/*************************************************************************** * _ _ ____ _ * Project ___| | | | _ \| | * / __| | | | |_) | | * | (__| |_| | _ <| |___ * \___|\___/|_| \_\_____| * * Copyright (C) Daniel Stenberg, , et al. * * This software is licensed as described in the file COPYING, which * you should have received as part of this distribution. The terms * are also available at https://curl.se/docs/copyright.html. * * You may opt to use, copy, modify, merge, publish, distribute and/or sell * copies of the Software, and permit persons to whom the Software is * furnished to do so, under the terms of the COPYING file. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * * SPDX-License-Identifier: curl * ***************************************************************************/ #include "curl_setup.h" #if defined(USE_NGTCP2) && defined(USE_NGHTTP3) #include #include #ifdef USE_OPENSSL #include #if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC) #include #else #include #endif #include "vtls/openssl.h" #elif defined(USE_GNUTLS) #include #include "vtls/gtls.h" #elif defined(USE_WOLFSSL) #include #endif #include "urldata.h" #include "hash.h" #include "sendf.h" #include "strdup.h" #include "rand.h" #include "multiif.h" #include "strcase.h" #include "cfilters.h" #include "cf-socket.h" #include "connect.h" #include "progress.h" #include "strerror.h" #include "dynbuf.h" #include "http1.h" #include "select.h" #include "inet_pton.h" #include "transfer.h" #include "vquic.h" #include "vquic_int.h" #include "vquic-tls.h" #include "vtls/keylog.h" #include "vtls/vtls.h" #include "curl_ngtcp2.h" #include "warnless.h" /* The last 3 #include files should be in this order */ #include "curl_printf.h" #include "curl_memory.h" #include "memdebug.h" #define QUIC_MAX_STREAMS (256*1024) #define QUIC_MAX_DATA (1*1024*1024) #define QUIC_HANDSHAKE_TIMEOUT (10*NGTCP2_SECONDS) /* A stream window is the maximum amount we need to buffer for * each active transfer. We use HTTP/3 flow control and only ACK * when we take things out of the buffer. * Chunk size is large enough to take a full DATA frame */ #define H3_STREAM_WINDOW_SIZE (128 * 1024) #define H3_STREAM_CHUNK_SIZE (16 * 1024) /* The pool keeps spares around and half of a full stream windows * seems good. More does not seem to improve performance. * The benefit of the pool is that stream buffer to not keep * spares. Memory consumption goes down when streams run empty, * have a large upload done, etc. */ #define H3_STREAM_POOL_SPARES \ (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE ) / 2 /* Receive and Send max number of chunks just follows from the * chunk size and window size */ #define H3_STREAM_RECV_CHUNKS \ (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE) #define H3_STREAM_SEND_CHUNKS \ (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE) /* * Store ngtcp2 version info in this buffer. */ void Curl_ngtcp2_ver(char *p, size_t len) { const ngtcp2_info *ng2 = ngtcp2_version(0); const nghttp3_info *ht3 = nghttp3_version(0); (void)msnprintf(p, len, "ngtcp2/%s nghttp3/%s", ng2->version_str, ht3->version_str); } struct cf_ngtcp2_ctx { struct cf_quic_ctx q; struct ssl_peer peer; struct curl_tls_ctx tls; ngtcp2_path connected_path; ngtcp2_conn *qconn; ngtcp2_cid dcid; ngtcp2_cid scid; uint32_t version; ngtcp2_settings settings; ngtcp2_transport_params transport_params; ngtcp2_ccerr last_error; ngtcp2_crypto_conn_ref conn_ref; struct cf_call_data call_data; nghttp3_conn *h3conn; nghttp3_settings h3settings; struct curltime started_at; /* time the current attempt started */ struct curltime handshake_at; /* time connect handshake finished */ struct curltime reconnect_at; /* time the next attempt should start */ struct bufc_pool stream_bufcp; /* chunk pool for streams */ struct dynbuf scratch; /* temp buffer for header construction */ struct Curl_hash streams; /* hash `data->id` to `h3_stream_ctx` */ size_t max_stream_window; /* max flow window for one stream */ uint64_t max_idle_ms; /* max idle time for QUIC connection */ uint64_t used_bidi_streams; /* bidi streams we have opened */ uint64_t max_bidi_streams; /* max bidi streams we can open */ int qlogfd; BIT(shutdown_started); /* queued shutdown packets */ }; /* How to access `call_data` from a cf_ngtcp2 filter */ #undef CF_CTX_CALL_DATA #define CF_CTX_CALL_DATA(cf) \ ((struct cf_ngtcp2_ctx *)(cf)->ctx)->call_data struct pkt_io_ctx; static CURLcode cf_progress_ingress(struct Curl_cfilter *cf, struct Curl_easy *data, struct pkt_io_ctx *pktx); static CURLcode cf_progress_egress(struct Curl_cfilter *cf, struct Curl_easy *data, struct pkt_io_ctx *pktx); /** * All about the H3 internals of a stream */ struct h3_stream_ctx { curl_int64_t id; /* HTTP/3 protocol identifier */ struct bufq sendbuf; /* h3 request body */ struct h1_req_parser h1; /* h1 request parsing */ size_t sendbuf_len_in_flight; /* sendbuf amount "in flight" */ curl_uint64_t error3; /* HTTP/3 stream error code */ curl_off_t upload_left; /* number of request bytes left to upload */ int status_code; /* HTTP status code */ CURLcode xfer_result; /* result from xfer_resp_write(_hd) */ bool resp_hds_complete; /* we have a complete, final response */ bool closed; /* TRUE on stream close */ bool reset; /* TRUE on stream reset */ bool send_closed; /* stream is local closed */ BIT(quic_flow_blocked); /* stream is blocked by QUIC flow control */ }; #define H3_STREAM_CTX(ctx,data) ((struct h3_stream_ctx *)(\ data? Curl_hash_offt_get(&(ctx)->streams, (data)->id) : NULL)) #define H3_STREAM_CTX_ID(ctx,id) ((struct h3_stream_ctx *)(\ Curl_hash_offt_get(&(ctx)->streams, (id)))) static void h3_stream_ctx_free(struct h3_stream_ctx *stream) { Curl_bufq_free(&stream->sendbuf); Curl_h1_req_parse_free(&stream->h1); free(stream); } static void h3_stream_hash_free(void *stream) { DEBUGASSERT(stream); h3_stream_ctx_free((struct h3_stream_ctx *)stream); } static CURLcode h3_data_setup(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); if(!data) { failf(data, "initialization failure, transfer not http initialized"); return CURLE_FAILED_INIT; } if(stream) return CURLE_OK; stream = calloc(1, sizeof(*stream)); if(!stream) return CURLE_OUT_OF_MEMORY; stream->id = -1; /* on send, we control how much we put into the buffer */ Curl_bufq_initp(&stream->sendbuf, &ctx->stream_bufcp, H3_STREAM_SEND_CHUNKS, BUFQ_OPT_NONE); stream->sendbuf_len_in_flight = 0; Curl_h1_req_parse_init(&stream->h1, H1_PARSE_DEFAULT_MAX_LINE_LEN); if(!Curl_hash_offt_set(&ctx->streams, data->id, stream)) { h3_stream_ctx_free(stream); return CURLE_OUT_OF_MEMORY; } return CURLE_OK; } static void cf_ngtcp2_stream_close(struct Curl_cfilter *cf, struct Curl_easy *data, struct h3_stream_ctx *stream) { struct cf_ngtcp2_ctx *ctx = cf->ctx; DEBUGASSERT(data); DEBUGASSERT(stream); if(!stream->closed && ctx->qconn && ctx->h3conn) { CURLcode result; nghttp3_conn_set_stream_user_data(ctx->h3conn, stream->id, NULL); ngtcp2_conn_set_stream_user_data(ctx->qconn, stream->id, NULL); stream->closed = TRUE; (void)ngtcp2_conn_shutdown_stream(ctx->qconn, 0, stream->id, NGHTTP3_H3_REQUEST_CANCELLED); result = cf_progress_egress(cf, data, NULL); if(result) CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cancel stream -> %d", stream->id, result); } } static void h3_data_done(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); (void)cf; if(stream) { CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] easy handle is done", stream->id); cf_ngtcp2_stream_close(cf, data, stream); Curl_hash_offt_remove(&ctx->streams, data->id); } } static struct Curl_easy *get_stream_easy(struct Curl_cfilter *cf, struct Curl_easy *data, int64_t stream_id, struct h3_stream_ctx **pstream) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct Curl_easy *sdata; struct h3_stream_ctx *stream; (void)cf; stream = H3_STREAM_CTX(ctx, data); if(stream && stream->id == stream_id) { *pstream = stream; return data; } else { DEBUGASSERT(data->multi); for(sdata = data->multi->easyp; sdata; sdata = sdata->next) { if(sdata->conn != data->conn) continue; stream = H3_STREAM_CTX(ctx, sdata); if(stream && stream->id == stream_id) { *pstream = stream; return sdata; } } } *pstream = NULL; return NULL; } static void h3_drain_stream(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); unsigned char bits; (void)cf; bits = CURL_CSELECT_IN; if(stream && stream->upload_left && !stream->send_closed) bits |= CURL_CSELECT_OUT; if(data->state.select_bits != bits) { data->state.select_bits = bits; Curl_expire(data, 0, EXPIRE_RUN_NOW); } } /* ngtcp2 default congestion controller does not perform pacing. Limit the maximum packet burst to MAX_PKT_BURST packets. */ #define MAX_PKT_BURST 10 struct pkt_io_ctx { struct Curl_cfilter *cf; struct Curl_easy *data; ngtcp2_tstamp ts; size_t pkt_count; ngtcp2_path_storage ps; }; static void pktx_update_time(struct pkt_io_ctx *pktx, struct Curl_cfilter *cf) { struct cf_ngtcp2_ctx *ctx = cf->ctx; vquic_ctx_update_time(&ctx->q); pktx->ts = (ngtcp2_tstamp)ctx->q.last_op.tv_sec * NGTCP2_SECONDS + (ngtcp2_tstamp)ctx->q.last_op.tv_usec * NGTCP2_MICROSECONDS; } static void pktx_init(struct pkt_io_ctx *pktx, struct Curl_cfilter *cf, struct Curl_easy *data) { pktx->cf = cf; pktx->data = data; pktx->pkt_count = 0; ngtcp2_path_storage_zero(&pktx->ps); pktx_update_time(pktx, cf); } static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id, uint64_t datalen, void *user_data, void *stream_user_data); static ngtcp2_conn *get_conn(ngtcp2_crypto_conn_ref *conn_ref) { struct Curl_cfilter *cf = conn_ref->user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; return ctx->qconn; } #ifdef DEBUG_NGTCP2 static void quic_printf(void *user_data, const char *fmt, ...) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; (void)ctx; /* TODO: need an easy handle to infof() message */ va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fprintf(stderr, "\n"); } #endif static void qlog_callback(void *user_data, uint32_t flags, const void *data, size_t datalen) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; (void)flags; if(ctx->qlogfd != -1) { ssize_t rc = write(ctx->qlogfd, data, datalen); if(rc == -1) { /* on write error, stop further write attempts */ close(ctx->qlogfd); ctx->qlogfd = -1; } } } static void quic_settings(struct cf_ngtcp2_ctx *ctx, struct Curl_easy *data, struct pkt_io_ctx *pktx) { ngtcp2_settings *s = &ctx->settings; ngtcp2_transport_params *t = &ctx->transport_params; ngtcp2_settings_default(s); ngtcp2_transport_params_default(t); #ifdef DEBUG_NGTCP2 s->log_printf = quic_printf; #else s->log_printf = NULL; #endif (void)data; s->initial_ts = pktx->ts; s->handshake_timeout = QUIC_HANDSHAKE_TIMEOUT; s->max_window = 100 * ctx->max_stream_window; s->max_stream_window = ctx->max_stream_window; t->initial_max_data = 10 * ctx->max_stream_window; t->initial_max_stream_data_bidi_local = ctx->max_stream_window; t->initial_max_stream_data_bidi_remote = ctx->max_stream_window; t->initial_max_stream_data_uni = ctx->max_stream_window; t->initial_max_streams_bidi = QUIC_MAX_STREAMS; t->initial_max_streams_uni = QUIC_MAX_STREAMS; t->max_idle_timeout = (ctx->max_idle_ms * NGTCP2_MILLISECONDS); if(ctx->qlogfd != -1) { s->qlog_write = qlog_callback; } } static CURLcode init_ngh3_conn(struct Curl_cfilter *cf); static int cb_handshake_completed(ngtcp2_conn *tconn, void *user_data) { (void)user_data; (void)tconn; return 0; } static void cf_ngtcp2_conn_close(struct Curl_cfilter *cf, struct Curl_easy *data); static bool cf_ngtcp2_err_is_fatal(int code) { return (NGTCP2_ERR_FATAL >= code) || (NGTCP2_ERR_DROP_CONN == code) || (NGTCP2_ERR_IDLE_CLOSE == code); } static void cf_ngtcp2_err_set(struct Curl_cfilter *cf, struct Curl_easy *data, int code) { struct cf_ngtcp2_ctx *ctx = cf->ctx; if(!ctx->last_error.error_code) { if(NGTCP2_ERR_CRYPTO == code) { ngtcp2_ccerr_set_tls_alert(&ctx->last_error, ngtcp2_conn_get_tls_alert(ctx->qconn), NULL, 0); } else { ngtcp2_ccerr_set_liberr(&ctx->last_error, code, NULL, 0); } } if(cf_ngtcp2_err_is_fatal(code)) cf_ngtcp2_conn_close(cf, data); } static bool cf_ngtcp2_h3_err_is_fatal(int code) { return (NGHTTP3_ERR_FATAL >= code) || (NGHTTP3_ERR_H3_CLOSED_CRITICAL_STREAM == code); } static void cf_ngtcp2_h3_err_set(struct Curl_cfilter *cf, struct Curl_easy *data, int code) { struct cf_ngtcp2_ctx *ctx = cf->ctx; if(!ctx->last_error.error_code) { ngtcp2_ccerr_set_application_error(&ctx->last_error, nghttp3_err_infer_quic_app_error_code(code), NULL, 0); } if(cf_ngtcp2_h3_err_is_fatal(code)) cf_ngtcp2_conn_close(cf, data); } static int cb_recv_stream_data(ngtcp2_conn *tconn, uint32_t flags, int64_t sid, uint64_t offset, const uint8_t *buf, size_t buflen, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; curl_int64_t stream_id = (curl_int64_t)sid; nghttp3_ssize nconsumed; int fin = (flags & NGTCP2_STREAM_DATA_FLAG_FIN) ? 1 : 0; struct Curl_easy *data = stream_user_data; (void)offset; (void)data; nconsumed = nghttp3_conn_read_stream(ctx->h3conn, stream_id, buf, buflen, fin); if(!data) data = CF_DATA_CURRENT(cf); if(data) CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] read_stream(len=%zu) -> %zd", stream_id, buflen, nconsumed); if(nconsumed < 0) { struct h3_stream_ctx *stream = H3_STREAM_CTX_ID(ctx, stream_id); if(data && stream) { CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] error on known stream, " "reset=%d, closed=%d", stream_id, stream->reset, stream->closed); } return NGTCP2_ERR_CALLBACK_FAILURE; } /* number of bytes inside buflen which consists of framing overhead * including QPACK HEADERS. In other words, it does not consume payload of * DATA frame. */ ngtcp2_conn_extend_max_stream_offset(tconn, stream_id, (uint64_t)nconsumed); ngtcp2_conn_extend_max_offset(tconn, (uint64_t)nconsumed); return 0; } static int cb_acked_stream_data_offset(ngtcp2_conn *tconn, int64_t stream_id, uint64_t offset, uint64_t datalen, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; int rv; (void)stream_id; (void)tconn; (void)offset; (void)datalen; (void)stream_user_data; rv = nghttp3_conn_add_ack_offset(ctx->h3conn, stream_id, datalen); if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) { return NGTCP2_ERR_CALLBACK_FAILURE; } return 0; } static int cb_stream_close(ngtcp2_conn *tconn, uint32_t flags, int64_t sid, uint64_t app_error_code, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; struct Curl_easy *data = stream_user_data; curl_int64_t stream_id = (curl_int64_t)sid; int rv; (void)tconn; /* stream is closed... */ if(!data) data = CF_DATA_CURRENT(cf); if(!data) return NGTCP2_ERR_CALLBACK_FAILURE; if(!(flags & NGTCP2_STREAM_CLOSE_FLAG_APP_ERROR_CODE_SET)) { app_error_code = NGHTTP3_H3_NO_ERROR; } rv = nghttp3_conn_close_stream(ctx->h3conn, stream_id, app_error_code); CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] quic close(app_error=%" CURL_PRIu64 ") -> %d", stream_id, (curl_uint64_t)app_error_code, rv); if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) { cf_ngtcp2_h3_err_set(cf, data, rv); return NGTCP2_ERR_CALLBACK_FAILURE; } return 0; } static int cb_stream_reset(ngtcp2_conn *tconn, int64_t sid, uint64_t final_size, uint64_t app_error_code, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; curl_int64_t stream_id = (curl_int64_t)sid; struct Curl_easy *data = stream_user_data; int rv; (void)tconn; (void)final_size; (void)app_error_code; (void)data; rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id); CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] reset -> %d", stream_id, rv); if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) { return NGTCP2_ERR_CALLBACK_FAILURE; } return 0; } static int cb_stream_stop_sending(ngtcp2_conn *tconn, int64_t stream_id, uint64_t app_error_code, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; int rv; (void)tconn; (void)app_error_code; (void)stream_user_data; rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id); if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) { return NGTCP2_ERR_CALLBACK_FAILURE; } return 0; } static int cb_extend_max_local_streams_bidi(ngtcp2_conn *tconn, uint64_t max_streams, void *user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; struct Curl_easy *data = CF_DATA_CURRENT(cf); (void)tconn; ctx->max_bidi_streams = max_streams; if(data) CURL_TRC_CF(data, cf, "max bidi streams now %" CURL_PRIu64 ", used %" CURL_PRIu64, (curl_uint64_t)ctx->max_bidi_streams, (curl_uint64_t)ctx->used_bidi_streams); return 0; } static int cb_extend_max_stream_data(ngtcp2_conn *tconn, int64_t sid, uint64_t max_data, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; curl_int64_t stream_id = (curl_int64_t)sid; struct Curl_easy *data = CF_DATA_CURRENT(cf); struct Curl_easy *s_data; struct h3_stream_ctx *stream; int rv; (void)tconn; (void)max_data; (void)stream_user_data; rv = nghttp3_conn_unblock_stream(ctx->h3conn, stream_id); if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) { return NGTCP2_ERR_CALLBACK_FAILURE; } s_data = get_stream_easy(cf, data, stream_id, &stream); if(s_data && stream && stream->quic_flow_blocked) { CURL_TRC_CF(s_data, cf, "[%" CURL_PRId64 "] unblock quic flow", stream_id); stream->quic_flow_blocked = FALSE; h3_drain_stream(cf, s_data); } return 0; } static void cb_rand(uint8_t *dest, size_t destlen, const ngtcp2_rand_ctx *rand_ctx) { CURLcode result; (void)rand_ctx; result = Curl_rand(NULL, dest, destlen); if(result) { /* cb_rand is only used for non-cryptographic context. If Curl_rand failed, just fill 0 and call it *random*. */ memset(dest, 0, destlen); } } static int cb_get_new_connection_id(ngtcp2_conn *tconn, ngtcp2_cid *cid, uint8_t *token, size_t cidlen, void *user_data) { CURLcode result; (void)tconn; (void)user_data; result = Curl_rand(NULL, cid->data, cidlen); if(result) return NGTCP2_ERR_CALLBACK_FAILURE; cid->datalen = cidlen; result = Curl_rand(NULL, token, NGTCP2_STATELESS_RESET_TOKENLEN); if(result) return NGTCP2_ERR_CALLBACK_FAILURE; return 0; } static int cb_recv_rx_key(ngtcp2_conn *tconn, ngtcp2_encryption_level level, void *user_data) { struct Curl_cfilter *cf = user_data; (void)tconn; if(level != NGTCP2_ENCRYPTION_LEVEL_1RTT) { return 0; } if(init_ngh3_conn(cf) != CURLE_OK) { return NGTCP2_ERR_CALLBACK_FAILURE; } return 0; } static ngtcp2_callbacks ng_callbacks = { ngtcp2_crypto_client_initial_cb, NULL, /* recv_client_initial */ ngtcp2_crypto_recv_crypto_data_cb, cb_handshake_completed, NULL, /* recv_version_negotiation */ ngtcp2_crypto_encrypt_cb, ngtcp2_crypto_decrypt_cb, ngtcp2_crypto_hp_mask_cb, cb_recv_stream_data, cb_acked_stream_data_offset, NULL, /* stream_open */ cb_stream_close, NULL, /* recv_stateless_reset */ ngtcp2_crypto_recv_retry_cb, cb_extend_max_local_streams_bidi, NULL, /* extend_max_local_streams_uni */ cb_rand, cb_get_new_connection_id, NULL, /* remove_connection_id */ ngtcp2_crypto_update_key_cb, /* update_key */ NULL, /* path_validation */ NULL, /* select_preferred_addr */ cb_stream_reset, NULL, /* extend_max_remote_streams_bidi */ NULL, /* extend_max_remote_streams_uni */ cb_extend_max_stream_data, NULL, /* dcid_status */ NULL, /* handshake_confirmed */ NULL, /* recv_new_token */ ngtcp2_crypto_delete_crypto_aead_ctx_cb, ngtcp2_crypto_delete_crypto_cipher_ctx_cb, NULL, /* recv_datagram */ NULL, /* ack_datagram */ NULL, /* lost_datagram */ ngtcp2_crypto_get_path_challenge_data_cb, cb_stream_stop_sending, NULL, /* version_negotiation */ cb_recv_rx_key, NULL, /* recv_tx_key */ NULL, /* early_data_rejected */ }; /** * Connection maintenance like timeouts on packet ACKs etc. are done by us, not * the OS like for TCP. POLL events on the socket therefore are not * sufficient. * ngtcp2 tells us when it wants to be invoked again. We handle that via * the `Curl_expire()` mechanisms. */ static CURLcode check_and_set_expiry(struct Curl_cfilter *cf, struct Curl_easy *data, struct pkt_io_ctx *pktx) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct pkt_io_ctx local_pktx; ngtcp2_tstamp expiry; if(!pktx) { pktx_init(&local_pktx, cf, data); pktx = &local_pktx; } else { pktx_update_time(pktx, cf); } expiry = ngtcp2_conn_get_expiry(ctx->qconn); if(expiry != UINT64_MAX) { if(expiry <= pktx->ts) { CURLcode result; int rv = ngtcp2_conn_handle_expiry(ctx->qconn, pktx->ts); if(rv) { failf(data, "ngtcp2_conn_handle_expiry returned error: %s", ngtcp2_strerror(rv)); cf_ngtcp2_err_set(cf, data, rv); return CURLE_SEND_ERROR; } result = cf_progress_ingress(cf, data, pktx); if(result) return result; result = cf_progress_egress(cf, data, pktx); if(result) return result; /* ask again, things might have changed */ expiry = ngtcp2_conn_get_expiry(ctx->qconn); } if(expiry > pktx->ts) { ngtcp2_duration timeout = expiry - pktx->ts; if(timeout % NGTCP2_MILLISECONDS) { timeout += NGTCP2_MILLISECONDS; } Curl_expire(data, (timediff_t)(timeout / NGTCP2_MILLISECONDS), EXPIRE_QUIC); } } return CURLE_OK; } static void cf_ngtcp2_adjust_pollset(struct Curl_cfilter *cf, struct Curl_easy *data, struct easy_pollset *ps) { struct cf_ngtcp2_ctx *ctx = cf->ctx; bool want_recv, want_send; if(!ctx->qconn) return; Curl_pollset_check(data, ps, ctx->q.sockfd, &want_recv, &want_send); if(!want_send && !Curl_bufq_is_empty(&ctx->q.sendbuf)) want_send = TRUE; if(want_recv || want_send) { struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); struct cf_call_data save; bool c_exhaust, s_exhaust; CF_DATA_SAVE(save, cf, data); c_exhaust = want_send && (!ngtcp2_conn_get_cwnd_left(ctx->qconn) || !ngtcp2_conn_get_max_data_left(ctx->qconn)); s_exhaust = want_send && stream && stream->id >= 0 && stream->quic_flow_blocked; want_recv = (want_recv || c_exhaust || s_exhaust); want_send = (!s_exhaust && want_send) || !Curl_bufq_is_empty(&ctx->q.sendbuf); Curl_pollset_set(data, ps, ctx->q.sockfd, want_recv, want_send); CF_DATA_RESTORE(cf, save); } } static int cb_h3_stream_close(nghttp3_conn *conn, int64_t sid, uint64_t app_error_code, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; struct Curl_easy *data = stream_user_data; curl_int64_t stream_id = (curl_int64_t)sid; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); (void)conn; (void)stream_id; /* we might be called by nghttp3 after we already cleaned up */ if(!stream) return 0; stream->closed = TRUE; stream->error3 = (curl_uint64_t)app_error_code; if(stream->error3 != NGHTTP3_H3_NO_ERROR) { stream->reset = TRUE; stream->send_closed = TRUE; CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] RESET: error %" CURL_PRIu64, stream->id, stream->error3); } else { CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] CLOSED", stream->id); } h3_drain_stream(cf, data); return 0; } static void h3_xfer_write_resp_hd(struct Curl_cfilter *cf, struct Curl_easy *data, struct h3_stream_ctx *stream, const char *buf, size_t blen, bool eos) { /* If we already encountered an error, skip further writes */ if(!stream->xfer_result) { stream->xfer_result = Curl_xfer_write_resp_hd(data, buf, blen, eos); if(stream->xfer_result) CURL_TRC_CF(data, cf, "[%"CURL_PRId64"] error %d writing %zu " "bytes of headers", stream->id, stream->xfer_result, blen); } } static void h3_xfer_write_resp(struct Curl_cfilter *cf, struct Curl_easy *data, struct h3_stream_ctx *stream, const char *buf, size_t blen, bool eos) { /* If we already encountered an error, skip further writes */ if(!stream->xfer_result) { stream->xfer_result = Curl_xfer_write_resp(data, buf, blen, eos); /* If the transfer write is errored, we do not want any more data */ if(stream->xfer_result) { CURL_TRC_CF(data, cf, "[%"CURL_PRId64"] error %d writing %zu bytes " "of data", stream->id, stream->xfer_result, blen); } } } static int cb_h3_recv_data(nghttp3_conn *conn, int64_t stream3_id, const uint8_t *buf, size_t blen, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; struct Curl_easy *data = stream_user_data; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); (void)conn; (void)stream3_id; if(!stream) return NGHTTP3_ERR_CALLBACK_FAILURE; h3_xfer_write_resp(cf, data, stream, (char *)buf, blen, FALSE); if(blen) { CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] ACK %zu bytes of DATA", stream->id, blen); ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream->id, blen); ngtcp2_conn_extend_max_offset(ctx->qconn, blen); } CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] DATA len=%zu", stream->id, blen); return 0; } static int cb_h3_deferred_consume(nghttp3_conn *conn, int64_t stream3_id, size_t consumed, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; (void)conn; (void)stream_user_data; /* nghttp3 has consumed bytes on the QUIC stream and we need to * tell the QUIC connection to increase its flow control */ ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream3_id, consumed); ngtcp2_conn_extend_max_offset(ctx->qconn, consumed); return 0; } static int cb_h3_end_headers(nghttp3_conn *conn, int64_t sid, int fin, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; struct Curl_easy *data = stream_user_data; curl_int64_t stream_id = (curl_int64_t)sid; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); (void)conn; (void)stream_id; (void)fin; (void)cf; if(!stream) return 0; /* add a CRLF only if we have received some headers */ h3_xfer_write_resp_hd(cf, data, stream, STRCONST("\r\n"), stream->closed); CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] end_headers, status=%d", stream_id, stream->status_code); if(stream->status_code / 100 != 1) { stream->resp_hds_complete = TRUE; } h3_drain_stream(cf, data); return 0; } static int cb_h3_recv_header(nghttp3_conn *conn, int64_t sid, int32_t token, nghttp3_rcbuf *name, nghttp3_rcbuf *value, uint8_t flags, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; curl_int64_t stream_id = (curl_int64_t)sid; nghttp3_vec h3name = nghttp3_rcbuf_get_buf(name); nghttp3_vec h3val = nghttp3_rcbuf_get_buf(value); struct Curl_easy *data = stream_user_data; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); CURLcode result = CURLE_OK; (void)conn; (void)stream_id; (void)token; (void)flags; (void)cf; /* we might have cleaned up this transfer already */ if(!stream) return 0; if(token == NGHTTP3_QPACK_TOKEN__STATUS) { result = Curl_http_decode_status(&stream->status_code, (const char *)h3val.base, h3val.len); if(result) return -1; Curl_dyn_reset(&ctx->scratch); result = Curl_dyn_addn(&ctx->scratch, STRCONST("HTTP/3 ")); if(!result) result = Curl_dyn_addn(&ctx->scratch, (const char *)h3val.base, h3val.len); if(!result) result = Curl_dyn_addn(&ctx->scratch, STRCONST(" \r\n")); if(!result) h3_xfer_write_resp_hd(cf, data, stream, Curl_dyn_ptr(&ctx->scratch), Curl_dyn_len(&ctx->scratch), FALSE); CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] status: %s", stream_id, Curl_dyn_ptr(&ctx->scratch)); if(result) { return -1; } } else { /* store as an HTTP1-style header */ CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] header: %.*s: %.*s", stream_id, (int)h3name.len, h3name.base, (int)h3val.len, h3val.base); Curl_dyn_reset(&ctx->scratch); result = Curl_dyn_addn(&ctx->scratch, (const char *)h3name.base, h3name.len); if(!result) result = Curl_dyn_addn(&ctx->scratch, STRCONST(": ")); if(!result) result = Curl_dyn_addn(&ctx->scratch, (const char *)h3val.base, h3val.len); if(!result) result = Curl_dyn_addn(&ctx->scratch, STRCONST("\r\n")); if(!result) h3_xfer_write_resp_hd(cf, data, stream, Curl_dyn_ptr(&ctx->scratch), Curl_dyn_len(&ctx->scratch), FALSE); } return 0; } static int cb_h3_stop_sending(nghttp3_conn *conn, int64_t stream_id, uint64_t app_error_code, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; int rv; (void)conn; (void)stream_user_data; rv = ngtcp2_conn_shutdown_stream_read(ctx->qconn, 0, stream_id, app_error_code); if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) { return NGTCP2_ERR_CALLBACK_FAILURE; } return 0; } static int cb_h3_reset_stream(nghttp3_conn *conn, int64_t sid, uint64_t app_error_code, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; curl_int64_t stream_id = (curl_int64_t)sid; struct Curl_easy *data = stream_user_data; int rv; (void)conn; (void)data; rv = ngtcp2_conn_shutdown_stream_write(ctx->qconn, 0, stream_id, app_error_code); CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] reset -> %d", stream_id, rv); if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) { return NGTCP2_ERR_CALLBACK_FAILURE; } return 0; } static nghttp3_callbacks ngh3_callbacks = { cb_h3_acked_req_body, /* acked_stream_data */ cb_h3_stream_close, cb_h3_recv_data, cb_h3_deferred_consume, NULL, /* begin_headers */ cb_h3_recv_header, cb_h3_end_headers, NULL, /* begin_trailers */ cb_h3_recv_header, NULL, /* end_trailers */ cb_h3_stop_sending, NULL, /* end_stream */ cb_h3_reset_stream, NULL, /* shutdown */ NULL /* recv_settings */ }; static CURLcode init_ngh3_conn(struct Curl_cfilter *cf) { struct cf_ngtcp2_ctx *ctx = cf->ctx; CURLcode result; int rc; int64_t ctrl_stream_id, qpack_enc_stream_id, qpack_dec_stream_id; if(ngtcp2_conn_get_streams_uni_left(ctx->qconn) < 3) { return CURLE_QUIC_CONNECT_ERROR; } nghttp3_settings_default(&ctx->h3settings); rc = nghttp3_conn_client_new(&ctx->h3conn, &ngh3_callbacks, &ctx->h3settings, nghttp3_mem_default(), cf); if(rc) { result = CURLE_OUT_OF_MEMORY; goto fail; } rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &ctrl_stream_id, NULL); if(rc) { result = CURLE_QUIC_CONNECT_ERROR; goto fail; } rc = nghttp3_conn_bind_control_stream(ctx->h3conn, ctrl_stream_id); if(rc) { result = CURLE_QUIC_CONNECT_ERROR; goto fail; } rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_enc_stream_id, NULL); if(rc) { result = CURLE_QUIC_CONNECT_ERROR; goto fail; } rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_dec_stream_id, NULL); if(rc) { result = CURLE_QUIC_CONNECT_ERROR; goto fail; } rc = nghttp3_conn_bind_qpack_streams(ctx->h3conn, qpack_enc_stream_id, qpack_dec_stream_id); if(rc) { result = CURLE_QUIC_CONNECT_ERROR; goto fail; } return CURLE_OK; fail: return result; } static ssize_t recv_closed_stream(struct Curl_cfilter *cf, struct Curl_easy *data, struct h3_stream_ctx *stream, CURLcode *err) { ssize_t nread = -1; (void)cf; if(stream->reset) { failf(data, "HTTP/3 stream %" CURL_PRId64 " reset by server", stream->id); *err = data->req.bytecount? CURLE_PARTIAL_FILE : CURLE_HTTP3; goto out; } else if(!stream->resp_hds_complete) { failf(data, "HTTP/3 stream %" CURL_PRId64 " was closed cleanly, but before " "getting all response header fields, treated as error", stream->id); *err = CURLE_HTTP3; goto out; } *err = CURLE_OK; nread = 0; out: return nread; } /* incoming data frames on the h3 stream */ static ssize_t cf_ngtcp2_recv(struct Curl_cfilter *cf, struct Curl_easy *data, char *buf, size_t blen, CURLcode *err) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); ssize_t nread = -1; struct cf_call_data save; struct pkt_io_ctx pktx; (void)ctx; (void)buf; CF_DATA_SAVE(save, cf, data); DEBUGASSERT(cf->connected); DEBUGASSERT(ctx); DEBUGASSERT(ctx->qconn); DEBUGASSERT(ctx->h3conn); *err = CURLE_OK; pktx_init(&pktx, cf, data); if(!stream || ctx->shutdown_started) { *err = CURLE_RECV_ERROR; goto out; } if(cf_progress_ingress(cf, data, &pktx)) { *err = CURLE_RECV_ERROR; nread = -1; goto out; } if(stream->xfer_result) { CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] xfer write failed", stream->id); cf_ngtcp2_stream_close(cf, data, stream); *err = stream->xfer_result; nread = -1; goto out; } else if(stream->closed) { nread = recv_closed_stream(cf, data, stream, err); goto out; } *err = CURLE_AGAIN; nread = -1; out: if(cf_progress_egress(cf, data, &pktx)) { *err = CURLE_SEND_ERROR; nread = -1; } else { CURLcode result2 = check_and_set_expiry(cf, data, &pktx); if(result2) { *err = result2; nread = -1; } } CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cf_recv(blen=%zu) -> %zd, %d", stream? stream->id : -1, blen, nread, *err); CF_DATA_RESTORE(cf, save); return nread; } static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id, uint64_t datalen, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; struct Curl_easy *data = stream_user_data; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); size_t skiplen; (void)cf; if(!stream) return 0; /* The server acknowledged `datalen` of bytes from our request body. * This is a delta. We have kept this data in `sendbuf` for * re-transmissions and can free it now. */ if(datalen >= (uint64_t)stream->sendbuf_len_in_flight) skiplen = stream->sendbuf_len_in_flight; else skiplen = (size_t)datalen; Curl_bufq_skip(&stream->sendbuf, skiplen); stream->sendbuf_len_in_flight -= skiplen; /* Resume upload processing if we have more data to send */ if(stream->sendbuf_len_in_flight < Curl_bufq_len(&stream->sendbuf)) { int rv = nghttp3_conn_resume_stream(conn, stream_id); if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) { return NGTCP2_ERR_CALLBACK_FAILURE; } } return 0; } static nghttp3_ssize cb_h3_read_req_body(nghttp3_conn *conn, int64_t stream_id, nghttp3_vec *vec, size_t veccnt, uint32_t *pflags, void *user_data, void *stream_user_data) { struct Curl_cfilter *cf = user_data; struct cf_ngtcp2_ctx *ctx = cf->ctx; struct Curl_easy *data = stream_user_data; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); ssize_t nwritten = 0; size_t nvecs = 0; (void)cf; (void)conn; (void)stream_id; (void)user_data; (void)veccnt; if(!stream) return NGHTTP3_ERR_CALLBACK_FAILURE; /* nghttp3 keeps references to the sendbuf data until it is ACKed * by the server (see `cb_h3_acked_req_body()` for updates). * `sendbuf_len_in_flight` is the amount of bytes in `sendbuf` * that we have already passed to nghttp3, but which have not been * ACKed yet. * Any amount beyond `sendbuf_len_in_flight` we need still to pass * to nghttp3. Do that now, if we can. */ if(stream->sendbuf_len_in_flight < Curl_bufq_len(&stream->sendbuf)) { nvecs = 0; while(nvecs < veccnt && Curl_bufq_peek_at(&stream->sendbuf, stream->sendbuf_len_in_flight, (const unsigned char **)&vec[nvecs].base, &vec[nvecs].len)) { stream->sendbuf_len_in_flight += vec[nvecs].len; nwritten += vec[nvecs].len; ++nvecs; } DEBUGASSERT(nvecs > 0); /* we SHOULD have been be able to peek */ } if(nwritten > 0 && stream->upload_left != -1) stream->upload_left -= nwritten; /* When we stopped sending and everything in `sendbuf` is "in flight", * we are at the end of the request body. */ if(stream->upload_left == 0) { *pflags = NGHTTP3_DATA_FLAG_EOF; stream->send_closed = TRUE; } else if(!nwritten) { /* Not EOF, and nothing to give, we signal WOULDBLOCK. */ CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] read req body -> AGAIN", stream->id); return NGHTTP3_ERR_WOULDBLOCK; } CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] read req body -> " "%d vecs%s with %zu (buffered=%zu, left=%" CURL_FORMAT_CURL_OFF_T ")", stream->id, (int)nvecs, *pflags == NGHTTP3_DATA_FLAG_EOF?" EOF":"", nwritten, Curl_bufq_len(&stream->sendbuf), stream->upload_left); return (nghttp3_ssize)nvecs; } /* Index where :authority header field will appear in request header field list. */ #define AUTHORITY_DST_IDX 3 static ssize_t h3_stream_open(struct Curl_cfilter *cf, struct Curl_easy *data, const void *buf, size_t len, CURLcode *err) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct h3_stream_ctx *stream = NULL; int64_t sid; struct dynhds h2_headers; size_t nheader; nghttp3_nv *nva = NULL; int rc = 0; unsigned int i; ssize_t nwritten = -1; nghttp3_data_reader reader; nghttp3_data_reader *preader = NULL; Curl_dynhds_init(&h2_headers, 0, DYN_HTTP_REQUEST); *err = h3_data_setup(cf, data); if(*err) goto out; stream = H3_STREAM_CTX(ctx, data); DEBUGASSERT(stream); if(!stream) { *err = CURLE_FAILED_INIT; goto out; } nwritten = Curl_h1_req_parse_read(&stream->h1, buf, len, NULL, 0, err); if(nwritten < 0) goto out; if(!stream->h1.done) { /* need more data */ goto out; } DEBUGASSERT(stream->h1.req); *err = Curl_http_req_to_h2(&h2_headers, stream->h1.req, data); if(*err) { nwritten = -1; goto out; } /* no longer needed */ Curl_h1_req_parse_free(&stream->h1); nheader = Curl_dynhds_count(&h2_headers); nva = malloc(sizeof(nghttp3_nv) * nheader); if(!nva) { *err = CURLE_OUT_OF_MEMORY; nwritten = -1; goto out; } for(i = 0; i < nheader; ++i) { struct dynhds_entry *e = Curl_dynhds_getn(&h2_headers, i); nva[i].name = (unsigned char *)e->name; nva[i].namelen = e->namelen; nva[i].value = (unsigned char *)e->value; nva[i].valuelen = e->valuelen; nva[i].flags = NGHTTP3_NV_FLAG_NONE; } rc = ngtcp2_conn_open_bidi_stream(ctx->qconn, &sid, data); if(rc) { failf(data, "can get bidi streams"); *err = CURLE_SEND_ERROR; nwritten = -1; goto out; } stream->id = (curl_int64_t)sid; ++ctx->used_bidi_streams; switch(data->state.httpreq) { case HTTPREQ_POST: case HTTPREQ_POST_FORM: case HTTPREQ_POST_MIME: case HTTPREQ_PUT: /* known request body size or -1 */ if(data->state.infilesize != -1) stream->upload_left = data->state.infilesize; else /* data sending without specifying the data amount up front */ stream->upload_left = -1; /* unknown */ break; default: /* there is not request body */ stream->upload_left = 0; /* no request body */ break; } stream->send_closed = (stream->upload_left == 0); if(!stream->send_closed) { reader.read_data = cb_h3_read_req_body; preader = &reader; } rc = nghttp3_conn_submit_request(ctx->h3conn, stream->id, nva, nheader, preader, data); if(rc) { switch(rc) { case NGHTTP3_ERR_CONN_CLOSING: CURL_TRC_CF(data, cf, "h3sid[%" CURL_PRId64 "] failed to send, " "connection is closing", stream->id); break; default: CURL_TRC_CF(data, cf, "h3sid[%" CURL_PRId64 "] failed to send -> " "%d (%s)", stream->id, rc, ngtcp2_strerror(rc)); break; } *err = CURLE_SEND_ERROR; nwritten = -1; goto out; } if(Curl_trc_is_verbose(data)) { infof(data, "[HTTP/3] [%" CURL_PRId64 "] OPENED stream for %s", stream->id, data->state.url); for(i = 0; i < nheader; ++i) { infof(data, "[HTTP/3] [%" CURL_PRId64 "] [%.*s: %.*s]", stream->id, (int)nva[i].namelen, nva[i].name, (int)nva[i].valuelen, nva[i].value); } } out: free(nva); Curl_dynhds_free(&h2_headers); return nwritten; } static ssize_t cf_ngtcp2_send(struct Curl_cfilter *cf, struct Curl_easy *data, const void *buf, size_t len, CURLcode *err) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); ssize_t sent = 0; struct cf_call_data save; struct pkt_io_ctx pktx; CURLcode result; CF_DATA_SAVE(save, cf, data); DEBUGASSERT(cf->connected); DEBUGASSERT(ctx->qconn); DEBUGASSERT(ctx->h3conn); pktx_init(&pktx, cf, data); *err = CURLE_OK; result = cf_progress_ingress(cf, data, &pktx); if(result) { *err = result; sent = -1; } if(!stream || stream->id < 0) { if(ctx->shutdown_started) { CURL_TRC_CF(data, cf, "cannot open stream on closed connection"); *err = CURLE_SEND_ERROR; sent = -1; goto out; } sent = h3_stream_open(cf, data, buf, len, err); if(sent < 0) { CURL_TRC_CF(data, cf, "failed to open stream -> %d", *err); goto out; } stream = H3_STREAM_CTX(ctx, data); } else if(stream->xfer_result) { CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] xfer write failed", stream->id); cf_ngtcp2_stream_close(cf, data, stream); *err = stream->xfer_result; sent = -1; goto out; } else if(stream->closed) { if(stream->resp_hds_complete) { /* Server decided to close the stream after having sent us a final * response. This is valid if it is not interested in the request * body. This happens on 30x or 40x responses. * We silently discard the data sent, since this is not a transport * error situation. */ CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] discarding data" "on closed stream with response", stream->id); *err = CURLE_OK; sent = (ssize_t)len; goto out; } CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] send_body(len=%zu) " "-> stream closed", stream->id, len); *err = CURLE_HTTP3; sent = -1; goto out; } else if(ctx->shutdown_started) { CURL_TRC_CF(data, cf, "cannot send on closed connection"); *err = CURLE_SEND_ERROR; sent = -1; goto out; } else { sent = Curl_bufq_write(&stream->sendbuf, buf, len, err); CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cf_send, add to " "sendbuf(len=%zu) -> %zd, %d", stream->id, len, sent, *err); if(sent < 0) { goto out; } (void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id); } result = cf_progress_egress(cf, data, &pktx); if(result) { *err = result; sent = -1; } out: result = check_and_set_expiry(cf, data, &pktx); if(result) { *err = result; sent = -1; } CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cf_send(len=%zu) -> %zd, %d", stream? stream->id : -1, len, sent, *err); CF_DATA_RESTORE(cf, save); return sent; } static CURLcode qng_verify_peer(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_ngtcp2_ctx *ctx = cf->ctx; cf->conn->bits.multiplex = TRUE; /* at least potentially multiplexed */ cf->conn->httpversion = 30; cf->conn->bundle->multiuse = BUNDLE_MULTIPLEX; return Curl_vquic_tls_verify_peer(&ctx->tls, cf, data, &ctx->peer); } static CURLcode recv_pkt(const unsigned char *pkt, size_t pktlen, struct sockaddr_storage *remote_addr, socklen_t remote_addrlen, int ecn, void *userp) { struct pkt_io_ctx *pktx = userp; struct cf_ngtcp2_ctx *ctx = pktx->cf->ctx; ngtcp2_pkt_info pi; ngtcp2_path path; int rv; ++pktx->pkt_count; ngtcp2_addr_init(&path.local, (struct sockaddr *)&ctx->q.local_addr, (socklen_t)ctx->q.local_addrlen); ngtcp2_addr_init(&path.remote, (struct sockaddr *)remote_addr, remote_addrlen); pi.ecn = (uint8_t)ecn; rv = ngtcp2_conn_read_pkt(ctx->qconn, &path, &pi, pkt, pktlen, pktx->ts); if(rv) { CURL_TRC_CF(pktx->data, pktx->cf, "ingress, read_pkt -> %s (%d)", ngtcp2_strerror(rv), rv); cf_ngtcp2_err_set(pktx->cf, pktx->data, rv); if(rv == NGTCP2_ERR_CRYPTO) /* this is a "TLS problem", but a failed certificate verification is a common reason for this */ return CURLE_PEER_FAILED_VERIFICATION; return CURLE_RECV_ERROR; } return CURLE_OK; } static CURLcode cf_progress_ingress(struct Curl_cfilter *cf, struct Curl_easy *data, struct pkt_io_ctx *pktx) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct pkt_io_ctx local_pktx; size_t pkts_chunk = 128, i; CURLcode result = CURLE_OK; if(!pktx) { pktx_init(&local_pktx, cf, data); pktx = &local_pktx; } else { pktx_update_time(pktx, cf); } result = Curl_vquic_tls_before_recv(&ctx->tls, cf, data); if(result) return result; for(i = 0; i < 4; ++i) { if(i) pktx_update_time(pktx, cf); pktx->pkt_count = 0; result = vquic_recv_packets(cf, data, &ctx->q, pkts_chunk, recv_pkt, pktx); if(result || !pktx->pkt_count) /* error or got nothing */ break; } return result; } /** * Read a network packet to send from ngtcp2 into `buf`. * Return number of bytes written or -1 with *err set. */ static ssize_t read_pkt_to_send(void *userp, unsigned char *buf, size_t buflen, CURLcode *err) { struct pkt_io_ctx *x = userp; struct cf_ngtcp2_ctx *ctx = x->cf->ctx; nghttp3_vec vec[16]; nghttp3_ssize veccnt; ngtcp2_ssize ndatalen; uint32_t flags; int64_t stream_id; int fin; ssize_t nwritten, n; veccnt = 0; stream_id = -1; fin = 0; /* ngtcp2 may want to put several frames from different streams into * this packet. `NGTCP2_WRITE_STREAM_FLAG_MORE` tells it to do so. * When `NGTCP2_ERR_WRITE_MORE` is returned, we *need* to make * another iteration. * When ngtcp2 is happy (because it has no other frame that would fit * or it has nothing more to send), it returns the total length * of the assembled packet. This may be 0 if there was nothing to send. */ nwritten = 0; *err = CURLE_OK; for(;;) { if(ctx->h3conn && ngtcp2_conn_get_max_data_left(ctx->qconn)) { veccnt = nghttp3_conn_writev_stream(ctx->h3conn, &stream_id, &fin, vec, sizeof(vec) / sizeof(vec[0])); if(veccnt < 0) { failf(x->data, "nghttp3_conn_writev_stream returned error: %s", nghttp3_strerror((int)veccnt)); cf_ngtcp2_h3_err_set(x->cf, x->data, (int)veccnt); *err = CURLE_SEND_ERROR; return -1; } } flags = NGTCP2_WRITE_STREAM_FLAG_MORE | (fin ? NGTCP2_WRITE_STREAM_FLAG_FIN : 0); n = ngtcp2_conn_writev_stream(ctx->qconn, &x->ps.path, NULL, buf, buflen, &ndatalen, flags, stream_id, (const ngtcp2_vec *)vec, veccnt, x->ts); if(n == 0) { /* nothing to send */ *err = CURLE_AGAIN; nwritten = -1; goto out; } else if(n < 0) { switch(n) { case NGTCP2_ERR_STREAM_DATA_BLOCKED: { struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, x->data); DEBUGASSERT(ndatalen == -1); nghttp3_conn_block_stream(ctx->h3conn, stream_id); CURL_TRC_CF(x->data, x->cf, "[%" CURL_PRId64 "] block quic flow", (curl_int64_t)stream_id); DEBUGASSERT(stream); if(stream) stream->quic_flow_blocked = TRUE; n = 0; break; } case NGTCP2_ERR_STREAM_SHUT_WR: DEBUGASSERT(ndatalen == -1); nghttp3_conn_shutdown_stream_write(ctx->h3conn, stream_id); n = 0; break; case NGTCP2_ERR_WRITE_MORE: /* ngtcp2 wants to send more. update the flow of the stream whose data * is in the buffer and continue */ DEBUGASSERT(ndatalen >= 0); n = 0; break; default: DEBUGASSERT(ndatalen == -1); failf(x->data, "ngtcp2_conn_writev_stream returned error: %s", ngtcp2_strerror((int)n)); cf_ngtcp2_err_set(x->cf, x->data, (int)n); *err = CURLE_SEND_ERROR; nwritten = -1; goto out; } } if(ndatalen >= 0) { /* we add the amount of data bytes to the flow windows */ int rv = nghttp3_conn_add_write_offset(ctx->h3conn, stream_id, ndatalen); if(rv) { failf(x->data, "nghttp3_conn_add_write_offset returned error: %s\n", nghttp3_strerror(rv)); return CURLE_SEND_ERROR; } } if(n > 0) { /* packet assembled, leave */ nwritten = n; goto out; } } out: return nwritten; } static CURLcode cf_progress_egress(struct Curl_cfilter *cf, struct Curl_easy *data, struct pkt_io_ctx *pktx) { struct cf_ngtcp2_ctx *ctx = cf->ctx; ssize_t nread; size_t max_payload_size, path_max_payload_size, max_pktcnt; size_t pktcnt = 0; size_t gsolen = 0; /* this disables gso until we have a clue */ CURLcode curlcode; struct pkt_io_ctx local_pktx; if(!pktx) { pktx_init(&local_pktx, cf, data); pktx = &local_pktx; } else { pktx_update_time(pktx, cf); ngtcp2_path_storage_zero(&pktx->ps); } curlcode = vquic_flush(cf, data, &ctx->q); if(curlcode) { if(curlcode == CURLE_AGAIN) { Curl_expire(data, 1, EXPIRE_QUIC); return CURLE_OK; } return curlcode; } /* In UDP, there is a maximum theoretical packet paload length and * a minimum payload length that is "guaranteed" to work. * To detect if this minimum payload can be increased, ngtcp2 sends * now and then a packet payload larger than the minimum. It that * is ACKed by the peer, both parties know that it works and * the subsequent packets can use a larger one. * This is called PMTUD (Path Maximum Transmission Unit Discovery). * Since a PMTUD might be rejected right on send, we do not want it * be followed by other packets of lesser size. Because those would * also fail then. So, if we detect a PMTUD while buffering, we flush. */ max_payload_size = ngtcp2_conn_get_max_tx_udp_payload_size(ctx->qconn); path_max_payload_size = ngtcp2_conn_get_path_max_tx_udp_payload_size(ctx->qconn); /* maximum number of packets buffered before we flush to the socket */ max_pktcnt = CURLMIN(MAX_PKT_BURST, ctx->q.sendbuf.chunk_size / max_payload_size); for(;;) { /* add the next packet to send, if any, to our buffer */ nread = Curl_bufq_sipn(&ctx->q.sendbuf, max_payload_size, read_pkt_to_send, pktx, &curlcode); if(nread < 0) { if(curlcode != CURLE_AGAIN) return curlcode; /* Nothing more to add, flush and leave */ curlcode = vquic_send(cf, data, &ctx->q, gsolen); if(curlcode) { if(curlcode == CURLE_AGAIN) { Curl_expire(data, 1, EXPIRE_QUIC); return CURLE_OK; } return curlcode; } goto out; } DEBUGASSERT(nread > 0); if(pktcnt == 0) { /* first packet in buffer. This is either of a known, "good" * payload size or it is a PMTUD. We will see. */ gsolen = (size_t)nread; } else if((size_t)nread > gsolen || (gsolen > path_max_payload_size && (size_t)nread != gsolen)) { /* The just added packet is a PMTUD *or* the one(s) before the * just added were PMTUD and the last one is smaller. * Flush the buffer before the last add. */ curlcode = vquic_send_tail_split(cf, data, &ctx->q, gsolen, nread, nread); if(curlcode) { if(curlcode == CURLE_AGAIN) { Curl_expire(data, 1, EXPIRE_QUIC); return CURLE_OK; } return curlcode; } pktcnt = 0; continue; } if(++pktcnt >= max_pktcnt || (size_t)nread < gsolen) { /* Reached MAX_PKT_BURST *or* * the capacity of our buffer *or* * last add was shorter than the previous ones, flush */ curlcode = vquic_send(cf, data, &ctx->q, gsolen); if(curlcode) { if(curlcode == CURLE_AGAIN) { Curl_expire(data, 1, EXPIRE_QUIC); return CURLE_OK; } return curlcode; } /* pktbuf has been completely sent */ pktcnt = 0; } } out: return CURLE_OK; } /* * Called from transfer.c:data_pending to know if we should keep looping * to receive more data from the connection. */ static bool cf_ngtcp2_data_pending(struct Curl_cfilter *cf, const struct Curl_easy *data) { (void)cf; (void)data; return FALSE; } static CURLcode h3_data_pause(struct Curl_cfilter *cf, struct Curl_easy *data, bool pause) { /* TODO: there seems right now no API in ngtcp2 to shrink/enlarge * the streams windows. As we do in HTTP/2. */ if(!pause) { h3_drain_stream(cf, data); Curl_expire(data, 0, EXPIRE_RUN_NOW); } return CURLE_OK; } static CURLcode cf_ngtcp2_data_event(struct Curl_cfilter *cf, struct Curl_easy *data, int event, int arg1, void *arg2) { struct cf_ngtcp2_ctx *ctx = cf->ctx; CURLcode result = CURLE_OK; struct cf_call_data save; CF_DATA_SAVE(save, cf, data); (void)arg1; (void)arg2; switch(event) { case CF_CTRL_DATA_SETUP: break; case CF_CTRL_DATA_PAUSE: result = h3_data_pause(cf, data, (arg1 != 0)); break; case CF_CTRL_DATA_DETACH: h3_data_done(cf, data); break; case CF_CTRL_DATA_DONE: h3_data_done(cf, data); break; case CF_CTRL_DATA_DONE_SEND: { struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); if(stream && !stream->send_closed) { stream->send_closed = TRUE; stream->upload_left = Curl_bufq_len(&stream->sendbuf) - stream->sendbuf_len_in_flight; (void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id); } break; } case CF_CTRL_DATA_IDLE: { struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data); CURL_TRC_CF(data, cf, "data idle"); if(stream && !stream->closed) { result = check_and_set_expiry(cf, data, NULL); if(result) CURL_TRC_CF(data, cf, "data idle, check_and_set_expiry -> %d", result); } break; } default: break; } CF_DATA_RESTORE(cf, save); return result; } static void cf_ngtcp2_ctx_clear(struct cf_ngtcp2_ctx *ctx) { struct cf_call_data save = ctx->call_data; if(ctx->qlogfd != -1) { close(ctx->qlogfd); } Curl_vquic_tls_cleanup(&ctx->tls); vquic_ctx_free(&ctx->q); if(ctx->h3conn) nghttp3_conn_del(ctx->h3conn); if(ctx->qconn) ngtcp2_conn_del(ctx->qconn); Curl_bufcp_free(&ctx->stream_bufcp); Curl_dyn_free(&ctx->scratch); Curl_hash_clean(&ctx->streams); Curl_hash_destroy(&ctx->streams); Curl_ssl_peer_cleanup(&ctx->peer); memset(ctx, 0, sizeof(*ctx)); ctx->qlogfd = -1; ctx->call_data = save; } static CURLcode cf_ngtcp2_shutdown(struct Curl_cfilter *cf, struct Curl_easy *data, bool *done) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct cf_call_data save; struct pkt_io_ctx pktx; CURLcode result = CURLE_OK; if(cf->shutdown || !ctx->qconn) { *done = TRUE; return CURLE_OK; } CF_DATA_SAVE(save, cf, data); *done = FALSE; pktx_init(&pktx, cf, data); if(!ctx->shutdown_started) { char buffer[NGTCP2_MAX_UDP_PAYLOAD_SIZE]; ngtcp2_ssize nwritten; if(!Curl_bufq_is_empty(&ctx->q.sendbuf)) { CURL_TRC_CF(data, cf, "shutdown, flushing sendbuf"); result = cf_progress_egress(cf, data, &pktx); if(!Curl_bufq_is_empty(&ctx->q.sendbuf)) { CURL_TRC_CF(data, cf, "sending shutdown packets blocked"); result = CURLE_OK; goto out; } else if(result) { CURL_TRC_CF(data, cf, "shutdown, error %d flushing sendbuf", result); *done = TRUE; goto out; } } ctx->shutdown_started = TRUE; nwritten = ngtcp2_conn_write_connection_close( ctx->qconn, NULL, /* path */ NULL, /* pkt_info */ (uint8_t *)buffer, sizeof(buffer), &ctx->last_error, pktx.ts); CURL_TRC_CF(data, cf, "start shutdown(err_type=%d, err_code=%" CURL_PRIu64 ") -> %d", ctx->last_error.type, (curl_uint64_t)ctx->last_error.error_code, (int)nwritten); if(nwritten > 0) { Curl_bufq_write(&ctx->q.sendbuf, (const unsigned char *)buffer, (size_t)nwritten, &result); if(result) { CURL_TRC_CF(data, cf, "error %d adding shutdown packets to sendbuf, " "aborting shutdown", result); goto out; } ctx->q.no_gso = TRUE; ctx->q.gsolen = (size_t)nwritten; ctx->q.split_len = 0; } } if(!Curl_bufq_is_empty(&ctx->q.sendbuf)) { CURL_TRC_CF(data, cf, "shutdown, flushing egress"); result = vquic_flush(cf, data, &ctx->q); if(result == CURLE_AGAIN) { CURL_TRC_CF(data, cf, "sending shutdown packets blocked"); result = CURLE_OK; goto out; } else if(result) { CURL_TRC_CF(data, cf, "shutdown, error %d flushing sendbuf", result); *done = TRUE; goto out; } } if(Curl_bufq_is_empty(&ctx->q.sendbuf)) { /* Sent everything off. ngtcp2 seems to have no support for graceful * shutdowns. So, we are done. */ CURL_TRC_CF(data, cf, "shutdown completely sent off, done"); *done = TRUE; result = CURLE_OK; } out: CF_DATA_RESTORE(cf, save); return result; } static void cf_ngtcp2_conn_close(struct Curl_cfilter *cf, struct Curl_easy *data) { bool done; cf_ngtcp2_shutdown(cf, data, &done); } static void cf_ngtcp2_close(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct cf_call_data save; CF_DATA_SAVE(save, cf, data); if(ctx && ctx->qconn) { cf_ngtcp2_conn_close(cf, data); cf_ngtcp2_ctx_clear(ctx); CURL_TRC_CF(data, cf, "close"); } cf->connected = FALSE; CF_DATA_RESTORE(cf, save); } static void cf_ngtcp2_destroy(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct cf_call_data save; CF_DATA_SAVE(save, cf, data); CURL_TRC_CF(data, cf, "destroy"); if(ctx) { cf_ngtcp2_ctx_clear(ctx); free(ctx); } cf->ctx = NULL; /* No CF_DATA_RESTORE(cf, save) possible */ (void)save; } #ifdef USE_OPENSSL /* The "new session" callback must return zero if the session can be removed * or non-zero if the session has been put into the session cache. */ static int quic_ossl_new_session_cb(SSL *ssl, SSL_SESSION *ssl_sessionid) { struct Curl_cfilter *cf; struct cf_ngtcp2_ctx *ctx; struct Curl_easy *data; ngtcp2_crypto_conn_ref *cref; cref = (ngtcp2_crypto_conn_ref *)SSL_get_app_data(ssl); cf = cref? cref->user_data : NULL; ctx = cf? cf->ctx : NULL; data = cf? CF_DATA_CURRENT(cf) : NULL; if(cf && data && ctx) { Curl_ossl_add_session(cf, data, &ctx->peer, ssl_sessionid); return 1; } return 0; } #endif /* USE_OPENSSL */ static CURLcode tls_ctx_setup(struct Curl_cfilter *cf, struct Curl_easy *data, void *user_data) { struct curl_tls_ctx *ctx = user_data; (void)cf; #ifdef USE_OPENSSL #if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC) if(ngtcp2_crypto_boringssl_configure_client_context(ctx->ossl.ssl_ctx) != 0) { failf(data, "ngtcp2_crypto_boringssl_configure_client_context failed"); return CURLE_FAILED_INIT; } #else if(ngtcp2_crypto_quictls_configure_client_context(ctx->ossl.ssl_ctx) != 0) { failf(data, "ngtcp2_crypto_quictls_configure_client_context failed"); return CURLE_FAILED_INIT; } #endif /* !OPENSSL_IS_BORINGSSL && !OPENSSL_IS_AWSLC */ /* Enable the session cache because it is a prerequisite for the * "new session" callback. Use the "external storage" mode to prevent * OpenSSL from creating an internal session cache. */ SSL_CTX_set_session_cache_mode(ctx->ossl.ssl_ctx, SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL); SSL_CTX_sess_set_new_cb(ctx->ossl.ssl_ctx, quic_ossl_new_session_cb); #elif defined(USE_GNUTLS) if(ngtcp2_crypto_gnutls_configure_client_session(ctx->gtls.session) != 0) { failf(data, "ngtcp2_crypto_gnutls_configure_client_session failed"); return CURLE_FAILED_INIT; } #elif defined(USE_WOLFSSL) if(ngtcp2_crypto_wolfssl_configure_client_context(ctx->wssl.ctx) != 0) { failf(data, "ngtcp2_crypto_wolfssl_configure_client_context failed"); return CURLE_FAILED_INIT; } #endif return CURLE_OK; } /* * Might be called twice for happy eyeballs. */ static CURLcode cf_connect_start(struct Curl_cfilter *cf, struct Curl_easy *data, struct pkt_io_ctx *pktx) { struct cf_ngtcp2_ctx *ctx = cf->ctx; int rc; int rv; CURLcode result; const struct Curl_sockaddr_ex *sockaddr = NULL; int qfd; ctx->version = NGTCP2_PROTO_VER_MAX; ctx->max_stream_window = H3_STREAM_WINDOW_SIZE; ctx->max_idle_ms = CURL_QUIC_MAX_IDLE_MS; Curl_bufcp_init(&ctx->stream_bufcp, H3_STREAM_CHUNK_SIZE, H3_STREAM_POOL_SPARES); Curl_dyn_init(&ctx->scratch, CURL_MAX_HTTP_HEADER); Curl_hash_offt_init(&ctx->streams, 63, h3_stream_hash_free); result = Curl_ssl_peer_init(&ctx->peer, cf, TRNSPRT_QUIC); if(result) return result; #define H3_ALPN "\x2h3\x5h3-29" result = Curl_vquic_tls_init(&ctx->tls, cf, data, &ctx->peer, H3_ALPN, sizeof(H3_ALPN) - 1, tls_ctx_setup, &ctx->tls, &ctx->conn_ref); if(result) return result; #ifdef USE_OPENSSL SSL_set_quic_use_legacy_codepoint(ctx->tls.ossl.ssl, 0); #endif ctx->dcid.datalen = NGTCP2_MAX_CIDLEN; result = Curl_rand(data, ctx->dcid.data, NGTCP2_MAX_CIDLEN); if(result) return result; ctx->scid.datalen = NGTCP2_MAX_CIDLEN; result = Curl_rand(data, ctx->scid.data, NGTCP2_MAX_CIDLEN); if(result) return result; (void)Curl_qlogdir(data, ctx->scid.data, NGTCP2_MAX_CIDLEN, &qfd); ctx->qlogfd = qfd; /* -1 if failure above */ quic_settings(ctx, data, pktx); result = vquic_ctx_init(&ctx->q); if(result) return result; Curl_cf_socket_peek(cf->next, data, &ctx->q.sockfd, &sockaddr, NULL); if(!sockaddr) return CURLE_QUIC_CONNECT_ERROR; ctx->q.local_addrlen = sizeof(ctx->q.local_addr); rv = getsockname(ctx->q.sockfd, (struct sockaddr *)&ctx->q.local_addr, &ctx->q.local_addrlen); if(rv == -1) return CURLE_QUIC_CONNECT_ERROR; ngtcp2_addr_init(&ctx->connected_path.local, (struct sockaddr *)&ctx->q.local_addr, ctx->q.local_addrlen); ngtcp2_addr_init(&ctx->connected_path.remote, &sockaddr->sa_addr, (socklen_t)sockaddr->addrlen); rc = ngtcp2_conn_client_new(&ctx->qconn, &ctx->dcid, &ctx->scid, &ctx->connected_path, NGTCP2_PROTO_VER_V1, &ng_callbacks, &ctx->settings, &ctx->transport_params, NULL, cf); if(rc) return CURLE_QUIC_CONNECT_ERROR; #ifdef USE_OPENSSL ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->tls.ossl.ssl); #elif defined(USE_GNUTLS) ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->tls.gtls.session); #else ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->tls.wssl.handle); #endif ngtcp2_ccerr_default(&ctx->last_error); ctx->conn_ref.get_conn = get_conn; ctx->conn_ref.user_data = cf; return CURLE_OK; } static CURLcode cf_ngtcp2_connect(struct Curl_cfilter *cf, struct Curl_easy *data, bool blocking, bool *done) { struct cf_ngtcp2_ctx *ctx = cf->ctx; CURLcode result = CURLE_OK; struct cf_call_data save; struct curltime now; struct pkt_io_ctx pktx; if(cf->connected) { *done = TRUE; return CURLE_OK; } /* Connect the UDP filter first */ if(!cf->next->connected) { result = Curl_conn_cf_connect(cf->next, data, blocking, done); if(result || !*done) return result; } *done = FALSE; now = Curl_now(); pktx_init(&pktx, cf, data); CF_DATA_SAVE(save, cf, data); if(ctx->reconnect_at.tv_sec && Curl_timediff(now, ctx->reconnect_at) < 0) { /* Not time yet to attempt the next connect */ CURL_TRC_CF(data, cf, "waiting for reconnect time"); goto out; } if(!ctx->qconn) { ctx->started_at = now; result = cf_connect_start(cf, data, &pktx); if(result) goto out; result = cf_progress_egress(cf, data, &pktx); /* we do not expect to be able to recv anything yet */ goto out; } result = cf_progress_ingress(cf, data, &pktx); if(result) goto out; result = cf_progress_egress(cf, data, &pktx); if(result) goto out; if(ngtcp2_conn_get_handshake_completed(ctx->qconn)) { ctx->handshake_at = now; CURL_TRC_CF(data, cf, "handshake complete after %dms", (int)Curl_timediff(now, ctx->started_at)); result = qng_verify_peer(cf, data); if(!result) { CURL_TRC_CF(data, cf, "peer verified"); cf->connected = TRUE; cf->conn->alpn = CURL_HTTP_VERSION_3; *done = TRUE; connkeep(cf->conn, "HTTP/3 default"); } } out: if(result == CURLE_RECV_ERROR && ctx->qconn && ngtcp2_conn_in_draining_period(ctx->qconn)) { /* When a QUIC server instance is shutting down, it may send us a * CONNECTION_CLOSE right away. Our connection then enters the DRAINING * state. The CONNECT may work in the near future again. Indicate * that as a "weird" reply. */ result = CURLE_WEIRD_SERVER_REPLY; } #ifndef CURL_DISABLE_VERBOSE_STRINGS if(result) { struct ip_quadruple ip; Curl_cf_socket_peek(cf->next, data, NULL, NULL, &ip); infof(data, "QUIC connect to %s port %u failed: %s", ip.remote_ip, ip.remote_port, curl_easy_strerror(result)); } #endif if(!result && ctx->qconn) { result = check_and_set_expiry(cf, data, &pktx); } if(result || *done) CURL_TRC_CF(data, cf, "connect -> %d, done=%d", result, *done); CF_DATA_RESTORE(cf, save); return result; } static CURLcode cf_ngtcp2_query(struct Curl_cfilter *cf, struct Curl_easy *data, int query, int *pres1, void *pres2) { struct cf_ngtcp2_ctx *ctx = cf->ctx; struct cf_call_data save; switch(query) { case CF_QUERY_MAX_CONCURRENT: { DEBUGASSERT(pres1); CF_DATA_SAVE(save, cf, data); /* Set after transport params arrived and continually updated * by callback. QUIC counts the number over the lifetime of the * connection, ever increasing. * We count the *open* transfers plus the budget for new ones. */ if(!ctx->qconn || ctx->shutdown_started) { *pres1 = 0; } else if(ctx->max_bidi_streams) { uint64_t avail_bidi_streams = 0; uint64_t max_streams = CONN_INUSE(cf->conn); if(ctx->max_bidi_streams > ctx->used_bidi_streams) avail_bidi_streams = ctx->max_bidi_streams - ctx->used_bidi_streams; max_streams += avail_bidi_streams; *pres1 = (max_streams > INT_MAX)? INT_MAX : (int)max_streams; } else /* transport params not arrived yet? take our default. */ *pres1 = (int)Curl_multi_max_concurrent_streams(data->multi); CURL_TRC_CF(data, cf, "query conn[%" CURL_FORMAT_CURL_OFF_T "]: " "MAX_CONCURRENT -> %d (%zu in use)", cf->conn->connection_id, *pres1, CONN_INUSE(cf->conn)); CF_DATA_RESTORE(cf, save); return CURLE_OK; } case CF_QUERY_CONNECT_REPLY_MS: if(ctx->q.got_first_byte) { timediff_t ms = Curl_timediff(ctx->q.first_byte_at, ctx->started_at); *pres1 = (ms < INT_MAX)? (int)ms : INT_MAX; } else *pres1 = -1; return CURLE_OK; case CF_QUERY_TIMER_CONNECT: { struct curltime *when = pres2; if(ctx->q.got_first_byte) *when = ctx->q.first_byte_at; return CURLE_OK; } case CF_QUERY_TIMER_APPCONNECT: { struct curltime *when = pres2; if(cf->connected) *when = ctx->handshake_at; return CURLE_OK; } default: break; } return cf->next? cf->next->cft->query(cf->next, data, query, pres1, pres2) : CURLE_UNKNOWN_OPTION; } static bool cf_ngtcp2_conn_is_alive(struct Curl_cfilter *cf, struct Curl_easy *data, bool *input_pending) { struct cf_ngtcp2_ctx *ctx = cf->ctx; bool alive = FALSE; const ngtcp2_transport_params *rp; struct cf_call_data save; CF_DATA_SAVE(save, cf, data); *input_pending = FALSE; if(!ctx->qconn || ctx->shutdown_started) goto out; /* Both sides of the QUIC connection announce they max idle times in * the transport parameters. Look at the minimum of both and if * we exceed this, regard the connection as dead. The other side * may have completely purged it and will no longer respond * to any packets from us. */ rp = ngtcp2_conn_get_remote_transport_params(ctx->qconn); if(rp) { timediff_t idletime; uint64_t idle_ms = ctx->max_idle_ms; if(rp->max_idle_timeout && (rp->max_idle_timeout / NGTCP2_MILLISECONDS) < idle_ms) idle_ms = (rp->max_idle_timeout / NGTCP2_MILLISECONDS); idletime = Curl_timediff(Curl_now(), ctx->q.last_io); if(idletime > 0 && (uint64_t)idletime > idle_ms) goto out; } if(!cf->next || !cf->next->cft->is_alive(cf->next, data, input_pending)) goto out; alive = TRUE; if(*input_pending) { CURLcode result; /* This happens before we have sent off a request and the connection is not in use by any other transfer, there should not be any data here, only "protocol frames" */ *input_pending = FALSE; result = cf_progress_ingress(cf, data, NULL); CURL_TRC_CF(data, cf, "is_alive, progress ingress -> %d", result); alive = result? FALSE : TRUE; } out: CF_DATA_RESTORE(cf, save); return alive; } struct Curl_cftype Curl_cft_http3 = { "HTTP/3", CF_TYPE_IP_CONNECT | CF_TYPE_SSL | CF_TYPE_MULTIPLEX, 0, cf_ngtcp2_destroy, cf_ngtcp2_connect, cf_ngtcp2_close, cf_ngtcp2_shutdown, Curl_cf_def_get_host, cf_ngtcp2_adjust_pollset, cf_ngtcp2_data_pending, cf_ngtcp2_send, cf_ngtcp2_recv, cf_ngtcp2_data_event, cf_ngtcp2_conn_is_alive, Curl_cf_def_conn_keep_alive, cf_ngtcp2_query, }; CURLcode Curl_cf_ngtcp2_create(struct Curl_cfilter **pcf, struct Curl_easy *data, struct connectdata *conn, const struct Curl_addrinfo *ai) { struct cf_ngtcp2_ctx *ctx = NULL; struct Curl_cfilter *cf = NULL, *udp_cf = NULL; CURLcode result; (void)data; ctx = calloc(1, sizeof(*ctx)); if(!ctx) { result = CURLE_OUT_OF_MEMORY; goto out; } ctx->qlogfd = -1; cf_ngtcp2_ctx_clear(ctx); result = Curl_cf_create(&cf, &Curl_cft_http3, ctx); if(result) goto out; result = Curl_cf_udp_create(&udp_cf, data, conn, ai, TRNSPRT_QUIC); if(result) goto out; cf->conn = conn; udp_cf->conn = cf->conn; udp_cf->sockindex = cf->sockindex; cf->next = udp_cf; out: *pcf = (!result)? cf : NULL; if(result) { if(udp_cf) Curl_conn_cf_discard_sub(cf, udp_cf, data, TRUE); Curl_safefree(cf); Curl_safefree(ctx); } return result; } bool Curl_conn_is_ngtcp2(const struct Curl_easy *data, const struct connectdata *conn, int sockindex) { struct Curl_cfilter *cf = conn? conn->cfilter[sockindex] : NULL; (void)data; for(; cf; cf = cf->next) { if(cf->cft == &Curl_cft_http3) return TRUE; if(cf->cft->flags & CF_TYPE_IP_CONNECT) return FALSE; } return FALSE; } #endif