#ifndef DASYNQ_H_ #define DASYNQ_H_ #include "dasynq/config.h" #include "dasynq/flags.h" #include "dasynq/stableheap.h" #include "dasynq/interrupt.h" #include "dasynq/util.h" // Dasynq uses a "mix-in" pattern to produce an event loop implementation incorporating selectable // implementations of various components (main backend, timers, child process watch mechanism etc). In C++ // this can be achieved by a template for some component which extends its own type parameter: // // template class X : public B { .... } // // (Note that in a sense this is actually the opposite of the so-called "Curiously Recurring Template" // pattern, which can be used to achieve a similar goal). We can chain several such components together to // "mix in" the functionality of each into the final class, eg: // // template using loop_t = // epoll_loop>>>; // // (which defines an alias template "loop_t", whose implementation will use the epoll backend, a standard // interrupt channel implementation, a timerfd-based timer implementation, and the standard child process // watch implementation). We sometimes need the base class to be able to call derived-class members: to do // this we pass a reference to the derived instance into a template member function in the base, for example // the "init" function: // // template void init(T *derived) // { // // can call method on derived: // derived->add_listener(); // // chain to next class: // Base::init(derived); // } // // The 'loop_t' defined above is a template for a usable backend mechanism for the event_loop template // class. At the base all this is the event_dispatch class, defined below, which receives event // notifications and inserts them into a queue for processing. The event_loop class, also below, wraps this // (via composition) in an interface which can be used to register/de-register/enable/disable event // watchers, and which can process the queued events by calling the watcher callbacks. The event_loop class // also provides some synchronisation to ensure thread-safety, and abstracts away some differences between // backends. // // The differences are exposed as traits, partly via a separate traits class (loop_traits_t as defined // below, which contains the "main" traits, particularly the sigdata_t, fd_r and fd_s types). Note that the // event_dispatch class exposes the loop traits as traits_t, and these are then potentially augmented at // each stage of the mechanism inheritance chain (i.e. the final traits are exposed as // `loop_t::traits_t'. // // The trait members are: // sigdata_t - a wrapper for the siginfo_t type or equivalent used to pass signal parameters // fd_r - a file descriptor wrapper, if the backend is able to retrieve the file descriptor when // it receives an fd event. Not all backends can do this. // fd_s - a file descriptor storage wrapper. If the backend can retrieve file descriptors, this // will be empty (and ideally zero-size), otherwise it stores a file descriptor. // With an fd_r and fd_s instance you can always retrieve the file descriptor: // `fdr.get_fd(fds)' will return it. // has_bidi_fd_watch // - boolean indicating whether a single watch can support watching for both input and output // events simultaneously // has_separate_rw_fd_watches // - boolean indicating whether it is possible to add separate input and output watches for the // same fd. Either this or has_bidi_fd_watch must be true. // interrupt_after_fd_add // - boolean indicating if a loop interrupt must be forced after adding/enabling an fd watch. // interrupt_after_signal_add // - boolean indicating if a loop interrupt must be forced after adding or enabling a signal // watch. // supports_non_oneshot_fd // - boolean; if true, event_dispatch can arm an fd watch without ONESHOT and returning zero // events from receive_fd_event (the event notification function) will leave the descriptor // armed. If false, all fd watches are effectively ONESHOT (they can be re-armed immediately // after delivery by returning an appropriate event flag mask). // full_timer_support // - boolean indicating that the monotonic and system clocks are actually different clocks and // that timers against the system clock will work correctly if the system clock time is // adjusted. If false, the monotonic clock may not be present at all (monotonic clock will map // to system clock), and timers against either clock are not guaranteed to work correctly if // the system clock is adjusted. #if DASYNQ_HAVE_EPOLL <= 0 #if _POSIX_TIMERS > 0 #include "dasynq/posixtimer.h" namespace dasynq { inline namespace v2 { template using timer_events = posix_timer_events; } // namespace v2 } // namespace dasynq #else #include "dasynq/itimer.h" namespace dasynq { inline namespace v2 { template using timer_events = itimer_events; } // namespace v2 } // namespace dasynq #endif #endif #if DASYNQ_HAVE_KQUEUE #if DASYNQ_KQUEUE_MACOS_WORKAROUND #include "dasynq/kqueue-macos.h" #include "dasynq/childproc.h" namespace dasynq { inline namespace v2 { template using loop_t = macos_kqueue_loop>, false>>; using loop_traits_t = macos_kqueue_traits; } // namespace v2 } // namespace dasynq #else #include "dasynq/kqueue.h" #include "dasynq/childproc.h" namespace dasynq { inline namespace v2 { template using loop_t = kqueue_loop>, false>>; using loop_traits_t = kqueue_traits; } // namespace v2 } // namespace dasynq #endif #elif DASYNQ_HAVE_EPOLL #include "dasynq/epoll.h" #include "dasynq/timerfd.h" #include "dasynq/childproc.h" namespace dasynq { inline namespace v2 { template using loop_t = epoll_loop>>>; using loop_traits_t = epoll_traits; } // namespace v2 } // namespace dasynq #else #include "dasynq/childproc.h" #if DASYNQ_HAVE_PSELECT #include "dasynq/pselect.h" namespace dasynq { inline namespace v2 { template using loop_t = pselect_events>, false>>; using loop_traits_t = select_traits; } // namespace v2 } // namespace dasynq #else #include "dasynq/select.h" namespace dasynq { inline namespace v2 { template using loop_t = select_events>, false>>; using loop_traits_t = select_traits; } // namespace v2 } // namespace dasynq #endif #endif #include #include #include #include #include #include #include #include "dasynq/mutex.h" #include "dasynq/basewatchers.h" namespace dasynq { /** * Values for rearm/disarm return from event handlers */ enum class rearm { /** Re-arm the event watcher so that it receives further events */ REARM, /** Disarm the event watcher so that it receives no further events, until it is re-armed explicitly */ DISARM, /** Leave in current armed/disarmed state */ NOOP, /** Remove the event watcher (and call "removed" callback) */ REMOVE, /** The watcher has been removed - don't touch it! */ REMOVED, /** RE-queue the watcher to have its notification called again */ REQUEUE }; // Tag type to specify that initialisation should be delayed class delayed_init { DASYNQ_EMPTY_BODY }; inline namespace v2 { namespace dprivate { // Classes for implementing a fair(ish) wait queue. // A queue node can be signalled when it reaches the head of // the queue. template class waitqueue; template class waitqueue_node; // Select an appropriate condition variable type for a mutex: // condition_variable if mutex is std::mutex, or condition_variable_any // otherwise. template class condvar_selector; template <> class condvar_selector { public: typedef std::condition_variable condvar; }; template class condvar_selector { public: typedef std::condition_variable_any condvar; }; // For a single-threaded loop, the waitqueue is a no-op: template <> class waitqueue_node { // Specialised waitqueue_node for null_mutex. friend class waitqueue; public: void wait(std::unique_lock &ul) { } void signal() { } DASYNQ_EMPTY_BODY }; template class waitqueue_node { typename condvar_selector::condvar condvar; friend class waitqueue; // ptr to next node in queue, set to null when added to queue tail: waitqueue_node * next; public: void signal() { condvar.notify_one(); } void wait(std::unique_lock &mutex_lock) { condvar.wait(mutex_lock); } }; template <> class waitqueue { public: // remove current head of queue, return new head: waitqueue_node * unqueue() { return nullptr; } waitqueue_node * get_head() { return nullptr; } waitqueue_node * get_second() { return nullptr; } bool check_head(waitqueue_node &node) { return true; } bool is_empty() { return true; } void queue(waitqueue_node *node) { } }; template class waitqueue { waitqueue_node * tail = nullptr; waitqueue_node * head = nullptr; public: // remove current head of queue, return new head: waitqueue_node * unqueue() { head = head->next; if (head == nullptr) { tail = nullptr; } return head; } waitqueue_node * get_head() { return head; } waitqueue_node * get_second() { return head->next; } bool check_head(waitqueue_node &node) { return head == &node; } bool is_empty() { return head == nullptr; } void queue(waitqueue_node *node) { node->next = nullptr; if (tail) { tail->next = node; } else { head = node; } tail = node; } }; // friend of event_loop for giving access to various private members class loop_access { public: template static typename Loop::mutex_t &get_base_lock(Loop &loop) noexcept { return loop.get_base_lock(); } template static rearm process_fd_rearm(Loop &loop, typename Loop::base_fd_watcher *bfw, rearm rearm_type) noexcept { return loop.process_fd_rearm(bfw, rearm_type); } template static rearm process_primary_rearm(Loop &loop, typename Loop::base_bidi_fd_watcher *bdfw, rearm rearm_type) noexcept { return loop.process_primary_rearm(bdfw, rearm_type); } template static rearm process_secondary_rearm(Loop &loop, typename Loop::base_bidi_fd_watcher * bdfw, base_watcher * outw, rearm rearm_type) noexcept { return loop.process_secondary_rearm(bdfw, outw, rearm_type); } template static void process_signal_rearm(Loop &loop, typename Loop::base_signal_watcher * bsw, rearm rearm_type) noexcept { loop.process_signal_rearm(bsw, rearm_type); } template static void process_child_watch_rearm(Loop &loop, typename Loop::base_child_watcher *bcw, rearm rearm_type) noexcept { loop.process_child_watch_rearm(bcw, rearm_type); } template static void process_timer_rearm(Loop &loop, typename Loop::base_timer_watcher *btw, rearm rearm_type) noexcept { loop.process_timer_rearm(btw, rearm_type); } template static void requeue_watcher(Loop &loop, base_watcher *watcher) noexcept { loop.requeue_watcher(watcher); } template static void release_watcher(Loop &loop, base_watcher *watcher) noexcept { loop.release_watcher(watcher); } }; // Do standard post-dispatch processing for a watcher. This handles the case of removing or // re-queueing watchers depending on the rearm type. This is called from the individual // watcher dispatch functions to handle REMOVE or REQUEUE re-arm values. template void post_dispatch(Loop &loop, base_watcher *watcher, rearm rearm_type) { if (rearm_type == rearm::REMOVE) { loop_access::get_base_lock(loop).unlock(); loop_access::release_watcher(loop, watcher); watcher->watch_removed(); loop_access::get_base_lock(loop).lock(); } else if (rearm_type == rearm::REQUEUE) { loop_access::requeue_watcher(loop, watcher); } } // Post-dispatch handling for bidi fd watchers. template void post_dispatch(Loop &loop, bidi_fd_watcher *bdfd_watcher, base_watcher *out_watcher, rearm rearm_type) { base_watcher *watcher = (base_watcher *)bdfd_watcher; if (rearm_type == rearm::REMOVE) { loop_access::get_base_lock(loop).unlock(); loop_access::release_watcher(loop, watcher); loop_access::release_watcher(loop, out_watcher); watcher->watch_removed(); loop_access::get_base_lock(loop).lock(); } else if (rearm_type == rearm::REQUEUE) { loop_access::requeue_watcher(loop, watcher); } } // The event_dispatch class serves as the base class (mixin) for the backend mechanism. It // mostly manages queing and dequeing of events and maintains/owns the relevant data // structures, including a mutex lock. // // The backend mechanism should call one of the receiveXXX functions to notify of an event // received. The watcher will then be queued. // // In general the functions should be called with lock held. In practice this means that the // event loop backend implementations (that deposit received events here) must obtain the // lock; they are also free to use it to protect their own internal data structures. template class event_dispatch { friend class dasynq::event_loop; public: using mutex_t = typename LoopTraits::mutex_t; using traits_t = Traits; using delayed_init = dasynq::delayed_init; private: // queue data structure/pointer prio_queue event_queue; using base_signal_watcher = dprivate::base_signal_watcher; using base_child_watcher = dprivate::base_child_watcher; using base_timer_watcher = dprivate::base_timer_watcher; // Add a watcher into the queueing system (but don't queue it). Call with lock held. // may throw: std::bad_alloc void prepare_watcher(base_watcher *bwatcher) { allocate_handle(event_queue, bwatcher->heap_handle, bwatcher); } void queue_watcher(base_watcher *bwatcher) noexcept { event_queue.insert(bwatcher->heap_handle, bwatcher->priority); } void dequeue_watcher(base_watcher *bwatcher) noexcept { if (event_queue.is_queued(bwatcher->heap_handle)) { event_queue.remove(bwatcher->heap_handle); } } // Remove watcher from the queueing system void release_watcher(base_watcher *bwatcher) noexcept { event_queue.deallocate(bwatcher->heap_handle); } protected: mutex_t lock; template void init(T *loop) noexcept { } void cleanup() noexcept { } void sigmaskf(int how, const sigset_t *set, sigset_t *oset) { LoopTraits::sigmaskf(how, set, oset); } // Receive a signal; return true to disable signal watch or false to leave enabled. // Called with lock held. template bool receive_signal(T &loop_mech, typename Traits::sigdata_t & siginfo, void * userdata) noexcept { base_signal_watcher * bwatcher = static_cast(userdata); bwatcher->siginfo = siginfo; queue_watcher(bwatcher); return true; } // Receive fd event delivered from backend mechansim. Returns the desired watch mask, as per // set_fd_enabled, which can be used to leave the watch disabled, re-enable it or re-enable // one direction of a bi-directional watcher. template std::tuple receive_fd_event(T &loop_mech, typename Traits::fd_r fd_r, void * userdata, int flags) noexcept { base_fd_watcher * bfdw = static_cast(userdata); bfdw->event_flags |= flags; typename Traits::fd_s watch_fd_s {bfdw->watch_fd}; base_watcher * bwatcher = bfdw; bool is_multi_watch = bfdw->watch_flags & multi_watch; if (is_multi_watch) { base_bidi_fd_watcher *bbdw = static_cast(bwatcher); bbdw->watch_flags &= ~flags; if ((flags & IN_EVENTS) && (flags & OUT_EVENTS)) { // Queue the secondary watcher first: queue_watcher(&bbdw->out_watcher); } else if (flags & OUT_EVENTS) { // Use the secondary watcher for queueing: bwatcher = &(bbdw->out_watcher); } } queue_watcher(bwatcher); if (is_multi_watch && ! traits_t::has_separate_rw_fd_watches) { // If this is a bidirectional fd-watch, it has been disabled in *both* directions // as the event was delivered. However, the other direction should not be disabled // yet, so we need to re-enable: int in_out_mask = IN_EVENTS | OUT_EVENTS; if ((bfdw->watch_flags & in_out_mask) != 0) { // We need to re-enable the other channel now: return std::make_tuple((bfdw->watch_flags & in_out_mask) | ONE_SHOT, watch_fd_s); // We are the polling thread: don't need to interrupt polling, even if it would // normally be required. } } return std::make_tuple(0, watch_fd_s); } // Child process terminated. Called with both the main lock and the reaper lock held. void receive_child_stat(pid_t child, typename LoopTraits::backend_traits_t::proc_status_t status, void * userdata) noexcept { base_child_watcher * watcher = static_cast(userdata); watcher->child_status = status; watcher->child_termd = true; queue_watcher(watcher); } void receive_timer_expiry(timer_handle_t & timer_handle, void * userdata, int intervals) noexcept { base_timer_watcher * watcher = static_cast(userdata); watcher->intervals += intervals; queue_watcher(watcher); } // Pull a single event from the queue; returns nullptr if the queue is empty. // Call with lock held. base_watcher * pull_queued_event() noexcept { if (event_queue.empty()) { return nullptr; } auto & rhndl = event_queue.get_root(); base_watcher *r = dprivate::get_watcher(event_queue, rhndl); event_queue.pull_root(); return r; } size_t num_queued_events() noexcept { return event_queue.size(); } // Queue a watcher for removal, or issue "removed" callback to it. // Call with lock free. void issue_delete(base_watcher *watcher) noexcept { // This is only called when the attention lock is held, so if the watcher is not // active/queued now, it cannot become active (and will not be reported with an event) // during execution of this function. lock.lock(); if (watcher->active) { // If the watcher is active, set deleteme true; the watcher will be removed // at the end of current processing (i.e. when active is set false). watcher->deleteme = true; lock.unlock(); } else { // Actually do the delete. dequeue_watcher(watcher); release_watcher(watcher); lock.unlock(); watcher->watch_removed(); } } // Queue a watcher for removal, or issue "removed" callback to it. // Call with lock free. void issue_delete(base_bidi_fd_watcher *watcher) noexcept { lock.lock(); if (watcher->active) { watcher->deleteme = true; release_watcher(watcher); } else { dequeue_watcher(watcher); release_watcher(watcher); watcher->read_removed = true; } base_watcher *secondary = &(watcher->out_watcher); if (secondary->active) { secondary->deleteme = true; release_watcher(watcher); } else { dequeue_watcher(secondary); release_watcher(watcher); watcher->write_removed = true; } if (watcher->read_removed && watcher->write_removed) { lock.unlock(); watcher->watch_removed(); } else { lock.unlock(); } } event_dispatch() { } event_dispatch(const event_dispatch &) = delete; }; } // namespace dprivate // This is the main event_loop implementation. It serves as an interface to the event loop backend (of which // it maintains an internal instance). It also serialises polling the backend and provides safe deletion of // watchers (see comments inline). // // The T_Mutex type parameter specifies the mutex type. A null_mutex can be used for a single-threaded event // loop; std::mutex, or any mutex providing a compatible interface, can be used for a thread-safe event // loop. // // The Traits type parameter specifies any required traits for the event loop. This specifies the back-end // to use (backend_t, a template) and the basic back-end traits (backend_traits_t). // The default is `default_traits'. // template class event_loop { using my_event_loop_t = event_loop; friend class dprivate::fd_watcher; friend class dprivate::bidi_fd_watcher; friend class dprivate::signal_watcher; friend class dprivate::child_proc_watcher; friend class dprivate::timer; friend class dprivate::loop_access; using backend_traits_t = typename Traits::backend_traits_t; template using event_dispatch = dprivate::event_dispatch; using dispatch_t = event_dispatch; using loop_mech_t = typename Traits::template backend_t; using reaper_mutex_t = typename loop_mech_t::reaper_mutex_t; public: using traits_t = Traits; using loop_traits_t = typename loop_mech_t::traits_t; using mutex_t = T_Mutex; private: template using waitqueue = dprivate::waitqueue; template using waitqueue_node = dprivate::waitqueue_node; using base_watcher = dprivate::base_watcher; using base_signal_watcher = dprivate::base_signal_watcher; using base_fd_watcher = dprivate::base_fd_watcher; using base_bidi_fd_watcher = dprivate::base_bidi_fd_watcher; using base_child_watcher = dprivate::base_child_watcher; using base_timer_watcher = dprivate::base_timer_watcher; using watch_type_t = dprivate::watch_type_t; loop_mech_t loop_mech; // There is a complex problem with most asynchronous event notification mechanisms // when used in a multi-threaded environment. Generally, a file descriptor or other // event type that we are watching will be associated with some data used to manage // that event source. For example a web server needs to maintain information about // each client connection, such as the state of the connection (what protocol version // has been negotiated, etc; if a transfer is taking place, what file is being // transferred etc). // // However, sometimes we want to remove an event source (eg webserver wants to drop // a connection) and delete the associated data. The problem here is that it is // difficult to be sure when it is ok to actually remove the data, since when // requesting to unwatch the source in one thread it is still possible that an // event from that source is just being reported to another thread (in which case // the data will be needed). // // To solve that, we: // - allow only one thread to poll for events at a time, using a lock // - use the same lock to prevent polling, if we want to unwatch an event source // - generate an event to interrupt, when necessary, any polling that may already be occurring // in another thread // - mark handlers as active if they are currently executing, and // - when removing an active handler, simply set a flag which causes it to be // removed once the current processing is finished, rather than removing it // immediately. // // In particular the lock mechanism for preventing multiple threads polling and // for allowing polling to be interrupted is tricky. We can't use a simple mutex // since there is significant chance that it will be highly contended and there // are no guarantees that its acquisition will be fair. In particular, we don't // want a thread that is trying to unwatch a source being starved while another // thread polls the event source. // // So, we use two wait queues protected by a single mutex. The "attn_waitqueue" // (attention queue) is the high-priority queue, used for threads wanting to // unwatch event sources. The "wait_waitquueue" is the queue used by threads // that wish to actually poll for events, while they are waiting for the main // queue to become quiet. // - The head of the "attn_waitqueue" is always the holder of the lock // - Therefore, a poll-waiter must be moved from the wait_waitqueue to the // attn_waitqueue to actually gain the lock. This is only done if the // attn_waitqueue is otherwise empty. // - The mutex only protects manipulation of the wait queues, and so should not // be highly contended. // // To claim the lock for a poll-wait, the procedure is: // - check if the attn_waitqueue is empty; // - if it is, insert node at the head, thus claiming the lock, and return // - otherwise, insert node in the wait_waitqueue, and wait // To claim the lock for an unwatch, the procedure is: // - insert node in the attn_waitqueue // - if the node is at the head of the queue, lock is claimed; return // - otherwise, if a poll is in progress, interrupt it // - wait until our node is at the head of the attn_waitqueue // // Some backends also need to interrupted in order to add a new watch (eg select/pselect). // However, the attn_waitqueue lock doesn't generally need to be obtained for this. mutex_t wait_lock; // protects the wait/attention queues bool long_poll_running = false; // whether any thread is polling the backend (with non-zero timeout) waitqueue attn_waitqueue; waitqueue wait_waitqueue; mutex_t &get_base_lock() noexcept { return loop_mech.lock; } reaper_mutex_t &get_reaper_lock() noexcept { return loop_mech.get_reaper_lock(); } void register_signal(base_signal_watcher *callBack, int signo) { std::lock_guard guard(loop_mech.lock); loop_mech.prepare_watcher(callBack); try { loop_mech.add_signal_watch_nolock(signo, callBack); if (backend_traits_t::interrupt_after_signal_add) { interrupt_if_necessary(); } } catch (...) { loop_mech.release_watcher(callBack); throw; } } void deregister(base_signal_watcher *callBack, int signo) noexcept { loop_mech.remove_signal_watch(signo); waitqueue_node qnode; get_attn_lock(qnode); loop_mech.issue_delete(callBack); release_lock(qnode); } void register_fd(base_fd_watcher *callback, int fd, int eventmask, bool enabled, bool emulate = false) { std::lock_guard guard(loop_mech.lock); loop_mech.prepare_watcher(callback); try { if (! loop_mech.add_fd_watch(fd, callback, eventmask | ONE_SHOT, enabled, emulate)) { callback->emulatefd = true; callback->emulate_enabled = enabled; if (enabled) { callback->event_flags = eventmask & IO_EVENTS; if (eventmask & IO_EVENTS) { requeue_watcher(callback); } } } else if (enabled && backend_traits_t::interrupt_after_fd_add) { interrupt_if_necessary(); } } catch (...) { loop_mech.release_watcher(callback); throw; } } // Register a bidi fd watcher. The watch_flags should already be set to the eventmask to watch // (i.e. eventmask == callback->watch_flags is a pre-condition). void register_fd(base_bidi_fd_watcher *callback, int fd, int eventmask, bool emulate = false) { std::lock_guard guard(loop_mech.lock); loop_mech.prepare_watcher(callback); try { loop_mech.prepare_watcher(&callback->out_watcher); try { bool do_interrupt = false; if (backend_traits_t::has_separate_rw_fd_watches) { int r = loop_mech.add_bidi_fd_watch(fd, callback, eventmask | ONE_SHOT, emulate); if (r & IN_EVENTS) { callback->emulatefd = true; if (eventmask & IN_EVENTS) { callback->watch_flags &= ~IN_EVENTS; requeue_watcher(callback); } } else if ((eventmask & IN_EVENTS) && backend_traits_t::interrupt_after_fd_add) { do_interrupt = true; } if (r & OUT_EVENTS) { callback->out_watcher.emulatefd = true; if (eventmask & OUT_EVENTS) { callback->watch_flags &= ~OUT_EVENTS; requeue_watcher(&callback->out_watcher); } } else if ((eventmask & OUT_EVENTS) && backend_traits_t::interrupt_after_fd_add) { do_interrupt = true; } } else { if (! loop_mech.add_fd_watch(fd, callback, eventmask | ONE_SHOT, true, emulate)) { callback->emulatefd = true; callback->out_watcher.emulatefd = true; if (eventmask & IN_EVENTS) { callback->watch_flags &= ~IN_EVENTS; requeue_watcher(callback); } if (eventmask & OUT_EVENTS) { callback->watch_flags &= ~OUT_EVENTS; requeue_watcher(&callback->out_watcher); } } else if (backend_traits_t::interrupt_after_fd_add) { do_interrupt = true; } } if (do_interrupt) { interrupt_if_necessary(); } } catch (...) { loop_mech.release_watcher(&callback->out_watcher); throw; } } catch (...) { loop_mech.release_watcher(callback); throw; } } void set_fd_enabled(base_watcher *watcher, int fd, int watch_flags, bool enabled) noexcept { if (enabled) { loop_mech.enable_fd_watch(fd, watcher, watch_flags | ONE_SHOT); if (backend_traits_t::interrupt_after_fd_add) { interrupt_if_necessary(); } } else { loop_mech.disable_fd_watch(fd, watch_flags); } } void set_fd_enabled_nolock(base_watcher *watcher, int fd, int watch_flags, bool enabled) noexcept { if (enabled) { loop_mech.enable_fd_watch_nolock(fd, watcher, watch_flags | ONE_SHOT); if (backend_traits_t::interrupt_after_fd_add) { interrupt_if_necessary(); } } else { loop_mech.disable_fd_watch_nolock(fd, watch_flags); } } void deregister(base_fd_watcher *callback, int fd) noexcept { if (callback->emulatefd) { auto & ed = (dispatch_t &) loop_mech; ed.issue_delete(callback); return; } loop_mech.remove_fd_watch(fd, callback->watch_flags); waitqueue_node qnode; get_attn_lock(qnode); auto & ed = (dispatch_t &) loop_mech; ed.issue_delete(callback); release_lock(qnode); } void deregister(base_bidi_fd_watcher *callback, int fd) noexcept { if (backend_traits_t::has_separate_rw_fd_watches) { loop_mech.remove_bidi_fd_watch(fd); } else { loop_mech.remove_fd_watch(fd, callback->watch_flags); } waitqueue_node qnode; get_attn_lock(qnode); dispatch_t & ed = (dispatch_t &) loop_mech; ed.issue_delete(callback); release_lock(qnode); } void reserve_child_watch(base_child_watcher *callback) { std::lock_guard guard(loop_mech.lock); loop_mech.prepare_watcher(callback); try { loop_mech.reserve_child_watch_nolock(callback->watch_handle); } catch (...) { loop_mech.release_watcher(callback); throw; } } void unreserve(base_child_watcher *callback) noexcept { std::lock_guard guard(loop_mech.lock); loop_mech.unreserve_child_watch(callback->watch_handle); loop_mech.release_watcher(callback); } void register_child(base_child_watcher *callback, pid_t child) { std::lock_guard guard(loop_mech.lock); loop_mech.prepare_watcher(callback); try { loop_mech.add_child_watch_nolock(callback->watch_handle, child, callback); } catch (...) { loop_mech.release_watcher(callback); throw; } } void register_reserved_child(base_child_watcher *callback, pid_t child) noexcept { loop_mech.add_reserved_child_watch(callback->watch_handle, child, callback); } void register_reserved_child_nolock(base_child_watcher *callback, pid_t child) noexcept { loop_mech.add_reserved_child_watch_nolock(callback->watch_handle, child, callback); } void deregister(base_child_watcher *callback, pid_t child) noexcept { loop_mech.remove_child_watch(callback->watch_handle); waitqueue_node qnode; get_attn_lock(qnode); loop_mech.issue_delete(callback); release_lock(qnode); } // Stop watching a child process, but retain watch reservation so that another child can be // watched without running into resource allocation issues. void stop_watch(base_child_watcher *callback) noexcept { loop_mech.stop_child_watch(callback->watch_handle); } void register_timer(base_timer_watcher *callback, clock_type clock) { std::lock_guard guard(loop_mech.lock); loop_mech.prepare_watcher(callback); try { loop_mech.add_timer_nolock(callback->timer_handle, callback, clock); } catch (...) { loop_mech.release_watcher(callback); } } void set_timer(base_timer_watcher *callback, const timespec &timeout, clock_type clock) noexcept { struct timespec interval {0, 0}; loop_mech.set_timer(callback->timer_handle, timeout, interval, true, clock); } void set_timer(base_timer_watcher *callback, const timespec &timeout, const timespec &interval, clock_type clock) noexcept { loop_mech.set_timer(callback->timer_handle, timeout, interval, true, clock); } void set_timer_rel(base_timer_watcher *callback, const timespec &timeout, clock_type clock) noexcept { struct timespec interval {0, 0}; loop_mech.set_timer_rel(callback->timer_handle, timeout, interval, true, clock); } void set_timer_rel(base_timer_watcher *callback, const timespec &timeout, const timespec &interval, clock_type clock) noexcept { loop_mech.set_timer_rel(callback->timer_handle, timeout, interval, true, clock); } void set_timer_enabled(base_timer_watcher *callback, clock_type clock, bool enabled) noexcept { loop_mech.enable_timer(callback->timer_handle, enabled, clock); } void set_timer_enabled_nolock(base_timer_watcher *callback, clock_type clock, bool enabled) noexcept { loop_mech.enable_timer_nolock(callback->timer_handle, enabled, clock); } void stop_timer(base_timer_watcher *callback, clock_type clock) noexcept { loop_mech.stop_timer(callback->timer_handle, clock); } void deregister(base_timer_watcher *callback, clock_type clock) noexcept { loop_mech.remove_timer(callback->timer_handle, clock); waitqueue_node qnode; get_attn_lock(qnode); loop_mech.issue_delete(callback); release_lock(qnode); } void dequeue_watcher(base_watcher *watcher) noexcept { loop_mech.dequeue_watcher(watcher); } void requeue_watcher(base_watcher *watcher) noexcept { loop_mech.queue_watcher(watcher); interrupt_if_necessary(); } void release_watcher(base_watcher *watcher) noexcept { loop_mech.release_watcher(watcher); } // Interrupt the current poll-waiter, if necessary - that is, if the loop is multi-thread safe, and if // there is currently another thread polling the backend event mechanism. void interrupt_if_necessary() { wait_lock.lock(); bool attn_q_empty = attn_waitqueue.is_empty(); // (always true for single-threaded loops) wait_lock.unlock(); if (! attn_q_empty) { loop_mech.interrupt_wait(); } } // Acquire the attention lock (when held, ensures that no thread is polling the AEN // mechanism). This can be used to safely remove watches, since it is certain that // notification callbacks won't be run while the attention lock is held. Any in-progress // poll will be interrupted so that the lock should be acquired quickly. void get_attn_lock(waitqueue_node &qnode) noexcept { std::unique_lock ulock(wait_lock); attn_waitqueue.queue(&qnode); if (! attn_waitqueue.check_head(qnode)) { if (long_poll_running) { // We want to interrupt any in-progress poll so that the attn queue will progress // but we don't want to do that unnecessarily. If we are 2nd in the queue then the // head must be doing the poll; interrupt it. Otherwise, we assume the 2nd has // already interrupted it. if (attn_waitqueue.get_second() == &qnode) { loop_mech.interrupt_wait(); } } while (! attn_waitqueue.check_head(qnode)) { qnode.wait(ulock); } } } // Acquire the attention lock, but without interrupting any poll that's in progress // (prefer to fail in that case). bool poll_attn_lock(waitqueue_node &qnode) noexcept { std::unique_lock ulock(wait_lock); if (long_poll_running) { // There are poll-waiters, bail out return false; } // Nobody's doing a long poll, wait until we're at the head of the attn queue and return // success: attn_waitqueue.queue(&qnode); while (! attn_waitqueue.check_head(qnode)) { qnode.wait(ulock); } return true; } // Acquire the poll-wait lock (to be held when polling the AEN mechanism; lower priority than // the attention lock). The poll-wait lock is used to prevent more than a single thread from // polling the event loop mechanism at a time; if this is not done, it is basically // impossible to safely deregister watches. void get_pollwait_lock(waitqueue_node &qnode) noexcept { std::unique_lock ulock(wait_lock); if (attn_waitqueue.is_empty()) { // Queue is completely empty: attn_waitqueue.queue(&qnode); } else { wait_waitqueue.queue(&qnode); } while (! attn_waitqueue.check_head(qnode)) { qnode.wait(ulock); } long_poll_running = true; } // Release the poll-wait/attention lock. void release_lock(waitqueue_node &qnode) noexcept { std::unique_lock ulock(wait_lock); long_poll_running = false; waitqueue_node * nhead = attn_waitqueue.unqueue(); if (nhead != nullptr) { // Someone else now owns the lock, signal them to wake them up nhead->signal(); } else { // Nobody is waiting in attn_waitqueue (the high-priority queue) so check in // wait_waitqueue (the low-priority queue) if (! wait_waitqueue.is_empty()) { auto nhead = wait_waitqueue.get_head(); wait_waitqueue.unqueue(); attn_waitqueue.queue(nhead); long_poll_running = true; nhead->signal(); } } } void process_signal_rearm(base_signal_watcher * bsw, rearm rearm_type) noexcept { // Called with lock held if (rearm_type == rearm::REARM) { loop_mech.rearm_signal_watch_nolock(bsw->siginfo.get_signo(), bsw); if (backend_traits_t::interrupt_after_signal_add) { interrupt_if_necessary(); } } else if (rearm_type == rearm::REMOVE) { loop_mech.remove_signal_watch_nolock(bsw->siginfo.get_signo()); } // Note that signal watchers cannot (currently) be disarmed } // Process rearm return from an fd_watcher, including the primary watcher of a bidi_fd_watcher. // Depending on the rearm value, we re-arm, remove, or disarm the watcher, etc. rearm process_fd_rearm(base_fd_watcher * bfw, rearm rearm_type) noexcept { bool emulatedfd = static_cast(bfw)->emulatefd; if (emulatedfd) { if (rearm_type == rearm::REARM) { bfw->emulate_enabled = true; rearm_type = rearm::REQUEUE; } else if (rearm_type == rearm::DISARM) { bfw->emulate_enabled = false; } else if (rearm_type == rearm::NOOP) { if (bfw->emulate_enabled) { rearm_type = rearm::REQUEUE; } } } else if (rearm_type == rearm::REARM) { set_fd_enabled_nolock(bfw, bfw->watch_fd, bfw->watch_flags & (IN_EVENTS | OUT_EVENTS), true); } else if (rearm_type == rearm::DISARM) { loop_mech.disable_fd_watch_nolock(bfw->watch_fd, bfw->watch_flags); } else if (rearm_type == rearm::REMOVE) { loop_mech.remove_fd_watch_nolock(bfw->watch_fd, bfw->watch_flags); } return rearm_type; } // Process rearm option from the primary watcher in bidi_fd_watcher rearm process_primary_rearm(base_bidi_fd_watcher * bdfw, rearm rearm_type) noexcept { bool emulatedfd = static_cast(bdfw)->emulatefd; // Called with lock held if (rearm_type == rearm::REMOVE) { bdfw->read_removed = 1; if (backend_traits_t::has_separate_rw_fd_watches) { bdfw->watch_flags &= ~IN_EVENTS; if (! emulatedfd) { loop_mech.remove_fd_watch_nolock(bdfw->watch_fd, IN_EVENTS); } return bdfw->write_removed ? rearm::REMOVE : rearm::NOOP; } else { if (! bdfw->write_removed) { if (bdfw->watch_flags & IN_EVENTS) { bdfw->watch_flags &= ~IN_EVENTS; if (! emulatedfd) { set_fd_enabled_nolock(bdfw, bdfw->watch_fd, bdfw->watch_flags, bdfw->watch_flags != 0); } } return rearm::NOOP; } else { // both removed: actually remove if (! emulatedfd) { loop_mech.remove_fd_watch_nolock(bdfw->watch_fd, 0 /* not used */); } return rearm::REMOVE; } } } else if (rearm_type == rearm::DISARM) { bdfw->watch_flags &= ~IN_EVENTS; if (! emulatedfd) { if (! backend_traits_t::has_separate_rw_fd_watches) { int watch_flags = bdfw->watch_flags & (IN_EVENTS | OUT_EVENTS); set_fd_enabled_nolock(bdfw, bdfw->watch_fd, watch_flags, watch_flags != 0); } else { loop_mech.disable_fd_watch_nolock(bdfw->watch_fd, IN_EVENTS); } } } else if (rearm_type == rearm::REARM) { if (! emulatedfd) { bdfw->watch_flags |= IN_EVENTS; if (! backend_traits_t::has_separate_rw_fd_watches) { int watch_flags = bdfw->watch_flags; set_fd_enabled_nolock(bdfw, bdfw->watch_fd, watch_flags & (IN_EVENTS | OUT_EVENTS), true); } else { set_fd_enabled_nolock(bdfw, bdfw->watch_fd, IN_EVENTS, true); } } else { bdfw->watch_flags &= ~IN_EVENTS; rearm_type = rearm::REQUEUE; } } else if (rearm_type == rearm::NOOP) { if (bdfw->emulatefd) { if (bdfw->watch_flags & IN_EVENTS) { bdfw->watch_flags &= ~IN_EVENTS; rearm_type = rearm::REQUEUE; } } } return rearm_type; } // Process re-arm for the secondary (output) watcher in a Bi-direction Fd watcher. rearm process_secondary_rearm(base_bidi_fd_watcher * bdfw, base_watcher * outw, rearm rearm_type) noexcept { bool emulatedfd = outw->emulatefd; // Called with lock held if (emulatedfd) { if (rearm_type == rearm::REMOVE) { bdfw->write_removed = 1; bdfw->watch_flags &= ~OUT_EVENTS; rearm_type = bdfw->read_removed ? rearm::REMOVE : rearm::NOOP; } else if (rearm_type == rearm::DISARM) { bdfw->watch_flags &= ~OUT_EVENTS; } else if (rearm_type == rearm::REARM) { bdfw->watch_flags &= ~OUT_EVENTS; rearm_type = rearm::REQUEUE; } else if (rearm_type == rearm::NOOP) { if (bdfw->watch_flags & OUT_EVENTS) { bdfw->watch_flags &= ~OUT_EVENTS; rearm_type = rearm::REQUEUE; } } return rearm_type; } else if (rearm_type == rearm::REMOVE) { bdfw->write_removed = 1; if (backend_traits_t::has_separate_rw_fd_watches) { bdfw->watch_flags &= ~OUT_EVENTS; loop_mech.remove_fd_watch_nolock(bdfw->watch_fd, OUT_EVENTS); return bdfw->read_removed ? rearm::REMOVE : rearm::NOOP; } else { if (! bdfw->read_removed) { if (bdfw->watch_flags & OUT_EVENTS) { bdfw->watch_flags &= ~OUT_EVENTS; set_fd_enabled_nolock(bdfw, bdfw->watch_fd, bdfw->watch_flags, true); } return rearm::NOOP; } else { // both removed: actually remove loop_mech.remove_fd_watch_nolock(bdfw->watch_fd, 0 /* not used */); return rearm::REMOVE; } } } else if (rearm_type == rearm::DISARM) { bdfw->watch_flags &= ~OUT_EVENTS; if (! backend_traits_t::has_separate_rw_fd_watches) { int watch_flags = bdfw->watch_flags; set_fd_enabled_nolock(bdfw, bdfw->watch_fd, watch_flags & (IN_EVENTS | OUT_EVENTS), true); } else { loop_mech.disable_fd_watch_nolock(bdfw->watch_fd, OUT_EVENTS); } } else if (rearm_type == rearm::REARM) { bdfw->watch_flags |= OUT_EVENTS; if (! backend_traits_t::has_separate_rw_fd_watches) { int watch_flags = bdfw->watch_flags; set_fd_enabled_nolock(bdfw, bdfw->watch_fd, watch_flags & (IN_EVENTS | OUT_EVENTS), true); } else { set_fd_enabled_nolock(bdfw, bdfw->watch_fd, OUT_EVENTS | ONE_SHOT, true); } } return rearm_type; } void process_child_watch_rearm(base_child_watcher *bcw, rearm rearm_type) noexcept { if (rearm_type == rearm::REMOVE || rearm_type == rearm::DISARM) { loop_mech.unreserve_child_watch_nolock(bcw->watch_handle); } } void process_timer_rearm(base_timer_watcher *btw, rearm rearm_type) noexcept { // Called with lock held if (rearm_type == rearm::REARM) { loop_mech.enable_timer_nolock(btw->timer_handle, true, btw->clock); } else if (rearm_type == rearm::REMOVE) { loop_mech.remove_timer_nolock(btw->timer_handle, btw->clock); } else if (rearm_type == rearm::DISARM) { loop_mech.enable_timer_nolock(btw->timer_handle, false, btw->clock); } } // Process queued events; returns true if any events were processed. // limit - maximum number of events to process before returning; -1 for // no limit. bool process_events(int limit) noexcept { loop_mech.lock.lock(); if (limit == 0) { return false; } // limit processing to the number of events currently queued, to avoid prolonged processing // of watchers which requeueu themselves immediately (including file watchers which are using // emulation for watching regular files) // // If limit is -1 (no limit) we rely on this being always larger than/equal to the number of // queued events when cast to size_t (which is unsigned). limit = std::min(size_t(limit), loop_mech.num_queued_events()); base_watcher * pqueue = loop_mech.pull_queued_event(); bool active = false; while (pqueue != nullptr) { pqueue->active = true; active = true; base_bidi_fd_watcher *bbfw = nullptr; // (Above variables are initialised only to silence compiler warnings). if (pqueue->watchType == watch_type_t::SECONDARYFD) { // construct a pointer to the main watcher, using integer arithmetic to avoid undefined // pointer arithmetic: uintptr_t rp = (uintptr_t)pqueue; // Here we take the offset of a member from a non-standard-layout class, which is // specified to have undefined result by the C++ language standard, but which // in practice works fine: _Pragma ("GCC diagnostic push") _Pragma ("GCC diagnostic ignored \"-Winvalid-offsetof\"") rp -= offsetof(base_bidi_fd_watcher, out_watcher); _Pragma ("GCC diagnostic pop") bbfw = (base_bidi_fd_watcher *)rp; // issue a secondary dispatch: bbfw->dispatch_second(this); } else { pqueue->dispatch(this); } if (limit > 0) { limit--; if (limit == 0) break; } pqueue = loop_mech.pull_queued_event(); } loop_mech.lock.unlock(); return active; } public: using fd_watcher = dprivate::fd_watcher; using bidi_fd_watcher = dprivate::bidi_fd_watcher; using signal_watcher = dprivate::signal_watcher; using child_proc_watcher = dprivate::child_proc_watcher; using timer = dprivate::timer; template using fd_watcher_impl = dprivate::fd_watcher_impl; template using bidi_fd_watcher_impl = dprivate::bidi_fd_watcher_impl; template using signal_watcher_impl = dprivate::signal_watcher_impl; template using child_proc_watcher_impl = dprivate::child_proc_watcher_impl; template using timer_impl = dprivate::timer_impl; // Poll the event loop and process any pending events (up to a limit). If no events are pending, wait // for and process at least one event. void run(int limit = -1) noexcept { // Poll the mechanism first, in case high-priority events are pending: waitqueue_node qnode; get_pollwait_lock(qnode); loop_mech.pull_events(false); release_lock(qnode); while (! process_events(limit)) { // Pull events from the AEN mechanism and insert them in our internal queue: get_pollwait_lock(qnode); loop_mech.pull_events(true); release_lock(qnode); } } // Poll the event loop and process any pending events (up to a limit). void poll(int limit = -1) noexcept { waitqueue_node qnode; if (poll_attn_lock(qnode)) { loop_mech.pull_events(false); release_lock(qnode); } process_events(limit); } // Get the current time corresponding to a specific clock. // ts - the timespec variable to receive the time // clock - specifies the clock // force_update (default = false) - if true, the time returned will be updated from // the system rather than being a previously cached result. It may be more // accurate, but note that reading from a system clock may be relatively expensive. void get_time(timespec &ts, clock_type clock, bool force_update = false) noexcept { loop_mech.get_time(ts, clock, force_update); } void get_time(time_val &tv, clock_type clock, bool force_update = false) noexcept { loop_mech.get_time(tv, clock, force_update); } event_loop() { } event_loop(delayed_init d) noexcept : loop_mech(d) { } event_loop(const event_loop &other) = delete; // Perform delayed initialisation, if constructed with delayed_init void init() { loop_mech.init(); } }; typedef event_loop event_loop_n; typedef event_loop event_loop_th; namespace dprivate { // Posix signal event watcher template class signal_watcher : private dprivate::base_signal_watcher { template friend class signal_watcher_impl; using base_watcher = dprivate::base_watcher; using T_Mutex = typename EventLoop::mutex_t; public: using event_loop_t = EventLoop; using siginfo_p = typename signal_watcher::siginfo_p; // Register this watcher to watch the specified signal. // If an attempt is made to register with more than one event loop at // a time, behaviour is undefined. The signal should be masked before // call. inline void add_watch(event_loop_t &eloop, int signo, int prio = DEFAULT_PRIORITY) { base_watcher::init(); this->priority = prio; this->siginfo.set_signo(signo); eloop.register_signal(this, signo); } inline void deregister(event_loop_t &eloop) noexcept { eloop.deregister(this, this->siginfo.get_signo()); } template static signal_watcher *add_watch(event_loop_t &eloop, int signo, T watch_hndlr) { class lambda_sig_watcher : public signal_watcher_impl { private: T watch_hndlr; public: lambda_sig_watcher(T watch_handlr_a) : watch_hndlr(watch_handlr_a) { // } rearm received(event_loop_t &eloop, int signo, siginfo_p siginfo) { return watch_hndlr(eloop, signo, siginfo); } void watch_removed() noexcept override { delete this; } }; lambda_sig_watcher * lsw = new lambda_sig_watcher(watch_hndlr); lsw->add_watch(eloop, signo); return lsw; } // virtual rearm received(EventLoop &eloop, int signo, siginfo_p siginfo) = 0; }; template class signal_watcher_impl : public signal_watcher { void dispatch(void *loop_ptr) noexcept override { EventLoop &loop = *static_cast(loop_ptr); loop_access::get_base_lock(loop).unlock(); auto rearm_type = static_cast(this)->received(loop, this->siginfo.get_signo(), this->siginfo); loop_access::get_base_lock(loop).lock(); if (rearm_type != rearm::REMOVED) { this->active = false; if (this->deleteme) { // We don't want a watch that is marked "deleteme" to re-arm itself. rearm_type = rearm::REMOVE; } loop_access::process_signal_rearm(loop, this, rearm_type); post_dispatch(loop, this, rearm_type); } } }; // Posix file descriptor event watcher template class fd_watcher : private dprivate::base_fd_watcher { template friend class fd_watcher_impl; using base_watcher = dprivate::base_watcher; using mutex_t = typename EventLoop::mutex_t; protected: // Set the types of event to watch. Only supported if loop_traits_t_t::has_bidi_fd_watch // is true; otherwise has unspecified behavior. // Only safe to call from within the callback handler (fdEvent). Might not take // effect until the current callback handler returns with REARM. void set_watch_flags(int newFlags) { this->watch_flags = newFlags; } public: using event_loop_t = EventLoop; // Register a file descriptor watcher with an event loop. Flags // can be any combination of dasynq::IN_EVENTS / dasynq::OUT_EVENTS. // Exactly one of IN_EVENTS/OUT_EVENTS must be specified if the event // loop does not support bi-directional fd watchers (i.e. if // ! loop_traits_t::has_bidi_fd_watch). // // Mechanisms supporting dual watchers allow for two watchers for a // single file descriptor (one watching read status and the other // write status). Others mechanisms support only a single watcher // per file descriptor. Adding a watcher beyond what is supported // causes undefined behavior. // // Can fail with std::bad_alloc or std::system_error. void add_watch(event_loop_t &eloop, int fd, int flags, bool enabled = true, int prio = DEFAULT_PRIORITY) { base_watcher::init(); this->priority = prio; this->watch_fd = fd; this->watch_flags = flags; eloop.register_fd(this, fd, flags, enabled, true); } void add_watch_noemu(event_loop_t &eloop, int fd, int flags, bool enabled = true, int prio = DEFAULT_PRIORITY) { base_watcher::init(); this->priority = prio; this->watch_fd = fd; this->watch_flags = flags; eloop.register_fd(this, fd, flags, enabled, false); } int get_watched_fd() { return this->watch_fd; } // Deregister a file descriptor watcher. // // If other threads may be polling the event loop, it is not safe to assume // the watcher is unregistered until the watch_removed() callback is issued // (which will not occur until the event handler returns, if it is active). // In a single threaded environment, it is safe to delete the watcher after // calling this method as long as the handler (if it is active) accesses no // internal state and returns rearm::REMOVED. void deregister(event_loop_t &eloop) noexcept { eloop.deregister(this, this->watch_fd); } void set_enabled(event_loop_t &eloop, bool enable) noexcept { std::lock_guard guard(eloop.get_base_lock()); if (this->emulatefd) { if (enable && ! this->emulate_enabled) { loop_access::requeue_watcher(eloop, this); } this->emulate_enabled = enable; } else { eloop.set_fd_enabled_nolock(this, this->watch_fd, this->watch_flags, enable); } if (! enable) { eloop.dequeue_watcher(this); } } // Add an Fd watch via a lambda. The watch is allocated dynamically and destroys // itself when removed from the event loop. template static fd_watcher *add_watch(event_loop_t &eloop, int fd, int flags, T watchHndlr) { class lambda_fd_watcher : public fd_watcher_impl { private: T watchHndlr; public: lambda_fd_watcher(T watchHandlr_a) : watchHndlr(watchHandlr_a) { // } rearm fd_event(event_loop_t &eloop, int fd, int flags) { return watchHndlr(eloop, fd, flags); } void watch_removed() noexcept override { delete this; } }; lambda_fd_watcher * lfd = new lambda_fd_watcher(watchHndlr); lfd->add_watch(eloop, fd, flags); return lfd; } // virtual rearm fd_event(EventLoop &eloop, int fd, int flags) = 0; }; template class fd_watcher_impl : public fd_watcher { void dispatch(void *loop_ptr) noexcept override { EventLoop &loop = *static_cast(loop_ptr); // In case emulating, clear enabled here; REARM or explicit set_enabled will re-enable. this->emulate_enabled = false; loop_access::get_base_lock(loop).unlock(); auto rearm_type = static_cast(this)->fd_event(loop, this->watch_fd, this->event_flags); loop_access::get_base_lock(loop).lock(); if (rearm_type != rearm::REMOVED) { this->event_flags = 0; this->active = false; if (this->deleteme) { // We don't want a watch that is marked "deleteme" to re-arm itself. rearm_type = rearm::REMOVE; } rearm_type = loop_access::process_fd_rearm(loop, this, rearm_type); post_dispatch(loop, this, rearm_type); } } }; // A Bi-directional file descriptor watcher with independent read- and write- channels. // This watcher type has two event notification methods which can both potentially be // active at the same time. template class bidi_fd_watcher : private dprivate::base_bidi_fd_watcher { template friend class bidi_fd_watcher_impl; using base_watcher = dprivate::base_watcher; using mutex_t = typename EventLoop::mutex_t; void set_watch_enabled(EventLoop &eloop, bool in, bool b) { int events = in ? IN_EVENTS : OUT_EVENTS; auto orig_flags = this->watch_flags; if (b) { this->watch_flags |= events; } else { this->watch_flags &= ~events; } dprivate::base_watcher * watcher = in ? this : &this->out_watcher; if (! watcher->emulatefd) { if (EventLoop::loop_traits_t::has_separate_rw_fd_watches) { eloop.set_fd_enabled_nolock(this, this->watch_fd, events | ONE_SHOT, b); } else { eloop.set_fd_enabled_nolock(this, this->watch_fd, (this->watch_flags & IO_EVENTS) | ONE_SHOT, (this->watch_flags & IO_EVENTS) != 0); } } else { // emulation: if enabling a previously disabled watcher, must queue now: if (b && (orig_flags != this->watch_flags)) { this->watch_flags = orig_flags; loop_access::requeue_watcher(eloop, watcher); } } if (! b) { eloop.dequeue_watcher(watcher); } } public: using event_loop_t = EventLoop; void set_in_watch_enabled(event_loop_t &eloop, bool b) noexcept { eloop.get_base_lock().lock(); set_watch_enabled(eloop, true, b); eloop.get_base_lock().unlock(); } void set_out_watch_enabled(event_loop_t &eloop, bool b) noexcept { eloop.get_base_lock().lock(); set_watch_enabled(eloop, false, b); eloop.get_base_lock().unlock(); } // Set the watch flags, which enables/disables both the in-watch and the out-watch accordingly. // // Concurrency: this method can only be called if // - it does not enable a watcher that might currently be active /// - unless the event loop will not be polled while the watcher is active. // (i.e. it is ok to call setWatchFlags from within the readReady/writeReady handlers if no other // thread will poll the event loop; it is always ok to *dis*able a watcher that might be active, // though the re-arm action returned by the callback may undo the effect). void set_watches(event_loop_t &eloop, int new_flags) noexcept { std::lock_guard guard(eloop.get_base_lock()); bool use_emulation = this->emulatefd || this->out_watcher.emulatefd; if (use_emulation || EventLoop::loop_traits_t::has_separate_rw_fd_watches) { set_watch_enabled(eloop, true, (new_flags & IN_EVENTS) != 0); set_watch_enabled(eloop, false, (new_flags & OUT_EVENTS) != 0); } else { this->watch_flags = (this->watch_flags & ~IO_EVENTS) | new_flags; eloop.set_fd_enabled_nolock((dprivate::base_watcher *) this, this->watch_fd, this->watch_flags & IO_EVENTS, true); } } // Register a bi-direction file descriptor watcher with an event loop. Flags // can be any combination of dasynq::IN_EVENTS / dasynq::OUT_EVENTS. // // Can fail with std::bad_alloc or std::system_error. void add_watch(event_loop_t &eloop, int fd, int flags, int inprio = DEFAULT_PRIORITY, int outprio = DEFAULT_PRIORITY) { base_watcher::init(); this->out_watcher.base_watcher::init(); this->watch_fd = fd; this->watch_flags = flags | dprivate::multi_watch; this->read_removed = false; this->write_removed = false; this->priority = inprio; this->set_priority(this->out_watcher, outprio); eloop.register_fd(this, fd, flags, true); } void add_watch_noemu(event_loop_t &eloop, int fd, int flags, int inprio = DEFAULT_PRIORITY, int outprio = DEFAULT_PRIORITY) { base_watcher::init(); this->out_watcher.base_watcher::init(); this->watch_fd = fd; this->watch_flags = flags | dprivate::multi_watch; this->read_removed = false; this->write_removed = false; this->priority = inprio; this->set_priority(this->out_watcher, outprio); eloop.register_fd(this, fd, flags, false); } int get_watched_fd() { return this->watch_fd; } // Deregister a bi-direction file descriptor watcher. // // If other threads may be polling the event loop, it is not safe to assume // the watcher is unregistered until the watch_removed() callback is issued // (which will not occur until the event handler returns, if it is active). // In a single threaded environment, it is safe to delete the watcher after // calling this method as long as the handler (if it is active) accesses no // internal state and returns rearm::REMOVED. void deregister(event_loop_t &eloop) noexcept { eloop.deregister(this, this->watch_fd); } template static bidi_fd_watcher *add_watch(event_loop_t &eloop, int fd, int flags, T watch_hndlr) { class lambda_bidi_watcher : public bidi_fd_watcher_impl { private: T watch_hndlr; public: lambda_bidi_watcher(T watch_handlr_a) : watch_hndlr(watch_handlr_a) { // } rearm read_ready(event_loop_t &eloop, int fd) { return watch_hndlr(eloop, fd, IN_EVENTS); } rearm write_ready(event_loop_t &eloop, int fd) { return watch_hndlr(eloop, fd, OUT_EVENTS); } void watch_removed() noexcept override { delete this; } }; lambda_bidi_watcher * lfd = new lambda_bidi_watcher(watch_hndlr); lfd->add_watch(eloop, fd, flags); return lfd; } // virtual rearm read_ready(EventLoop &eloop, int fd) noexcept = 0; // virtual rearm write_ready(EventLoop &eloop, int fd) noexcept = 0; }; template class bidi_fd_watcher_impl : public bidi_fd_watcher { void dispatch(void *loop_ptr) noexcept override { EventLoop &loop = *static_cast(loop_ptr); this->emulate_enabled = false; loop_access::get_base_lock(loop).unlock(); auto rearm_type = static_cast(this)->read_ready(loop, this->watch_fd); loop_access::get_base_lock(loop).lock(); if (rearm_type != rearm::REMOVED) { this->event_flags &= ~IN_EVENTS; this->active = false; if (this->deleteme) { // We don't want a watch that is marked "deleteme" to re-arm itself. rearm_type = rearm::REMOVE; } rearm_type = loop_access::process_primary_rearm(loop, this, rearm_type); auto &outwatcher = bidi_fd_watcher::out_watcher; post_dispatch(loop, this, &outwatcher, rearm_type); } } void dispatch_second(void *loop_ptr) noexcept override { auto &outwatcher = bidi_fd_watcher::out_watcher; EventLoop &loop = *static_cast(loop_ptr); loop_access::get_base_lock(loop).unlock(); auto rearm_type = static_cast(this)->write_ready(loop, this->watch_fd); loop_access::get_base_lock(loop).lock(); if (rearm_type != rearm::REMOVED) { this->event_flags &= ~OUT_EVENTS; outwatcher.active = false; if (outwatcher.deleteme) { // We don't want a watch that is marked "deleteme" to re-arm itself. rearm_type = rearm::REMOVE; } rearm_type = loop_access::process_secondary_rearm(loop, this, &outwatcher, rearm_type); if (rearm_type == rearm::REQUEUE) { post_dispatch(loop, &outwatcher, rearm_type); } else { post_dispatch(loop, this, &outwatcher, rearm_type); } } } }; // Child process event watcher template class child_proc_watcher : private dprivate::base_child_watcher { template friend class child_proc_watcher_impl; using base_watcher = dprivate::base_watcher; using mutex_t = typename EventLoop::mutex_t; public: using event_loop_t = EventLoop; using proc_status_t = typename EventLoop::loop_traits_t::proc_status_t; // send a signal to this process, if it is still running, in a race-free manner. // return is as for POSIX kill(); return is -1 with errno=ESRCH if process has // already terminated. int send_signal(event_loop_t &loop, int signo) noexcept { auto reaper_mutex = loop.get_reaper_lock(); std::lock_guard guard(reaper_mutex); if (this->child_termd) { errno = ESRCH; return -1; } return kill(this->watch_pid, signo); } // Reserve resources for a child watcher with the given event loop. // Reservation can fail with std::bad_alloc. Some backends do not support // reservation (it will always fail) - check loop_traits_t::supports_childwatch_reservation. void reserve_watch(event_loop_t &eloop) { eloop.reserve_child_watch(this); } void unreserve(event_loop_t &eloop) { eloop.unreserve(this); } // Register a watcher for the given child process with an event loop. // Registration can fail with std::bad_alloc. // Note that in multi-threaded programs, use of this function may be prone to a // race condition such that the child terminates before the watcher is registered. void add_watch(event_loop_t &eloop, pid_t child, int prio = DEFAULT_PRIORITY) { base_watcher::init(); this->watch_pid = child; this->priority = prio; eloop.register_child(this, child); } // Register a watcher for the given child process with an event loop, // after having reserved resources previously (using reserveWith). // Registration cannot fail. // Note that in multi-threaded programs, use of this function may be prone to a // race condition such that the child terminates before the watcher is registered; // use the "fork" member function to avoid this. void add_reserved(event_loop_t &eloop, pid_t child, int prio = DEFAULT_PRIORITY) noexcept { base_watcher::init(); this->watch_pid = child; this->priority = prio; eloop.register_reserved_child(this, child); } void deregister(event_loop_t &eloop, pid_t child) noexcept { eloop.deregister(this, child); } // Stop watching the currently watched child, but retain watch reservation. void stop_watch(event_loop_t &eloop) noexcept { eloop.stop_watch(this); } // Fork and watch the child with this watcher on the given event loop. // If resource limitations prevent the child process from being watched, it is // terminated immediately (or if the implementation allows, never started), // and a suitable std::system_error or std::bad_alloc exception is thrown. // Returns: // - the child pid in the parent // - 0 in the child pid_t fork(event_loop_t &eloop, bool from_reserved = false, int prio = DEFAULT_PRIORITY) { base_watcher::init(); this->priority = prio; if (EventLoop::loop_traits_t::supports_childwatch_reservation) { // Reserve a watch, fork, then claim reservation if (! from_reserved) { reserve_watch(eloop); } auto &lock = eloop.get_base_lock(); lock.lock(); pid_t child = ::fork(); if (child == -1) { // Unreserve watch. lock.unlock(); unreserve(eloop); throw std::system_error(errno, std::system_category()); } if (child == 0) { // I am the child lock.unlock(); // may not really be necessary return 0; } // Register this watcher. this->watch_pid = child; eloop.register_reserved_child_nolock(this, child); lock.unlock(); return child; } else { int pipefds[2]; if (pipe2(pipefds, O_CLOEXEC) == -1) { throw std::system_error(errno, std::system_category()); } std::lock_guard guard(eloop.get_base_lock()); pid_t child = ::fork(); if (child == -1) { throw std::system_error(errno, std::system_category()); } if (child == 0) { // I am the child close(pipefds[1]); // Wait for message from parent before continuing: int rr; int r = read(pipefds[0], &rr, sizeof(rr)); while (r == -1 && errno == EINTR) { r = read(pipefds[0], &rr, sizeof(rr)); } if (r <= 0) _exit(0); close(pipefds[0]); return 0; } close(pipefds[0]); // close read end // Register this watcher. try { this->watch_pid = child; eloop.register_child(this, child); // Continue in child (it doesn't matter what is written): write(pipefds[1], &pipefds, sizeof(int)); close(pipefds[1]); return child; } catch (...) { close(pipefds[1]); throw; } } } // virtual rearm child_status(EventLoop &eloop, pid_t child, proc_status_t status) = 0; }; template class child_proc_watcher_impl : public child_proc_watcher { void dispatch(void *loop_ptr) noexcept override { EventLoop &loop = *static_cast(loop_ptr); loop_access::get_base_lock(loop).unlock(); auto rearm_type = static_cast(this)->status_change(loop, this->watch_pid, this->child_status); loop_access::get_base_lock(loop).lock(); if (rearm_type != rearm::REMOVED) { this->active = false; if (this->deleteme) { // We don't want a watch that is marked "deleteme" to re-arm itself. rearm_type = rearm::REMOVE; } loop_access::process_child_watch_rearm(loop, this, rearm_type); // rearm_type = loop.process??; post_dispatch(loop, this, rearm_type); } } }; template class timer : private base_timer_watcher { template friend class timer_impl; using base_t = base_timer_watcher; using mutex_t = typename EventLoop::mutex_t; public: using event_loop_t = EventLoop; void add_timer(event_loop_t &eloop, clock_type clock = clock_type::MONOTONIC, int prio = DEFAULT_PRIORITY) { base_watcher::init(); this->priority = prio; this->clock = clock; this->intervals = 0; eloop.register_timer(this, clock); } void arm_timer(event_loop_t &eloop, const timespec &timeout) noexcept { eloop.set_timer(this, timeout, base_t::clock); } void arm_timer(event_loop_t &eloop, const timespec &timeout, const timespec &interval) noexcept { eloop.set_timer(this, timeout, interval, base_t::clock); } // Arm timer, relative to now: void arm_timer_rel(event_loop_t &eloop, const timespec &timeout) noexcept { eloop.set_timer_rel(this, timeout, base_t::clock); } void arm_timer_rel(event_loop_t &eloop, const timespec &timeout, const timespec &interval) noexcept { eloop.set_timer_rel(this, timeout, interval, base_t::clock); } void stop_timer(event_loop_t &eloop) noexcept { eloop.stop_timer(this, base_t::clock); } void set_enabled(event_loop_t &eloop, clock_type clock, bool enabled) noexcept { std::lock_guard guard(eloop.get_base_lock()); eloop.set_timer_enabled_nolock(this, clock, enabled); if (! enabled) { eloop.dequeue_watcher(this); } } void deregister(event_loop_t &eloop) noexcept { eloop.deregister(this, this->clock); } template static timer *add_timer(EventLoop &eloop, clock_type clock, bool relative, const timespec &timeout, const timespec &interval, T watch_hndlr) { class lambda_timer : public timer_impl { private: T watch_hndlr; public: lambda_timer(T watch_handlr_a) : watch_hndlr(watch_handlr_a) { // } rearm timer_expiry(event_loop_t &eloop, int intervals) { return watch_hndlr(eloop, intervals); } void watch_removed() noexcept override { delete this; } }; lambda_timer * lt = new lambda_timer(watch_hndlr); lt->add_timer(eloop, clock); if (relative) { lt->arm_timer_rel(eloop, timeout, interval); } else { lt->arm_timer(eloop, timeout, interval); } return lt; } // Timer expired, and the given number of intervals have elapsed before // expiry event was queued. Normally intervals == 1 to indicate no // overrun. // virtual rearm timer_expiry(event_loop_t &eloop, int intervals) = 0; }; template class timer_impl : public timer { void dispatch(void *loop_ptr) noexcept override { EventLoop &loop = *static_cast(loop_ptr); loop_access::get_base_lock(loop).unlock(); auto intervals_report = this->intervals; this->intervals = 0; auto rearm_type = static_cast(this)->timer_expiry(loop, intervals_report); loop_access::get_base_lock(loop).lock(); if (rearm_type != rearm::REMOVED) { this->active = false; if (this->deleteme) { // We don't want a watch that is marked "deleteme" to re-arm itself. rearm_type = rearm::REMOVE; } loop_access::process_timer_rearm(loop, this, rearm_type); post_dispatch(loop, this, rearm_type); } } }; } // namespace dprivate } // namespace v2 } // namespace dasynq #endif /* DASYNQ_H_ */