulus);
- raw_try_sub(r, a);
- raw_try_sub(r, modulus);
- }
- #endif
- #if 0 //UNUSED
- static void fprime_mul(byte *r, const byte *a, const byte *b,
- const byte *modulus)
- {
- word16 c = 0;
- int i,j;
- XMEMSET(r, 0, F25519_SIZE);
- for (i = prime_msb(modulus); i >= 0; i--) {
- const byte bit = (b[i >> 3] >> (i & 7)) & 1;
- byte plusa[F25519_SIZE];
- for (j = 0; j < F25519_SIZE; j++) {
- c |= ((word16)r[j]) << 1;
- r[j] = (byte)c;
- c >>= 8;
- }
- raw_try_sub(r, modulus);
- fprime_copy(plusa, r);
- fprime_add(plusa, a, modulus);
- fprime_select(r, r, plusa, bit);
- }
- }
- #endif
- #if 0 //UNUSED
- static void fe_load(byte *x, word32 c)
- {
- word32 i;
- for (i = 0; i < sizeof(c); i++) {
- x[i] = c;
- c >>= 8;
- }
- for (; i < F25519_SIZE; i++)
- x[i] = 0;
- }
- #endif
- static void fe_normalize(byte *x)
- {
- byte minusp[F25519_SIZE];
- word16 c;
- int i;
- /* Reduce using 2^255 = 19 mod p */
- c = (x[31] >> 7) * 19;
- x[31] &= 127;
- for (i = 0; i < F25519_SIZE; i++) {
- c += x[i];
- x[i] = (byte)c;
- c >>= 8;
- }
- /* The number is now less than 2^255 + 18, and therefore less than
- * 2p. Try subtracting p, and conditionally load the subtracted
- * value if underflow did not occur.
- */
- c = 19;
- for (i = 0; i + 1 < F25519_SIZE; i++) {
- c += x[i];
- minusp[i] = (byte)c;
- c >>= 8;
- }
- c += ((word16)x[i]) - 128;
- minusp[31] = (byte)c;
- /* Load x-p if no underflow */
- fe_select(x, minusp, x, (c >> 15) & 1);
- }
- static void lm_add(byte* r, const byte* a, const byte* b)
- {
- word16 c = 0;
- int i;
- /* Add */
- for (i = 0; i < F25519_SIZE; i++) {
- c >>= 8;
- c += ((word16)a[i]) + ((word16)b[i]);
- r[i] = (byte)c;
- }
- /* Reduce with 2^255 = 19 mod p */
- r[31] &= 127;
- c = (c >> 7) * 19;
- for (i = 0; i < F25519_SIZE; i++) {
- c += r[i];
- r[i] = (byte)c;
- c >>= 8;
- }
- }
- static void lm_sub(byte* r, const byte* a, const byte* b)
- {
- word32 c = 0;
- int i;
- /* Calculate a + 2p - b, to avoid underflow */
- c = 218;
- for (i = 0; i + 1 < F25519_SIZE; i++) {
- c += 65280 + ((word32)a[i]) - ((word32)b[i]);
- r[i] = c;
- c >>= 8;
- }
- c += ((word32)a[31]) - ((word32)b[31]);
- r[31] = c & 127;
- c = (c >> 7) * 19;
- for (i = 0; i < F25519_SIZE; i++) {
- c += r[i];
- r[i] = c;
- c >>= 8;
- }
- }
- #if 0 //UNUSED
- static void lm_neg(byte* r, const byte* a)
- {
- word32 c = 0;
- int i;
- /* Calculate 2p - a, to avoid underflow */
- c = 218;
- for (i = 0; i + 1 < F25519_SIZE; i++) {
- c += 65280 - ((word32)a[i]);
- r[i] = c;
- c >>= 8;
- }
- c -= ((word32)a[31]);
- r[31] = c & 127;
- c = (c >> 7) * 19;
- for (i = 0; i < F25519_SIZE; i++) {
- c += r[i];
- r[i] = c;
- c >>= 8;
- }
- }
- #endif
- static void fe_mul__distinct(byte *r, const byte *a, const byte *b)
- {
- word32 c = 0;
- int i;
- for (i = 0; i < F25519_SIZE; i++) {
- int j;
- c >>= 8;
- for (j = 0; j <= i; j++)
- c += ((word32)a[j]) * ((word32)b[i - j]);
- for (; j < F25519_SIZE; j++)
- c += ((word32)a[j]) *
- ((word32)b[i + F25519_SIZE - j]) * 38;
- r[i] = c;
- }
- r[31] &= 127;
- c = (c >> 7) * 19;
- for (i = 0; i < F25519_SIZE; i++) {
- c += r[i];
- r[i] = c;
- c >>= 8;
- }
- }
- #if 0 //UNUSED
- static void lm_mul(byte *r, const byte* a, const byte *b)
- {
- byte tmp[F25519_SIZE];
- fe_mul__distinct(tmp, a, b);
- lm_copy(r, tmp);
- }
- #endif
- static void fe_mul_c(byte *r, const byte *a, word32 b)
- {
- word32 c = 0;
- int i;
- for (i = 0; i < F25519_SIZE; i++) {
- c >>= 8;
- c += b * ((word32)a[i]);
- r[i] = c;
- }
- r[31] &= 127;
- c >>= 7;
- c *= 19;
- for (i = 0; i < F25519_SIZE; i++) {
- c += r[i];
- r[i] = c;
- c >>= 8;
- }
- }
- static void fe_inv__distinct(byte *r, const byte *x)
- {
- byte s[F25519_SIZE];
- int i;
- /* This is a prime field, so by Fermat's little theorem:
- *
- * x^(p-1) = 1 mod p
- *
- * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative
- * inverse.
- *
- * This is a 255-bit binary number with the digits:
- *
- * 11111111... 01011
- *
- * We compute the result by the usual binary chain, but
- * alternate between keeping the accumulator in r and s, so as
- * to avoid copying temporaries.
- */
- /* 1 1 */
- fe_mul__distinct(s, x, x);
- fe_mul__distinct(r, s, x);
- /* 1 x 248 */
- for (i = 0; i < 248; i++) {
- fe_mul__distinct(s, r, r);
- fe_mul__distinct(r, s, x);
- }
- /* 0 */
- fe_mul__distinct(s, r, r);
- /* 1 */
- fe_mul__distinct(r, s, s);
- fe_mul__distinct(s, r, x);
- /* 0 */
- fe_mul__distinct(r, s, s);
- /* 1 */
- fe_mul__distinct(s, r, r);
- fe_mul__distinct(r, s, x);
- /* 1 */
- fe_mul__distinct(s, r, r);
- fe_mul__distinct(r, s, x);
- }
- #if 0 //UNUSED
- static void lm_invert(byte *r, const byte *x)
- {
- byte tmp[F25519_SIZE];
- fe_inv__distinct(tmp, x);
- lm_copy(r, tmp);
- }
- #endif
- #if 0 //UNUSED
- /* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary
- * storage.
- */
- static void exp2523(byte *r, const byte *x, byte *s)
- {
- int i;
- /* This number is a 252-bit number with the binary expansion:
- *
- * 111111... 01
- */
- /* 1 1 */
- fe_mul__distinct(r, x, x);
- fe_mul__distinct(s, r, x);
- /* 1 x 248 */
- for (i = 0; i < 248; i++) {
- fe_mul__distinct(r, s, s);
- fe_mul__distinct(s, r, x);
- }
- /* 0 */
- fe_mul__distinct(r, s, s);
- /* 1 */
- fe_mul__distinct(s, r, r);
- fe_mul__distinct(r, s, x);
- }
- #endif
- #if 0 //UNUSED
- static void fe_sqrt(byte *r, const byte *a)
- {
- byte v[F25519_SIZE];
- byte i[F25519_SIZE];
- byte x[F25519_SIZE];
- byte y[F25519_SIZE];
- /* v = (2a)^((p-5)/8) [x = 2a] */
- fe_mul_c(x, a, 2);
- exp2523(v, x, y);
- /* i = 2av^2 - 1 */
- fe_mul__distinct(y, v, v);
- fe_mul__distinct(i, x, y);
- fe_load(y, 1);
- lm_sub(i, i, y);
- /* r = avi */
- fe_mul__distinct(x, v, a);
- fe_mul__distinct(r, x, i);
- }
- #endif
- /* Differential addition */
- static void xc_diffadd(byte *x5, byte *z5,
- const byte *x1, const byte *z1,
- const byte *x2, const byte *z2,
- const byte *x3, const byte *z3)
- {
- /* Explicit formulas database: dbl-1987-m3
- *
- * source 1987 Montgomery "Speeding the Pollard and elliptic curve
- * methods of factorization", page 261, fifth display, plus
- * common-subexpression elimination
- * compute A = X2+Z2
- * compute B = X2-Z2
- * compute C = X3+Z3
- * compute D = X3-Z3
- * compute DA = D A
- * compute CB = C B
- * compute X5 = Z1(DA+CB)^2
- * compute Z5 = X1(DA-CB)^2
- */
- byte da[F25519_SIZE];
- byte cb[F25519_SIZE];
- byte a[F25519_SIZE];
- byte b[F25519_SIZE];
- lm_add(a, x2, z2);
- lm_sub(b, x3, z3); /* D */
- fe_mul__distinct(da, a, b);
- lm_sub(b, x2, z2);
- lm_add(a, x3, z3); /* C */
- fe_mul__distinct(cb, a, b);
- lm_add(a, da, cb);
- fe_mul__distinct(b, a, a);
- fe_mul__distinct(x5, z1, b);
- lm_sub(a, da, cb);
- fe_mul__distinct(b, a, a);
- fe_mul__distinct(z5, x1, b);
- }
- /* Double an X-coordinate */
- static void xc_double(byte *x3, byte *z3,
- const byte *x1, const byte *z1)
- {
- /* Explicit formulas database: dbl-1987-m
- *
- * source 1987 Montgomery "Speeding the Pollard and elliptic
- * curve methods of factorization", page 261, fourth display
- * compute X3 = (X1^2-Z1^2)^2
- * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2)
- */
- byte x1sq[F25519_SIZE];
- byte z1sq[F25519_SIZE];
- byte x1z1[F25519_SIZE];
- byte a[F25519_SIZE];
- fe_mul__distinct(x1sq, x1, x1);
- fe_mul__distinct(z1sq, z1, z1);
- fe_mul__distinct(x1z1, x1, z1);
- lm_sub(a, x1sq, z1sq);
- fe_mul__distinct(x3, a, a);
- fe_mul_c(a, x1z1, 486662);
- lm_add(a, x1sq, a);
- lm_add(a, z1sq, a);
- fe_mul__distinct(x1sq, x1z1, a);
- fe_mul_c(z3, x1sq, 4);
- }
- void FAST_FUNC curve25519(byte *result, const byte *e, const byte *q)
- {
- int i;
- struct {
- /* from wolfssl-3.15.3/wolfssl/wolfcrypt/fe_operations.h */
- /*static const*/ byte f25519_one[F25519_SIZE]; // = {1};
- /* Current point: P_m */
- byte xm[F25519_SIZE];
- byte zm[F25519_SIZE]; // = {1};
- /* Predecessor: P_(m-1) */
- byte xm1[F25519_SIZE]; // = {1};
- byte zm1[F25519_SIZE]; // = {0};
- } z;
- #define f25519_one z.f25519_one
- #define xm z.xm
- #define zm z.zm
- #define xm1 z.xm1
- #define zm1 z.zm1
- memset(&z, 0, sizeof(z));
- f25519_one[0] = 1;
- zm[0] = 1;
- xm1[0] = 1;
- /* Note: bit 254 is assumed to be 1 */
- lm_copy(xm, q);
- for (i = 253; i >= 0; i--) {
- const int bit = (e[i >> 3] >> (i & 7)) & 1;
- byte xms[F25519_SIZE];
- byte zms[F25519_SIZE];
- /* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */
- xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1);
- xc_double(xm, zm, xm, zm);
- /* Compute P_(2m+1) */
- xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one);
- /* Select:
- * bit = 1 --> (P_(2m+1), P_(2m))
- * bit = 0 --> (P_(2m), P_(2m-1))
- */
- fe_select(xm1, xm1, xm, bit);
- fe_select(zm1, zm1, zm, bit);
- fe_select(xm, xm, xms, bit);
- fe_select(zm, zm, zms, bit);
- }
- /* Freeze out of projective coordinates */
- fe_inv__distinct(zm1, zm);
- fe_mul__distinct(result, zm1, xm);
- fe_normalize(result);
- }
|