#include #include #include #include "control-cmds.h" #include "dinit-env.h" #include "control.h" #include "service.h" #include "proc-service.h" #include "control-datatypes.h" // Server-side control protocol implementation. This implements the functionality that allows // clients (such as dinitctl) to query service state and issue commands to control services. // common communication datatypes using namespace dinit_cptypes; namespace { // Control protocol minimum compatible version and current version: constexpr uint16_t min_compat_version = 1; constexpr uint16_t cp_version = 5; // check for value in a set template inline bool contains(const T (&v)[N], U i) { return std::find_if(std::begin(v), std::end(v), [=](T p){ return i == static_cast(p); }) != std::end(v); } } bool control_conn_t::process_packet() { using std::string; // Note that where we call queue_packet, we must generally check the return value. If it // returns false it has either deleted the connection or marked it for deletion; we // shouldn't touch instance members after that point. cp_cmd pkt_type = (cp_cmd)rbuf[0]; switch (pkt_type) { case cp_cmd::QUERYVERSION: { // Responds with: // cp_rply::CPVERSION, (2 byte) minimum compatible version, (2 byte) actual version char replyBuf[] = { (char)cp_rply::CPVERSION, 0, 0, 0, 0 }; memcpy(replyBuf + 1, &min_compat_version, 2); memcpy(replyBuf + 3, &cp_version, 2); if (!queue_packet(replyBuf, sizeof(replyBuf))) return false; rbuf.consume(1); return true; } case cp_cmd::FINDSERVICE: case cp_cmd::LOADSERVICE: return process_find_load(pkt_type); case cp_cmd::CLOSEHANDLE: return process_close_handle(); case cp_cmd::STARTSERVICE: case cp_cmd::STOPSERVICE: case cp_cmd::WAKESERVICE: case cp_cmd::RELEASESERVICE: return process_start_stop(pkt_type); case cp_cmd::UNPINSERVICE: return process_unpin_service(); case cp_cmd::UNLOADSERVICE: return process_unload_service(); case cp_cmd::RELOADSERVICE: return process_reload_service(); case cp_cmd::SHUTDOWN: // Shutdown/reboot if (rbuf.get_length() < 2) { chklen = 2; return true; } if (contains({shutdown_type_t::REMAIN, shutdown_type_t::HALT, shutdown_type_t::POWEROFF, shutdown_type_t::REBOOT, shutdown_type_t::SOFTREBOOT}, rbuf[1])) { auto sd_type = static_cast(rbuf[1]); services->stop_all_services(sd_type); char ackBuf[] = { (char)cp_rply::ACK }; if (! queue_packet(ackBuf, 1)) return false; // Clear the packet from the buffer rbuf.consume(2); chklen = 0; return true; } break; case cp_cmd::LISTSERVICES: return list_services(); case cp_cmd::LISTSERVICES5: return list_services5(); case cp_cmd::SERVICESTATUS: return process_service_status(); case cp_cmd::SERVICESTATUS5: return process_service_status5(); case cp_cmd::ADD_DEP: return add_service_dep(); case cp_cmd::REM_DEP: return rm_service_dep(); case cp_cmd::QUERY_LOAD_MECH: return query_load_mech(); case cp_cmd::ENABLESERVICE: return add_service_dep(true); case cp_cmd::QUERYSERVICENAME: return process_query_name(); case cp_cmd::SETENV: return process_setenv(); case cp_cmd::GETALLENV: return process_getallenv(); case cp_cmd::LISTENENV: return process_listenenv(); case cp_cmd::SETTRIGGER: return process_set_trigger(); case cp_cmd::CATLOG: return process_catlog(); case cp_cmd::SIGNAL: return process_signal(); case cp_cmd::QUERYSERVICEDSCDIR: return process_query_dsc_dir(); default: break; } // Unrecognized: give error response char outbuf[] = { (char)cp_rply::BADREQ }; if (!queue_packet(outbuf, 1)) return false; bad_conn_close = true; return true; } bool control_conn_t::process_find_load(cp_cmd pktType) { using std::string; constexpr int pkt_size = 4; if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } srvname_len_t srvname_len; rbuf.extract(&srvname_len, 1, sizeof(srvname_len)); if (srvname_len <= 0 || srvname_len > (1024 - 3)) { // Queue error response / mark connection bad char badreqRep[] = { (char)cp_rply::BADREQ }; if (! queue_packet(badreqRep, 1)) return false; bad_conn_close = true; return true; } chklen = srvname_len + 3; // packet type + (2 byte) length + service name if (rbuf.get_length() < chklen) { // packet not complete yet; read more return true; } service_record * record = nullptr; string service_name = rbuf.extract_string(3, srvname_len); // Clear the packet from the buffer rbuf.consume(chklen); chklen = 0; cp_rply fail_code = cp_rply::NOSERVICE; if (pktType == cp_cmd::LOADSERVICE) { // LOADSERVICE try { record = services->load_service(service_name.c_str()); } catch (service_description_exc &sdexc) { log_service_load_failure(sdexc); fail_code = cp_rply::SERVICE_DESC_ERR; } catch (service_not_found &snf) { log(loglevel_t::ERROR, "Could not load service ", snf.service_name, ": ", snf.exc_description); // fail_code = cp_rply::NOSERVICE; (already set) } catch (service_load_exc &slexc) { log(loglevel_t::ERROR, "Could not load service ", slexc.service_name, ": ", slexc.exc_description); fail_code = cp_rply::SERVICE_LOAD_ERR; } } else { // FINDSERVICE record = services->find_service(service_name.c_str()); } if (record == nullptr) { std::vector rp_buf = { (char)fail_code }; if (! queue_packet(std::move(rp_buf))) return false; return true; } // Allocate a service handle handle_t handle = allocate_service_handle(record); std::vector rp_buf; rp_buf.reserve(7); rp_buf.push_back((char)cp_rply::SERVICERECORD); rp_buf.push_back(static_cast(record->get_state())); for (int i = 0; i < (int) sizeof(handle); i++) { rp_buf.push_back(*(((char *) &handle) + i)); } rp_buf.push_back(static_cast(record->get_target_state())); if (! queue_packet(std::move(rp_buf))) return false; return true; } bool control_conn_t::process_close_handle() { constexpr int pkt_size = 1 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } handle_t handle; rbuf.extract((char *) &handle, 1, sizeof(handle)); rbuf.consume(pkt_size); chklen = 0; auto key_it = key_service_map.find(handle); if (key_it == key_service_map.end()) { // Service handle is bad char badreq_rep[] = { (char)cp_rply::BADREQ }; if (!queue_packet(badreq_rep, 1)) return false; bad_conn_close = true; return true; } service_record *service = key_it->second; key_service_map.erase(key_it); bool have_other_handle = false; auto handle_range = service_key_map.equal_range(service); auto it = handle_range.first; while (it->second != handle) { have_other_handle = true; ++it; } if (!have_other_handle) { // check if more handles beyond the found handle have_other_handle = std::next(it) != handle_range.second; } service_key_map.erase(it); if (!have_other_handle) { service->remove_listener(this); } char ack_reply[] = { (char)cp_rply::ACK }; return queue_packet(ack_reply, sizeof(ack_reply)); } bool control_conn_t::check_dependents(service_record *service, bool &had_dependents) { std::vector reply_pkt; size_t num_depts = 0; for (service_dep *dep : service->get_dependents()) { if (dep->dep_type == dependency_type::REGULAR && dep->holding_acq) { num_depts++; // find or allocate a service handle handle_t dept_handle = allocate_service_handle(dep->get_from()); if (reply_pkt.empty()) { // packet type, size reply_pkt.reserve(1 + sizeof(size_t) + sizeof(handle_t)); reply_pkt.resize(1 + sizeof(size_t)); reply_pkt[0] = (char)cp_rply::DEPENDENTS; } auto old_size = reply_pkt.size(); reply_pkt.resize(old_size + sizeof(handle_t)); memcpy(reply_pkt.data() + old_size, &dept_handle, sizeof(dept_handle)); } } if (num_depts != 0) { // There are affected dependents had_dependents = true; memcpy(reply_pkt.data() + 1, &num_depts, sizeof(num_depts)); return queue_packet(std::move(reply_pkt)); } had_dependents = false; return true; } bool control_conn_t::process_start_stop(cp_cmd pktType) { using std::string; constexpr int pkt_size = 2 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } // 1 byte: packet type // 1 byte: flags // bit 0: 0 = no pin, 1 = pin // bit 1: 0 = force stop, 1 = not forced ("gentle") // bit 2: 0 = don't restart, 1 = restart after stopping // --- (reserved) // bit 7: 0 = no pre-ack, 1 = issue pre-ack // 4 bytes: service handle bool do_pin = ((rbuf[1] & 1) == 1); handle_t handle; rbuf.extract((char *) &handle, 2, sizeof(handle)); service_record *service = find_service_for_key(handle); if (service == nullptr) { // Service handle is bad char badreqRep[] = { (char)cp_rply::BADREQ }; if (!queue_packet(badreqRep, 1)) return false; bad_conn_close = true; return true; } else { char ack_buf[1] = { (char)cp_rply::PREACK }; if (rbuf[1] & 128) { // Issue PREACK before doing anything that might change service state (and cause a // service event info packet to be issued as a result). This allows the client to // determine whether the info packets were queued before or after the command was // processed. if (!queue_packet(ack_buf, 1)) return false; } ack_buf[0] = (char)cp_rply::ACK; switch (pktType) { case cp_cmd::STARTSERVICE: // start service, mark as required if (services->is_shutting_down()) { ack_buf[0] = (char)cp_rply::SHUTTINGDOWN; break; } if ((service->get_state() == service_state_t::STOPPED || service->get_state() == service_state_t::STOPPING) && service->is_stop_pinned()) { ack_buf[0] = (char)cp_rply::PINNEDSTOPPED; break; } if (do_pin) service->pin_start(); service->start(); services->process_queues(); if (service->get_state() == service_state_t::STARTED) ack_buf[0] = (char)cp_rply::ALREADYSS; break; case cp_cmd::STOPSERVICE: { // force service to stop bool do_restart = ((rbuf[1] & 4) == 4); bool gentle = ((rbuf[1] & 2) == 2); if (do_restart && services->is_shutting_down()) { ack_buf[0] = (char)cp_rply::SHUTTINGDOWN; break; } if ((service->get_state() == service_state_t::STARTED || service->get_state() == service_state_t::STARTING) && service->is_start_pinned()) { ack_buf[0] = (char)cp_rply::PINNEDSTARTED; break; } if (gentle) { // Check dependents; return appropriate response if any will be affected bool has_dependents; if (!check_dependents(service, has_dependents)) { return false; } if (has_dependents) { // Reply packet has already been sent goto clear_out; } } service_state_t wanted_state; if (do_restart) { if (! service->restart()) { ack_buf[0] = (char)cp_rply::NAK; break; } wanted_state = service_state_t::STARTED; } else { if (do_pin) service->pin_stop(); service->stop(true); service->forced_stop(); wanted_state = service_state_t::STOPPED; } services->process_queues(); if (service->get_state() == wanted_state) ack_buf[0] = (char)cp_rply::ALREADYSS; break; } case cp_cmd::WAKESERVICE: { // re-attach a service to its (started) dependents, causing it to start. if (services->is_shutting_down()) { ack_buf[0] = (char)cp_rply::SHUTTINGDOWN; break; } if ((service->get_state() == service_state_t::STOPPED || service->get_state() == service_state_t::STOPPING) && service->is_stop_pinned()) { ack_buf[0] = (char)cp_rply::PINNEDSTOPPED; break; } bool found_dpt = false; for (auto dpt : service->get_dependents()) { if (dpt->is_only_ordering()) continue; auto from = dpt->get_from(); auto from_state = from->get_state(); if (from_state == service_state_t::STARTED || from_state == service_state_t::STARTING) { found_dpt = true; if (!dpt->holding_acq) { dpt->get_from()->start_dep(*dpt); } } } if (!found_dpt) { ack_buf[0] = (char)cp_rply::NAK; } if (do_pin) service->pin_start(); services->process_queues(); if (service->get_state() == service_state_t::STARTED) ack_buf[0] = (char)cp_rply::ALREADYSS; break; } case cp_cmd::RELEASESERVICE: // remove required mark, stop if not required by dependents if (do_pin) service->pin_stop(); service->stop(false); services->process_queues(); if (service->get_state() == service_state_t::STOPPED) ack_buf[0] = (char)cp_rply::ALREADYSS; break; default: // avoid warning for unhandled switch/case values return false; } if (!queue_packet(ack_buf, 1)) return false; } clear_out: // Clear the packet from the buffer rbuf.consume(pkt_size); chklen = 0; return true; } bool control_conn_t::process_unpin_service() { using std::string; constexpr int pkt_size = 1 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } // 1 byte: packet type // 4 bytes: service handle handle_t handle; rbuf.extract((char *) &handle, 1, sizeof(handle)); service_record *service = find_service_for_key(handle); if (service == nullptr) { // Service handle is bad char badreqRep[] = { (char)cp_rply::BADREQ }; if (! queue_packet(badreqRep, 1)) return false; bad_conn_close = true; return true; } service->unpin(); services->process_queues(); char ack_buf[] = { (char) cp_rply::ACK }; if (! queue_packet(ack_buf, 1)) return false; // Clear the packet from the buffer rbuf.consume(pkt_size); chklen = 0; return true; } bool control_conn_t::process_unload_service() { using std::string; constexpr int pkt_size = 1 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } // 1 byte: packet type // 4 bytes: service handle handle_t handle; rbuf.extract((char *) &handle, 1, sizeof(handle)); service_record *service = find_service_for_key(handle); if (service == nullptr) { // Service handle is bad char badreq_rep[] = { (char)cp_rply::BADREQ }; if (! queue_packet(badreq_rep, 1)) return false; bad_conn_close = true; return true; } if (!service->has_lone_ref() || service->get_state() != service_state_t::STOPPED) { // Cannot unload: has other references char nak_rep[] = { (char)cp_rply::NAK }; if (!queue_packet(nak_rep, 1)) return false; } else { // unload (this may fail with bad_alloc) services->unload_service(service); // drop handle service_key_map.erase(service); key_service_map.erase(handle); // send ack char ack_buf[] = { (char) cp_rply::ACK }; if (!queue_packet(ack_buf, 1)) return false; } // Clear the packet from the buffer rbuf.consume(pkt_size); chklen = 0; return true; } bool control_conn_t::process_reload_service() { using std::string; constexpr int pkt_size = 1 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } // 1 byte: packet type // 4 bytes: service handle handle_t handle; rbuf.extract((char *) &handle, 1, sizeof(handle)); service_record *service = find_service_for_key(handle); if (service == nullptr) { // Service handle is bad char badreq_rep[] = { (char)cp_rply::BADREQ }; if (! queue_packet(badreq_rep, 1)) return false; bad_conn_close = true; return true; } if (!service->has_lone_ref(false)) { // Cannot unload: has other references char nak_rep[] = { (char)cp_rply::NAK }; if (! queue_packet(nak_rep, 1)) return false; } else { try { // drop handle key_service_map.erase(handle); service_key_map.erase(service); // reload service->remove_listener(this); services->reload_service(service); services->process_queues(); // send ack char ack_buf[] = { (char) cp_rply::ACK }; if (! queue_packet(ack_buf, 1)) return false; } catch (service_load_exc &slexc) { log(loglevel_t::ERROR, "Could not reload service ", slexc.service_name, ": ", slexc.exc_description); char nak_rep[] = { (char)cp_rply::NAK }; if (! queue_packet(nak_rep, 1)) return false; } } // Clear the packet from the buffer rbuf.consume(pkt_size); chklen = 0; return true; } constexpr static unsigned SIZEOF_INT_PIDT_UNION = ((sizeof(pid_t) > sizeof(int)) ? sizeof(pid_t) : sizeof(int)); constexpr static unsigned STATUS_BUFFER_SIZE = 6 + SIZEOF_INT_PIDT_UNION; static void fill_status_buffer(char *buffer, service_record *service) { buffer[0] = static_cast(service->get_state()); buffer[1] = static_cast(service->get_target_state()); pid_t proc_pid = service->get_pid(); char b0 = service->is_waiting_for_console() ? 1 : 0; b0 |= service->has_console() ? 2 : 0; b0 |= service->was_start_skipped() ? 4 : 0; b0 |= service->is_marked_active() ? 8 : 0; b0 |= (proc_pid != -1) ? 16 : 0; buffer[2] = b0; buffer[3] = static_cast(service->get_stop_reason()); buffer[4] = 0; // (if exec failed, these are replaced with stage) buffer[5] = 0; if (proc_pid != -1) { memcpy(buffer + 6, &proc_pid, sizeof(proc_pid)); } else { // These values only make sense in STOPPING/STOPPED, but we'll fill them in regardless: if (buffer[3] == (char)stopped_reason_t::EXECFAILED) { base_process_service *bsp = (base_process_service *)service; run_proc_err exec_err = bsp->get_exec_err_info(); uint16_t stage = (uint16_t)exec_err.stage; memcpy(buffer + 4, &stage, 2); memcpy(buffer + 6, &exec_err.st_errno, sizeof(int)); } else { auto exit_status_ps = service->get_exit_status(); // There is no portable way to derive the correct exit status value corresponding // to any condition except for a clean exit (0) which is the most important anyway. // We'll use -1 for any other status although this may not be valid. int exit_status = exit_status_ps.did_exit_clean() ? 0 : -1; memcpy(buffer + 6, &exit_status, sizeof(exit_status)); } } } constexpr static unsigned STATUS_BUFFER5_SIZE = 6 + 2 * sizeof(int); static void fill_status_buffer5(char *buffer, service_record *service) { buffer[0] = static_cast(service->get_state()); buffer[1] = static_cast(service->get_target_state()); pid_t proc_pid = service->get_pid(); char b0 = service->is_waiting_for_console() ? 1 : 0; b0 |= service->has_console() ? 2 : 0; b0 |= service->was_start_skipped() ? 4 : 0; b0 |= service->is_marked_active() ? 8 : 0; b0 |= (proc_pid != -1) ? 16 : 0; buffer[2] = b0; buffer[3] = static_cast(service->get_stop_reason()); buffer[4] = 0; // (if exec failed, these are replaced with stage) buffer[5] = 0; if (proc_pid != -1) { memcpy(buffer + 6, &proc_pid, sizeof(proc_pid)); unsigned remains = STATUS_BUFFER5_SIZE - (6 + sizeof(proc_pid)); memset(buffer + 6 + sizeof(proc_pid), 0, remains); } else { // These values only make sense in STOPPING/STOPPED, but we'll fill them in regardless: if (buffer[3] == (char)stopped_reason_t::EXECFAILED) { base_process_service *bsp = (base_process_service *)service; run_proc_err exec_err = bsp->get_exec_err_info(); uint16_t stage = (uint16_t)exec_err.stage; memcpy(buffer + 4, &stage, 2); memcpy(buffer + 6, &exec_err.st_errno, sizeof(int)); unsigned remains = STATUS_BUFFER5_SIZE - (6 + sizeof(int)); memset(buffer + 6 + sizeof(proc_pid), 0, remains); } else { auto exit_status = service->get_exit_status(); int xs_si_code = exit_status.get_si_code(); int xs_si_status = exit_status.get_si_status(); memcpy(buffer + 6, &xs_si_code, sizeof(xs_si_code)); memcpy(buffer + 6 + sizeof(xs_si_code), &xs_si_status, sizeof(xs_si_status)); } } } bool control_conn_t::list_services() { rbuf.consume(1); // clear request packet chklen = 0; try { auto slist = services->list_services(); for (auto sptr : slist) { if (sptr->get_type() == service_type_t::PLACEHOLDER) continue; std::vector pkt_buf; int hdrsize = 2 + STATUS_BUFFER_SIZE; const std::string &name = sptr->get_name(); int nameLen = std::min((size_t)256, name.length()); pkt_buf.resize(hdrsize + nameLen); pkt_buf[0] = (char)cp_rply::SVCINFO; pkt_buf[1] = nameLen; fill_status_buffer(&pkt_buf[2], sptr); for (int i = 0; i < nameLen; i++) { pkt_buf[hdrsize+i] = name[i]; } if (!queue_packet(std::move(pkt_buf))) return false; } char ack_buf[] = { (char) cp_rply::LISTDONE }; if (!queue_packet(ack_buf, 1)) return false; return true; } catch (std::bad_alloc &exc) { do_oom_close(); return true; } } bool control_conn_t::list_services5() { rbuf.consume(1); // clear request packet chklen = 0; try { auto slist = services->list_services(); for (auto sptr : slist) { if (sptr->get_type() == service_type_t::PLACEHOLDER) continue; std::vector pkt_buf; int hdrsize = 2 + STATUS_BUFFER5_SIZE; const std::string &name = sptr->get_name(); int nameLen = std::min((size_t)256, name.length()); pkt_buf.resize(hdrsize + nameLen); pkt_buf[0] = (char)cp_rply::SVCINFO; pkt_buf[1] = nameLen; fill_status_buffer5(&pkt_buf[2], sptr); for (int i = 0; i < nameLen; i++) { pkt_buf[hdrsize+i] = name[i]; } if (!queue_packet(std::move(pkt_buf))) return false; } char ack_buf[] = { (char) cp_rply::LISTDONE }; if (!queue_packet(ack_buf, 1)) return false; return true; } catch (std::bad_alloc &exc) { do_oom_close(); return true; } } bool control_conn_t::process_service_status() { constexpr int pkt_size = 1 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } handle_t handle; rbuf.extract(&handle, 1, sizeof(handle)); rbuf.consume(pkt_size); chklen = 0; service_record *service = find_service_for_key(handle); if (service == nullptr || service->get_name().length() > std::numeric_limits::max()) { char nak_rep[] = { (char)cp_rply::NAK }; return queue_packet(nak_rep, 1); } // Reply: // 1 byte packet type = cp_rply::SERVICESTATUS // 1 byte reserved ( = 0) // STATUS_BUFFER_SIZE bytes status std::vector pkt_buf(2 + STATUS_BUFFER_SIZE); pkt_buf[0] = (char)cp_rply::SERVICESTATUS; pkt_buf[1] = 0; fill_status_buffer(pkt_buf.data() + 2, service); return queue_packet(std::move(pkt_buf)); } bool control_conn_t::process_service_status5() { constexpr int pkt_size = 1 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } handle_t handle; rbuf.extract(&handle, 1, sizeof(handle)); rbuf.consume(pkt_size); chklen = 0; service_record *service = find_service_for_key(handle); if (service == nullptr || service->get_name().length() > std::numeric_limits::max()) { char nak_rep[] = { (char)cp_rply::NAK }; return queue_packet(nak_rep, 1); } // Reply: // 1 byte packet type = cp_rply::SERVICESTATUS // 1 byte reserved ( = 0) // STATUS_BUFFER5_SIZE bytes status std::vector pkt_buf(2 + STATUS_BUFFER5_SIZE); pkt_buf[0] = (char)cp_rply::SERVICESTATUS; pkt_buf[1] = 0; fill_status_buffer5(pkt_buf.data() + 2, service); return queue_packet(std::move(pkt_buf)); } bool control_conn_t::add_service_dep(bool do_enable) { // 1 byte packet type // 1 byte dependency type // handle: "from" // handle: "to" constexpr int pkt_size = 2 + sizeof(handle_t) * 2; if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } handle_t from_handle; handle_t to_handle; rbuf.extract((char *) &from_handle, 2, sizeof(from_handle)); rbuf.extract((char *) &to_handle, 2 + sizeof(from_handle), sizeof(to_handle)); service_record *from_service = find_service_for_key(from_handle); service_record *to_service = find_service_for_key(to_handle); if (from_service == nullptr || to_service == nullptr || from_service == to_service) { // Service handle is bad char badreq_rep[] = { (char)cp_rply::BADREQ }; if (!queue_packet(badreq_rep, 1)) return false; bad_conn_close = true; return true; } // Check dependency type is valid: int dep_type_int = rbuf[1]; if (!contains({dependency_type::MILESTONE, dependency_type::REGULAR, dependency_type::WAITS_FOR}, dep_type_int)) { char badreqRep[] = { (char)cp_rply::BADREQ }; if (!queue_packet(badreqRep, 1)) return false; bad_conn_close = true; } dependency_type dep_type = static_cast(dep_type_int); // Check current service states are valid for given dep type if (dep_type == dependency_type::REGULAR) { if (from_service->get_state() != service_state_t::STOPPED && to_service->get_state() != service_state_t::STARTED) { // Cannot create dependency now since it would be contradicted: char nak_rep[] = { (char)cp_rply::NAK }; if (! queue_packet(nak_rep, 1)) return false; rbuf.consume(pkt_size); chklen = 0; return true; } } // Check for creation of circular dependency chain std::unordered_set dep_marks; std::vector dep_queue; dep_queue.push_back(to_service); while (! dep_queue.empty()) { service_record * sr = dep_queue.back(); dep_queue.pop_back(); // iterate deps; if dep == from, abort; otherwise add to set/queue // (only add to queue if not already in set) for (auto &dep : sr->get_dependencies()) { service_record * dep_to = dep.get_to(); if (dep_to == from_service) { // fail, circular dependency! char nak_rep[] = { (char)cp_rply::NAK }; if (! queue_packet(nak_rep, 1)) return false; rbuf.consume(pkt_size); chklen = 0; return true; } if (dep_marks.insert(dep_to).second) { dep_queue.push_back(dep_to); } } } dep_marks.clear(); dep_queue.clear(); bool dep_exists = false; service_dep * dep_record = nullptr; // Prevent creation of duplicate dependency: for (auto &dep : from_service->get_dependencies()) { service_record * dep_to = dep.get_to(); if (dep_to == to_service && dep.dep_type == dep_type) { // Dependency already exists dep_exists = true; dep_record = &dep; break; } } if (! dep_exists) { // Create dependency: dep_record = &(from_service->add_dep(to_service, dep_type)); services->process_queues(); } if (do_enable && contains({service_state_t::STARTED, service_state_t::STARTING}, from_service->get_state())) { // The dependency record is activated: mark it as holding acquisition of the dependency, and start // the dependency. if (!services->is_shutting_down()) { dep_record->get_from()->start_dep(*dep_record); services->process_queues(); } } char ack_rep[] = { (char)cp_rply::ACK }; if (! queue_packet(ack_rep, 1)) return false; rbuf.consume(pkt_size); chklen = 0; return true; } bool control_conn_t::rm_service_dep() { // 1 byte packet type // 1 byte dependency type // handle: "from" // handle: "to" constexpr int pkt_size = 2 + sizeof(handle_t) * 2; if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } handle_t from_handle; handle_t to_handle; rbuf.extract((char *) &from_handle, 2, sizeof(from_handle)); rbuf.extract((char *) &to_handle, 2 + sizeof(from_handle), sizeof(to_handle)); service_record *from_service = find_service_for_key(from_handle); service_record *to_service = find_service_for_key(to_handle); if (from_service == nullptr || to_service == nullptr || from_service == to_service) { // Service handle is bad char badreq_rep[] = { (char)cp_rply::BADREQ }; if (! queue_packet(badreq_rep, 1)) return false; bad_conn_close = true; return true; } // Check dependency type is valid: int dep_type_int = rbuf[1]; if (! contains({dependency_type::MILESTONE, dependency_type::REGULAR, dependency_type::WAITS_FOR}, dep_type_int)) { char badreqRep[] = { (char)cp_rply::BADREQ }; if (! queue_packet(badreqRep, 1)) return false; bad_conn_close = true; } dependency_type dep_type = static_cast(dep_type_int); // Remove dependency: bool did_remove = from_service->rm_dep(to_service, dep_type); services->process_queues(); char ack_rep[] = { did_remove ? (char)cp_rply::ACK : (char)cp_rply::NAK }; if (! queue_packet(ack_rep, 1)) return false; rbuf.consume(pkt_size); chklen = 0; return true; } bool control_conn_t::process_query_name() { // 1 byte packet type // 1 byte reserved // handle: service constexpr int pkt_size = 2 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } handle_t handle; rbuf.extract(&handle, 2, sizeof(handle)); rbuf.consume(pkt_size); chklen = 0; service_record *service = find_service_for_key(handle); if (service == nullptr || service->get_name().length() > std::numeric_limits::max()) { char nak_rep[] = { (char)cp_rply::NAK }; return queue_packet(nak_rep, 1); } // Reply: // 1 byte packet type = cp_rply::SERVICENAME // 1 byte reserved // uint16_t length // N bytes name std::vector reply; const std::string &name = service->get_name(); uint16_t name_length = name.length(); reply.resize(2 + sizeof(uint16_t) + name_length); reply[0] = (char)cp_rply::SERVICENAME; memcpy(reply.data() + 2, &name_length, sizeof(name_length)); memcpy(reply.data() + 2 + sizeof(uint16_t), name.c_str(), name_length); return queue_packet(std::move(reply)); } bool control_conn_t::process_setenv() { using std::string; string envVar; typename string::size_type eq; constexpr int pkt_size = 4; char badreqRep[] = { (char)cp_rply::BADREQ }; char okRep[] = { (char)cp_rply::ACK }; if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } envvar_len_t envvar_len; rbuf.extract(&envvar_len, 1, sizeof(envvar_len)); if (envvar_len <= 0 || envvar_len > (1024 - 3)) { goto badreq; } chklen = envvar_len + 1 + sizeof(envvar_len); // packet type + (2 byte) length + envvar if (rbuf.get_length() < chklen) { // packet not complete yet; read more return true; } envVar = rbuf.extract_string(3, envvar_len); eq = envVar.find('='); if (eq == envVar.npos) { // Unset the env var main_env.undefine_var(std::move(envVar), true); } else if (eq) { // Regular set main_env.set_var(std::move(envVar), true); } else { // At the beginning of the string goto badreq; } // Success response if (!queue_packet(okRep, 1)) return false; // Clear the packet from the buffer rbuf.consume(chklen); chklen = 0; return true; badreq: // Queue error response / mark connection bad if (!queue_packet(badreqRep, 1)) return false; bad_conn_close = true; return true; } bool control_conn_t::process_getallenv() { // 1 byte packet type // 1 byte reserved - must be 0 constexpr int pkt_size = 2; if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } uint8_t reserved_byte = rbuf[1]; if (reserved_byte != 0) { char badreqRep[] = { (char)cp_rply::BADREQ }; if (!queue_packet(badreqRep, 1)) return false; bad_conn_close = true; return true; } // The reply looks like: // 1 byte - reply type // sizeof(size_t) - reply data size // n bytes - reply data (NAME=VALUE, separated by nul characters) std::vector env_block; constexpr size_t env_block_hdr_size = sizeof(size_t) + 1; env_block.resize(env_block_hdr_size); rbuf.consume(pkt_size); auto env = main_env.build(); for (const char *env_var : env.env_list) { if (env_var != nullptr) { env_block.insert(env_block.end(), env_var, env_var + strlen(env_var) + 1); } } env_block[0] = (char)cp_rply::ALLENV; size_t block_size = env_block.size() - env_block_hdr_size; memcpy(env_block.data() + 1, &block_size, sizeof(block_size)); if (!queue_packet(std::move(env_block))) return false; return true; } bool control_conn_t::process_listenenv() { // 1 byte packet type, nothing else rbuf.consume(1); main_env.add_listener(this); char ack_rep[] = { (char)cp_rply::ACK }; return queue_packet(ack_rep, 1); } bool control_conn_t::process_set_trigger() { // 1 byte packet type // handle: service // 1 byte trigger value constexpr int pkt_size = 2 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } handle_t handle; trigger_val_t trigger_val; rbuf.extract(&handle, 1, sizeof(handle)); rbuf.extract(&trigger_val, 1 + sizeof(handle), sizeof(trigger_val)); rbuf.consume(pkt_size); chklen = 0; service_record *service = find_service_for_key(handle); if (service == nullptr || service->get_type() != service_type_t::TRIGGERED) { char nak_rep[] = { (char)cp_rply::NAK }; return queue_packet(nak_rep, 1); } triggered_service *tservice = static_cast(service); tservice->set_trigger(trigger_val != 0); services->process_queues(); char ack_rep[] = { (char)cp_rply::ACK }; return queue_packet(ack_rep, 1); } bool control_conn_t::process_catlog() { // 1 byte packet type // 1 byte reserved for future use // handle constexpr int pkt_size = 2 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } handle_t handle; char flags = rbuf[1]; rbuf.extract(&handle, 2, sizeof(handle)); rbuf.consume(pkt_size); chklen = 0; service_record *service = find_service_for_key(handle); if (service == nullptr || (service->get_type() != service_type_t::PROCESS && service->get_type() != service_type_t::BGPROCESS && service->get_type() != service_type_t::SCRIPTED)) { char nak_rep[] = { (char)cp_rply::NAK }; return queue_packet(nak_rep, 1); } base_process_service *bps = static_cast(service); if (bps->get_log_mode() != log_type_id::BUFFER) { char nak_rep[] = { (char)cp_rply::NAK }; return queue_packet(nak_rep, 1); } auto buffer_details = bps->get_log_buffer(); const char *bufaddr = buffer_details.first; unsigned buflen = buffer_details.second; std::vector pkt = { (char)cp_rply::SERVICE_LOG, 0 /* flags; reserved for future */ }; pkt.insert(pkt.end(), (char *)(&buflen), (char *)(&buflen + 1)); pkt.insert(pkt.end(), bufaddr, bufaddr + buflen); if ((flags & 1) != 0) { bps->clear_log_buffer(); } return queue_packet(std::move(pkt)); } bool control_conn_t::process_signal() { // packet contains signal number and process handle constexpr int pkt_size = 1 + sizeof(int) + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } sig_num_t sig_num; rbuf.extract(&sig_num, 1, sizeof(sig_num)); handle_t handle; rbuf.extract(&handle, 1 + sizeof(sig_num), sizeof(handle)); rbuf.consume(pkt_size); chklen = 0; service_record *service = find_service_for_key(handle); if (service == nullptr) { char nak_rep[] = { (char)cp_rply::NAK }; return queue_packet(nak_rep, 1); } // Reply: // 1 byte packet type = cp_rply::* pid_t spid = service->get_pid(); // we probably don't want to kill/signal every process (in the current group), // but get_pid() sometimes returns -1 if e.g. service is not 'started' if (spid == -1 || spid == 0) { char nak_rep[] = { (char)cp_rply::SIGNAL_NOPID }; return queue_packet(nak_rep, 1); } else { if (bp_sys::kill(spid, sig_num) != 0) { if (errno == EINVAL) { log(loglevel_t::ERROR, "Requested signal not in valid signal range."); char nak_rep[] = { (char)cp_rply::SIGNAL_BADSIG }; return queue_packet(nak_rep, 1); } log(loglevel_t::ERROR, "Error sending signal to process: ", strerror(errno)); char nak_rep[] = { (char)cp_rply::SIGNAL_KILLERR }; return queue_packet(nak_rep, 1); } } char ack_rep[] = { (char)cp_rply::ACK }; return queue_packet(ack_rep, 1); } bool control_conn_t::process_query_dsc_dir() { // packet contains command byte, spare byte, and service handle constexpr int pkt_size = 2 + sizeof(handle_t); if (rbuf.get_length() < pkt_size) { chklen = pkt_size; return true; } bool spare_ok = (rbuf[1] == 0); handle_t handle; rbuf.extract(&handle, 2, sizeof(handle)); rbuf.consume(pkt_size); chklen = 0; service_record *service = find_service_for_key(handle); if (service == nullptr || !spare_ok) { char nak_rep[] = { (char)cp_rply::NAK }; return queue_packet(nak_rep, 1); } // Reply: // 1 byte packet type = cp_rply::SVCDSCDIR // 4 bytes (uint32_t) = directory length (no nul terminator) // N bytes = directory (no nul) std::vector reppkt; size_t sdir_len = strlen(service->get_service_dsc_dir()); reppkt.resize(1 + sizeof(uint32_t) + sdir_len); // packet type, dir length, dir reppkt[0] = (char)cp_rply::SVCDSCDIR; std::memcpy(&reppkt[1], &sdir_len, sizeof(sdir_len)); std::memcpy(&reppkt[1 + sizeof(uint32_t)], service->get_service_dsc_dir(), sdir_len); if (! queue_packet(std::move(reppkt))) return false; return true; } bool control_conn_t::query_load_mech() { rbuf.consume(1); chklen = 0; if (services->get_set_type_id() == SSET_TYPE_DIRLOAD) { dirload_service_set *dss = static_cast(services); std::vector reppkt; reppkt.resize(2 + sizeof(uint32_t) * 2); // packet type, loader type, packet size, # dirs reppkt[0] = (char)cp_rply::LOADER_MECH; reppkt[1] = SSET_TYPE_DIRLOAD; // Number of directories in load path: uint32_t sdirs = dss->get_service_dir_count(); std::memcpy(reppkt.data() + 2 + sizeof(uint32_t), &sdirs, sizeof(sdirs)); // Our current working directory, which above are relative to: // leave sizeof(uint32_t) for size, which we'll fill in afterwards: std::size_t curpos = reppkt.size() + sizeof(uint32_t); #ifdef PATH_MAX uint32_t try_path_size = PATH_MAX; #else uint32_t try_path_size = 2048; #endif char *wd; while (true) { std::size_t total_size = curpos + std::size_t(try_path_size); if (total_size < curpos) { // Overflow. In theory we could now limit to size_t max, but the size must already // be crazy long; let's abort. char ack_rep[] = { (char)cp_rply::NAK }; if (! queue_packet(ack_rep, 1)) return false; return true; } reppkt.resize(total_size); wd = getcwd(reppkt.data() + curpos, try_path_size); if (wd != nullptr) break; // Keep doubling the path size we try until it's big enough, or we get numeric overflow uint32_t new_try_path_size = try_path_size * uint32_t(2u); if (new_try_path_size < try_path_size) { // Overflow. char ack_rep[] = { (char)cp_rply::NAK }; return queue_packet(ack_rep, 1); } try_path_size = new_try_path_size; } uint32_t wd_len = std::strlen(reppkt.data() + curpos); reppkt.resize(curpos + std::size_t(wd_len)); std::memcpy(reppkt.data() + curpos - sizeof(uint32_t), &wd_len, sizeof(wd_len)); // Each directory in the load path: for (int i = 0; uint32_t(i) < sdirs; i++) { const char *sdir = dss->get_service_dir(i); uint32_t dlen = std::strlen(sdir); auto cursize = reppkt.size(); reppkt.resize(cursize + sizeof(dlen) + dlen); std::memcpy(reppkt.data() + cursize, &dlen, sizeof(dlen)); std::memcpy(reppkt.data() + cursize + sizeof(dlen), sdir, dlen); } // Total packet size: uint32_t fsize = reppkt.size(); std::memcpy(reppkt.data() + 2, &fsize, sizeof(fsize)); if (! queue_packet(std::move(reppkt))) return false; return true; } else { // If we don't know how to deal with the service set type, send a NAK reply: char ack_rep[] = { (char)cp_rply::NAK }; return queue_packet(ack_rep, 1); } } handle_t control_conn_t::allocate_service_handle(service_record *record) { // Try to find a unique handle (integer) in a single pass. Since the map is ordered, we can search until // we find a gap in the handle values. handle_t candidate = 0; for (auto p : key_service_map) { if (p.first == candidate) ++candidate; else break; } bool is_unique = (service_key_map.find(record) == service_key_map.end()); // The following operations perform allocation (can throw std::bad_alloc). If an exception occurs we // must undo any previous actions: if (is_unique) { record->add_listener(this); } try { key_service_map[candidate] = record; service_key_map.insert(std::make_pair(record, candidate)); } catch (...) { if (is_unique) { record->remove_listener(this); } key_service_map.erase(candidate); } return candidate; } void control_conn_t::service_event(service_record *service, service_event_t event) noexcept { // For each service handle corresponding to the event, send an information packet. auto range = service_key_map.equal_range(service); auto &i = range.first; auto &end = range.second; try { while (i != end) { uint32_t key = i->second; std::vector pkt; // There are two types of service event packet: v5+, and the original. For backwards // compatibility, we send both. The new packet is sent first since this simplifies // things for the client (eg if waiting for an event, the client will receive the // packet with the most information first). // packet type (byte) + packet length (byte) + event type (byte) + key + status buffer constexpr int pktsize5 = 3 + sizeof(key) + STATUS_BUFFER5_SIZE; pkt.reserve(pktsize5); pkt.push_back((char)cp_info::SERVICEEVENT5); pkt.push_back(pktsize5); char *p = (char *)&key; for (unsigned j = 0; j < sizeof(key); j++) { pkt.push_back(*p++); } pkt.push_back(static_cast(event)); pkt.resize(pktsize5); fill_status_buffer5(pkt.data() + 3 + sizeof(key), service); queue_packet(std::move(pkt)); pkt.clear(); constexpr int pktsize = 3 + sizeof(key) + STATUS_BUFFER_SIZE; pkt.reserve(pktsize); pkt.push_back((char)cp_info::SERVICEEVENT); pkt.push_back(pktsize); p = (char *)&key; for (unsigned j = 0; j < sizeof(key); j++) { pkt.push_back(*p++); } pkt.push_back(static_cast(event)); pkt.resize(pktsize); fill_status_buffer(pkt.data() + 3 + sizeof(key), service); queue_packet(std::move(pkt)); ++i; } } catch (std::bad_alloc &exc) { do_oom_close(); } } void control_conn_t::environ_event(environment *env, std::string const &var_and_val, bool overridden) noexcept { // packet type (byte) + packet length (byte) + flags byte + data size + data // flags byte can be 1 or 0 for now, 1 if the var was overridden and 0 if fresh constexpr int pktsize = 3 + sizeof(envvar_len_t); envvar_len_t ln = var_and_val.size() + 1; auto *ptr = var_and_val.data(); try { std::vector pkt; pkt.reserve(pktsize + ln); pkt.push_back((char)cp_info::ENVEVENT); pkt.push_back(pktsize); pkt.push_back(overridden ? 1 : 0); pkt.insert(pkt.end(), (char *)&ln, ((char *)&ln) + sizeof(envvar_len_t)); pkt.insert(pkt.end(), ptr, ptr + ln); queue_packet(std::move(pkt)); } catch (std::bad_alloc &exc) { do_oom_close(); } } bool control_conn_t::queue_packet(const char *pkt, unsigned size) noexcept { bool was_empty = outbuf.empty(); // If the queue is empty, we can try to write the packet out now rather than queueing it. // If the write is unsuccessful or partial, we queue the remainder. if (was_empty) { int wr = bp_sys::write(iob.get_watched_fd(), pkt, size); if (wr == -1) { if (errno == EPIPE) { return false; } if (errno != EAGAIN && errno != EWOULDBLOCK && errno != EINTR) { log(loglevel_t::WARN, "Error writing to control connection: ", strerror(errno)); return false; } // EAGAIN etc: fall through to below } else { if ((unsigned)wr == size) { // Ok, all written. return true; } pkt += wr; size -= wr; } } // Create a vector out of the (remaining part of the) packet: try { outbuf.emplace_back(pkt, pkt + size); outbuf_size += size; return true; } catch (std::bad_alloc &baexc) { // Mark the connection bad, and stop reading further requests bad_conn_close = true; oom_close = true; if (was_empty) { // We can't send out-of-memory response as we already wrote as much as we // could above. Neither can we later send the response since we have currently // sent an incomplete packet. All we can do is close the connection. return false; } else { return true; } } } // This queue_packet method is frustratingly similar to the one above, but the subtle differences // make them extraordinary difficult to combine into a single method. bool control_conn_t::queue_packet(std::vector &&pkt) noexcept { bool was_empty = outbuf.empty(); if (was_empty) { outpkt_index = 0; // We can try sending the packet immediately: int wr = bp_sys::write(iob.get_watched_fd(), pkt.data(), pkt.size()); if (wr == -1) { if (errno == EPIPE) { return false; } if (errno != EAGAIN && errno != EWOULDBLOCK && errno != EINTR) { log(loglevel_t::WARN, "Error writing to control connection: ", strerror(errno)); return false; } // EAGAIN etc: fall through to below } else { if ((unsigned)wr == pkt.size()) { // Ok, all written. return true; } outpkt_index = wr; } } try { outbuf.emplace_back(std::move(pkt)); outbuf_size += pkt.size(); return true; } catch (std::bad_alloc &baexc) { // Mark the connection bad, and stop reading further requests bad_conn_close = true; oom_close = true; if (was_empty) { // We can't send out-of-memory response as we already wrote as much as we // could above. Neither can we later send the response since we have currently // sent an incomplete packet. All we can do is close the connection. return false; } else { return true; } } } bool control_conn_t::data_ready() noexcept { int fd = iob.get_watched_fd(); int r = rbuf.fill(fd); // Note file descriptor is non-blocking if (r == -1) { if (errno != EAGAIN && errno != EWOULDBLOCK && errno != EINTR) { if (errno != ECONNRESET) { log(loglevel_t::WARN, "Error reading from control connection: ", strerror(errno)); } return true; } return false; } if (r == 0) { return true; } // complete packet? while (rbuf.get_length() >= chklen) { try { if (!process_packet() || bad_conn_close) { return false; } } catch (std::bad_alloc &baexc) { do_oom_close(); return false; } chklen = std::max(chklen, 1u); } if (rbuf.get_length() == rbuf.get_size()) { // Too big packet log(loglevel_t::WARN, "Received too-large control packet; dropping connection"); bad_conn_close = true; } return false; } bool control_conn_t::send_data() noexcept { if (outbuf.empty() && bad_conn_close) { if (oom_close) { // Send oom response char oomBuf[] = { (char)cp_rply::OOM }; bp_sys::write(iob.get_watched_fd(), oomBuf, 1); } return true; } vector & pkt = outbuf.front(); char *data = pkt.data(); int written = bp_sys::write(iob.get_watched_fd(), data + outpkt_index, pkt.size() - outpkt_index); if (written == -1) { if (errno == EPIPE) { // read end closed return true; } else if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR) { // spurious readiness notification? return false; } else { log(loglevel_t::ERROR, "Error writing to control connection: ", strerror(errno)); return true; } } outpkt_index += written; if (outpkt_index == pkt.size()) { // We've finished this packet, move on to the next: outbuf_size -= pkt.size(); outbuf.pop_front(); outpkt_index = 0; if (oom_close) { // remain active, try to send cp_rply::OOM shortly return false; } if (outbuf.empty() && bad_conn_close) { return true; } } // more to send return false; } control_conn_t::~control_conn_t() noexcept { int fd = iob.get_watched_fd(); iob.deregister(loop); bp_sys::close(fd); // Clear service listeners for (auto p : service_key_map) { p.first->remove_listener(this); } main_env.remove_listener(this); active_control_conns--; }