鏡像自
https://git.openwrt.org/project/luci.git
已同步 2025-01-19 07:55:46 +00:00
1bb4822dca
* Rename subdirectories to their repective OpenWrt package names * Make each LuCI module its own standalone package * Deploy a shared luci.mk which is used by each module Makefile Signed-off-by: Jo-Philipp Wich <jow@openwrt.org>
1575 行
39 KiB
C
1575 行
39 KiB
C
/*
|
|
* Copyright (c) 2007, Cameron Rich
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* * Neither the name of the axTLS project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* @defgroup bigint_api Big Integer API
|
|
* @brief The bigint implementation as used by the axTLS project.
|
|
*
|
|
* The bigint library is for RSA encryption/decryption as well as signing.
|
|
* This code tries to minimise use of malloc/free by maintaining a small
|
|
* cache. A bigint context may maintain state by being made "permanent".
|
|
* It be be later released with a bi_depermanent() and bi_free() call.
|
|
*
|
|
* It supports the following reduction techniques:
|
|
* - Classical
|
|
* - Barrett
|
|
* - Montgomery
|
|
*
|
|
* It also implements the following:
|
|
* - Karatsuba multiplication
|
|
* - Squaring
|
|
* - Sliding window exponentiation
|
|
* - Chinese Remainder Theorem (implemented in rsa.c).
|
|
*
|
|
* All the algorithms used are pretty standard, and designed for different
|
|
* data bus sizes. Negative numbers are not dealt with at all, so a subtraction
|
|
* may need to be tested for negativity.
|
|
*
|
|
* This library steals some ideas from Jef Poskanzer
|
|
* <http://cs.marlboro.edu/term/cs-fall02/algorithms/crypto/RSA/bigint>
|
|
* and GMP <http://www.swox.com/gmp>. It gets most of its implementation
|
|
* detail from "The Handbook of Applied Cryptography"
|
|
* <http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf>
|
|
* @{
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include "bigint.h"
|
|
|
|
#define V1 v->comps[v->size-1] /**< v1 for division */
|
|
#define V2 v->comps[v->size-2] /**< v2 for division */
|
|
#define U(j) tmp_u->comps[tmp_u->size-j-1] /**< uj for division */
|
|
#define Q(j) quotient->comps[quotient->size-j-1] /**< qj for division */
|
|
|
|
static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i);
|
|
static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom);
|
|
static bigint *alloc(BI_CTX *ctx, int size);
|
|
static bigint *trim(bigint *bi);
|
|
static void more_comps(bigint *bi, int n);
|
|
#if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \
|
|
defined(CONFIG_BIGINT_MONTGOMERY)
|
|
static bigint *comp_right_shift(bigint *biR, int num_shifts);
|
|
static bigint *comp_left_shift(bigint *biR, int num_shifts);
|
|
#endif
|
|
|
|
#ifdef CONFIG_BIGINT_CHECK_ON
|
|
static void check(const bigint *bi);
|
|
#else
|
|
#define check(A) /**< disappears in normal production mode */
|
|
#endif
|
|
|
|
|
|
/**
|
|
* @brief Start a new bigint context.
|
|
* @return A bigint context.
|
|
*/
|
|
BI_CTX *bi_initialize(void)
|
|
{
|
|
/* calloc() sets everything to zero */
|
|
BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX));
|
|
|
|
/* the radix */
|
|
ctx->bi_radix = alloc(ctx, 2);
|
|
ctx->bi_radix->comps[0] = 0;
|
|
ctx->bi_radix->comps[1] = 1;
|
|
bi_permanent(ctx->bi_radix);
|
|
return ctx;
|
|
}
|
|
|
|
/**
|
|
* @brief Close the bigint context and free any resources.
|
|
*
|
|
* Free up any used memory - a check is done if all objects were not
|
|
* properly freed.
|
|
* @param ctx [in] The bigint session context.
|
|
*/
|
|
void bi_terminate(BI_CTX *ctx)
|
|
{
|
|
bi_depermanent(ctx->bi_radix);
|
|
bi_free(ctx, ctx->bi_radix);
|
|
|
|
if (ctx->active_count != 0)
|
|
{
|
|
#ifdef CONFIG_SSL_FULL_MODE
|
|
printf("bi_terminate: there were %d un-freed bigints\n",
|
|
ctx->active_count);
|
|
#endif
|
|
abort();
|
|
}
|
|
|
|
bi_clear_cache(ctx);
|
|
free(ctx);
|
|
}
|
|
|
|
/**
|
|
*@brief Clear the memory cache.
|
|
*/
|
|
void bi_clear_cache(BI_CTX *ctx)
|
|
{
|
|
bigint *p, *pn;
|
|
|
|
if (ctx->free_list == NULL)
|
|
return;
|
|
|
|
for (p = ctx->free_list; p != NULL; p = pn)
|
|
{
|
|
pn = p->next;
|
|
free(p->comps);
|
|
free(p);
|
|
}
|
|
|
|
ctx->free_count = 0;
|
|
ctx->free_list = NULL;
|
|
}
|
|
|
|
/**
|
|
* @brief Increment the number of references to this object.
|
|
* It does not do a full copy.
|
|
* @param bi [in] The bigint to copy.
|
|
* @return A reference to the same bigint.
|
|
*/
|
|
bigint *bi_copy(bigint *bi)
|
|
{
|
|
check(bi);
|
|
if (bi->refs != PERMANENT)
|
|
bi->refs++;
|
|
return bi;
|
|
}
|
|
|
|
/**
|
|
* @brief Simply make a bigint object "unfreeable" if bi_free() is called on it.
|
|
*
|
|
* For this object to be freed, bi_depermanent() must be called.
|
|
* @param bi [in] The bigint to be made permanent.
|
|
*/
|
|
void bi_permanent(bigint *bi)
|
|
{
|
|
check(bi);
|
|
if (bi->refs != 1)
|
|
{
|
|
#ifdef CONFIG_SSL_FULL_MODE
|
|
printf("bi_permanent: refs was not 1\n");
|
|
#endif
|
|
abort();
|
|
}
|
|
|
|
bi->refs = PERMANENT;
|
|
}
|
|
|
|
/**
|
|
* @brief Take a permanent object and make it eligible for freedom.
|
|
* @param bi [in] The bigint to be made back to temporary.
|
|
*/
|
|
void bi_depermanent(bigint *bi)
|
|
{
|
|
check(bi);
|
|
if (bi->refs != PERMANENT)
|
|
{
|
|
#ifdef CONFIG_SSL_FULL_MODE
|
|
printf("bi_depermanent: bigint was not permanent\n");
|
|
#endif
|
|
abort();
|
|
}
|
|
|
|
bi->refs = 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Free a bigint object so it can be used again.
|
|
*
|
|
* The memory itself it not actually freed, just tagged as being available
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bi [in] The bigint to be freed.
|
|
*/
|
|
void bi_free(BI_CTX *ctx, bigint *bi)
|
|
{
|
|
check(bi);
|
|
if (bi->refs == PERMANENT)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (--bi->refs > 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
bi->next = ctx->free_list;
|
|
ctx->free_list = bi;
|
|
ctx->free_count++;
|
|
|
|
if (--ctx->active_count < 0)
|
|
{
|
|
#ifdef CONFIG_SSL_FULL_MODE
|
|
printf("bi_free: active_count went negative "
|
|
"- double-freed bigint?\n");
|
|
#endif
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Convert an (unsigned) integer into a bigint.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param i [in] The (unsigned) integer to be converted.
|
|
*
|
|
*/
|
|
bigint *int_to_bi(BI_CTX *ctx, comp i)
|
|
{
|
|
bigint *biR = alloc(ctx, 1);
|
|
biR->comps[0] = i;
|
|
return biR;
|
|
}
|
|
|
|
/**
|
|
* @brief Do a full copy of the bigint object.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bi [in] The bigint object to be copied.
|
|
*/
|
|
bigint *bi_clone(BI_CTX *ctx, const bigint *bi)
|
|
{
|
|
bigint *biR = alloc(ctx, bi->size);
|
|
check(bi);
|
|
memcpy(biR->comps, bi->comps, bi->size*COMP_BYTE_SIZE);
|
|
return biR;
|
|
}
|
|
|
|
/**
|
|
* @brief Perform an addition operation between two bigints.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bia [in] A bigint.
|
|
* @param bib [in] Another bigint.
|
|
* @return The result of the addition.
|
|
*/
|
|
bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib)
|
|
{
|
|
int n;
|
|
comp carry = 0;
|
|
comp *pa, *pb;
|
|
|
|
check(bia);
|
|
check(bib);
|
|
|
|
n = max(bia->size, bib->size);
|
|
more_comps(bia, n+1);
|
|
more_comps(bib, n);
|
|
pa = bia->comps;
|
|
pb = bib->comps;
|
|
|
|
do
|
|
{
|
|
comp sl, rl, cy1;
|
|
sl = *pa + *pb++;
|
|
rl = sl + carry;
|
|
cy1 = sl < *pa;
|
|
carry = cy1 | (rl < sl);
|
|
*pa++ = rl;
|
|
} while (--n != 0);
|
|
|
|
*pa = carry; /* do overflow */
|
|
bi_free(ctx, bib);
|
|
return trim(bia);
|
|
}
|
|
|
|
/**
|
|
* @brief Perform a subtraction operation between two bigints.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bia [in] A bigint.
|
|
* @param bib [in] Another bigint.
|
|
* @param is_negative [out] If defined, indicates that the result was negative.
|
|
* is_negative may be null.
|
|
* @return The result of the subtraction. The result is always positive.
|
|
*/
|
|
bigint *bi_subtract(BI_CTX *ctx,
|
|
bigint *bia, bigint *bib, int *is_negative)
|
|
{
|
|
int n = bia->size;
|
|
comp *pa, *pb, carry = 0;
|
|
|
|
check(bia);
|
|
check(bib);
|
|
|
|
more_comps(bib, n);
|
|
pa = bia->comps;
|
|
pb = bib->comps;
|
|
|
|
do
|
|
{
|
|
comp sl, rl, cy1;
|
|
sl = *pa - *pb++;
|
|
rl = sl - carry;
|
|
cy1 = sl > *pa;
|
|
carry = cy1 | (rl > sl);
|
|
*pa++ = rl;
|
|
} while (--n != 0);
|
|
|
|
if (is_negative) /* indicate a negative result */
|
|
{
|
|
*is_negative = carry;
|
|
}
|
|
|
|
bi_free(ctx, trim(bib)); /* put bib back to the way it was */
|
|
return trim(bia);
|
|
}
|
|
|
|
/**
|
|
* Perform a multiply between a bigint an an (unsigned) integer
|
|
*/
|
|
static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bia, comp b)
|
|
{
|
|
int j = 0, n = bia->size;
|
|
bigint *biR = alloc(ctx, n + 1);
|
|
comp carry = 0;
|
|
comp *r = biR->comps;
|
|
comp *a = bia->comps;
|
|
|
|
check(bia);
|
|
|
|
/* clear things to start with */
|
|
memset(r, 0, ((n+1)*COMP_BYTE_SIZE));
|
|
|
|
do
|
|
{
|
|
long_comp tmp = *r + (long_comp)a[j]*b + carry;
|
|
*r++ = (comp)tmp; /* downsize */
|
|
carry = (comp)(tmp >> COMP_BIT_SIZE);
|
|
} while (++j < n);
|
|
|
|
*r = carry;
|
|
bi_free(ctx, bia);
|
|
return trim(biR);
|
|
}
|
|
|
|
/**
|
|
* @brief Does both division and modulo calculations.
|
|
*
|
|
* Used extensively when doing classical reduction.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param u [in] A bigint which is the numerator.
|
|
* @param v [in] Either the denominator or the modulus depending on the mode.
|
|
* @param is_mod [n] Determines if this is a normal division (0) or a reduction
|
|
* (1).
|
|
* @return The result of the division/reduction.
|
|
*/
|
|
bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod)
|
|
{
|
|
int n = v->size, m = u->size-n;
|
|
int j = 0, orig_u_size = u->size;
|
|
uint8_t mod_offset = ctx->mod_offset;
|
|
comp d;
|
|
bigint *quotient, *tmp_u;
|
|
comp q_dash;
|
|
|
|
check(u);
|
|
check(v);
|
|
|
|
/* if doing reduction and we are < mod, then return mod */
|
|
if (is_mod && bi_compare(v, u) > 0)
|
|
{
|
|
bi_free(ctx, v);
|
|
return u;
|
|
}
|
|
|
|
quotient = alloc(ctx, m+1);
|
|
tmp_u = alloc(ctx, n+1);
|
|
v = trim(v); /* make sure we have no leading 0's */
|
|
d = (comp)((long_comp)COMP_RADIX/(V1+1));
|
|
|
|
/* clear things to start with */
|
|
memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE));
|
|
|
|
/* normalise */
|
|
if (d > 1)
|
|
{
|
|
u = bi_int_multiply(ctx, u, d);
|
|
|
|
if (is_mod)
|
|
{
|
|
v = ctx->bi_normalised_mod[mod_offset];
|
|
}
|
|
else
|
|
{
|
|
v = bi_int_multiply(ctx, v, d);
|
|
}
|
|
}
|
|
|
|
if (orig_u_size == u->size) /* new digit position u0 */
|
|
{
|
|
more_comps(u, orig_u_size + 1);
|
|
}
|
|
|
|
do
|
|
{
|
|
/* get a temporary short version of u */
|
|
memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE);
|
|
|
|
/* calculate q' */
|
|
if (U(0) == V1)
|
|
{
|
|
q_dash = COMP_RADIX-1;
|
|
}
|
|
else
|
|
{
|
|
q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1);
|
|
}
|
|
|
|
if (v->size > 1 && V2)
|
|
{
|
|
/* we are implementing the following:
|
|
if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) -
|
|
q_dash*V1)*COMP_RADIX) + U(2))) ... */
|
|
comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) -
|
|
(long_comp)q_dash*V1);
|
|
if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2))
|
|
{
|
|
q_dash--;
|
|
}
|
|
}
|
|
|
|
/* multiply and subtract */
|
|
if (q_dash)
|
|
{
|
|
int is_negative;
|
|
tmp_u = bi_subtract(ctx, tmp_u,
|
|
bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative);
|
|
more_comps(tmp_u, n+1);
|
|
|
|
Q(j) = q_dash;
|
|
|
|
/* add back */
|
|
if (is_negative)
|
|
{
|
|
Q(j)--;
|
|
tmp_u = bi_add(ctx, tmp_u, bi_copy(v));
|
|
|
|
/* lop off the carry */
|
|
tmp_u->size--;
|
|
v->size--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Q(j) = 0;
|
|
}
|
|
|
|
/* copy back to u */
|
|
memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE);
|
|
} while (++j <= m);
|
|
|
|
bi_free(ctx, tmp_u);
|
|
bi_free(ctx, v);
|
|
|
|
if (is_mod) /* get the remainder */
|
|
{
|
|
bi_free(ctx, quotient);
|
|
return bi_int_divide(ctx, trim(u), d);
|
|
}
|
|
else /* get the quotient */
|
|
{
|
|
bi_free(ctx, u);
|
|
return trim(quotient);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform an integer divide on a bigint.
|
|
*/
|
|
static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom)
|
|
{
|
|
int i = biR->size - 1;
|
|
long_comp r = 0;
|
|
|
|
check(biR);
|
|
|
|
do
|
|
{
|
|
r = (r<<COMP_BIT_SIZE) + biR->comps[i];
|
|
biR->comps[i] = (comp)(r / denom);
|
|
r %= denom;
|
|
} while (--i >= 0);
|
|
|
|
return trim(biR);
|
|
}
|
|
|
|
#ifdef CONFIG_BIGINT_MONTGOMERY
|
|
/**
|
|
* There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
|
|
* where B^-1(B-1) mod N=1. Actually, only the least significant part of
|
|
* N' is needed, hence the definition N0'=N' mod b. We reproduce below the
|
|
* simple algorithm from an article by Dusse and Kaliski to efficiently
|
|
* find N0' from N0 and b */
|
|
static comp modular_inverse(bigint *bim)
|
|
{
|
|
int i;
|
|
comp t = 1;
|
|
comp two_2_i_minus_1 = 2; /* 2^(i-1) */
|
|
long_comp two_2_i = 4; /* 2^i */
|
|
comp N = bim->comps[0];
|
|
|
|
for (i = 2; i <= COMP_BIT_SIZE; i++)
|
|
{
|
|
if ((long_comp)N*t%two_2_i >= two_2_i_minus_1)
|
|
{
|
|
t += two_2_i_minus_1;
|
|
}
|
|
|
|
two_2_i_minus_1 <<= 1;
|
|
two_2_i <<= 1;
|
|
}
|
|
|
|
return (comp)(COMP_RADIX-t);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \
|
|
defined(CONFIG_BIGINT_MONTGOMERY)
|
|
/**
|
|
* Take each component and shift down (in terms of components)
|
|
*/
|
|
static bigint *comp_right_shift(bigint *biR, int num_shifts)
|
|
{
|
|
int i = biR->size-num_shifts;
|
|
comp *x = biR->comps;
|
|
comp *y = &biR->comps[num_shifts];
|
|
|
|
check(biR);
|
|
|
|
if (i <= 0) /* have we completely right shifted? */
|
|
{
|
|
biR->comps[0] = 0; /* return 0 */
|
|
biR->size = 1;
|
|
return biR;
|
|
}
|
|
|
|
do
|
|
{
|
|
*x++ = *y++;
|
|
} while (--i > 0);
|
|
|
|
biR->size -= num_shifts;
|
|
return biR;
|
|
}
|
|
|
|
/**
|
|
* Take each component and shift it up (in terms of components)
|
|
*/
|
|
static bigint *comp_left_shift(bigint *biR, int num_shifts)
|
|
{
|
|
int i = biR->size-1;
|
|
comp *x, *y;
|
|
|
|
check(biR);
|
|
|
|
if (num_shifts <= 0)
|
|
{
|
|
return biR;
|
|
}
|
|
|
|
more_comps(biR, biR->size + num_shifts);
|
|
|
|
x = &biR->comps[i+num_shifts];
|
|
y = &biR->comps[i];
|
|
|
|
do
|
|
{
|
|
*x-- = *y--;
|
|
} while (i--);
|
|
|
|
memset(biR->comps, 0, num_shifts*COMP_BYTE_SIZE); /* zero LS comps */
|
|
return biR;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Allow a binary sequence to be imported as a bigint.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param data [in] The data to be converted.
|
|
* @param size [in] The number of bytes of data.
|
|
* @return A bigint representing this data.
|
|
*/
|
|
bigint *bi_import(BI_CTX *ctx, const uint8_t *data, int size)
|
|
{
|
|
bigint *biR = alloc(ctx, (size+COMP_BYTE_SIZE-1)/COMP_BYTE_SIZE);
|
|
int i, j = 0, offset = 0;
|
|
|
|
memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE);
|
|
|
|
for (i = size-1; i >= 0; i--)
|
|
{
|
|
biR->comps[offset] += data[i] << (j*8);
|
|
|
|
if (++j == COMP_BYTE_SIZE)
|
|
{
|
|
j = 0;
|
|
offset ++;
|
|
}
|
|
}
|
|
|
|
return trim(biR);
|
|
}
|
|
|
|
#ifdef CONFIG_SSL_FULL_MODE
|
|
/**
|
|
* @brief The testharness uses this code to import text hex-streams and
|
|
* convert them into bigints.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param data [in] A string consisting of hex characters. The characters must
|
|
* be in upper case.
|
|
* @return A bigint representing this data.
|
|
*/
|
|
bigint *bi_str_import(BI_CTX *ctx, const char *data)
|
|
{
|
|
int size = strlen(data);
|
|
bigint *biR = alloc(ctx, (size+COMP_NUM_NIBBLES-1)/COMP_NUM_NIBBLES);
|
|
int i, j = 0, offset = 0;
|
|
memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE);
|
|
|
|
for (i = size-1; i >= 0; i--)
|
|
{
|
|
int num = (data[i] <= '9') ? (data[i] - '0') : (data[i] - 'A' + 10);
|
|
biR->comps[offset] += num << (j*4);
|
|
|
|
if (++j == COMP_NUM_NIBBLES)
|
|
{
|
|
j = 0;
|
|
offset ++;
|
|
}
|
|
}
|
|
|
|
return biR;
|
|
}
|
|
|
|
void bi_print(const char *label, bigint *x)
|
|
{
|
|
int i, j;
|
|
|
|
if (x == NULL)
|
|
{
|
|
printf("%s: (null)\n", label);
|
|
return;
|
|
}
|
|
|
|
printf("%s: (size %d)\n", label, x->size);
|
|
for (i = x->size-1; i >= 0; i--)
|
|
{
|
|
for (j = COMP_NUM_NIBBLES-1; j >= 0; j--)
|
|
{
|
|
comp mask = 0x0f << (j*4);
|
|
comp num = (x->comps[i] & mask) >> (j*4);
|
|
putc((num <= 9) ? (num + '0') : (num + 'A' - 10), stdout);
|
|
}
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Take a bigint and convert it into a byte sequence.
|
|
*
|
|
* This is useful after a decrypt operation.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param x [in] The bigint to be converted.
|
|
* @param data [out] The converted data as a byte stream.
|
|
* @param size [in] The maximum size of the byte stream. Unused bytes will be
|
|
* zeroed.
|
|
*/
|
|
void bi_export(BI_CTX *ctx, bigint *x, uint8_t *data, int size)
|
|
{
|
|
int i, j, k = size-1;
|
|
|
|
check(x);
|
|
memset(data, 0, size); /* ensure all leading 0's are cleared */
|
|
|
|
for (i = 0; i < x->size; i++)
|
|
{
|
|
for (j = 0; j < COMP_BYTE_SIZE; j++)
|
|
{
|
|
comp mask = 0xff << (j*8);
|
|
int num = (x->comps[i] & mask) >> (j*8);
|
|
data[k--] = num;
|
|
|
|
if (k < 0)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bi_free(ctx, x);
|
|
}
|
|
|
|
/**
|
|
* @brief Pre-calculate some of the expensive steps in reduction.
|
|
*
|
|
* This function should only be called once (normally when a session starts).
|
|
* When the session is over, bi_free_mod() should be called. bi_mod_power()
|
|
* relies on this function being called.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bim [in] The bigint modulus that will be used.
|
|
* @param mod_offset [in] There are three moduluii that can be stored - the
|
|
* standard modulus, and its two primes p and q. This offset refers to which
|
|
* modulus we are referring to.
|
|
* @see bi_free_mod(), bi_mod_power().
|
|
*/
|
|
void bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset)
|
|
{
|
|
int k = bim->size;
|
|
comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1));
|
|
#ifdef CONFIG_BIGINT_MONTGOMERY
|
|
bigint *R, *R2;
|
|
#endif
|
|
|
|
ctx->bi_mod[mod_offset] = bim;
|
|
bi_permanent(ctx->bi_mod[mod_offset]);
|
|
ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d);
|
|
bi_permanent(ctx->bi_normalised_mod[mod_offset]);
|
|
|
|
#if defined(CONFIG_BIGINT_MONTGOMERY)
|
|
/* set montgomery variables */
|
|
R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1); /* R */
|
|
R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1); /* R^2 */
|
|
ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2); /* R^2 mod m */
|
|
ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R); /* R mod m */
|
|
|
|
bi_permanent(ctx->bi_RR_mod_m[mod_offset]);
|
|
bi_permanent(ctx->bi_R_mod_m[mod_offset]);
|
|
|
|
ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]);
|
|
|
|
#elif defined (CONFIG_BIGINT_BARRETT)
|
|
ctx->bi_mu[mod_offset] =
|
|
bi_divide(ctx, comp_left_shift(
|
|
bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0);
|
|
bi_permanent(ctx->bi_mu[mod_offset]);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Used when cleaning various bigints at the end of a session.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param mod_offset [in] The offset to use.
|
|
* @see bi_set_mod().
|
|
*/
|
|
void bi_free_mod(BI_CTX *ctx, int mod_offset)
|
|
{
|
|
bi_depermanent(ctx->bi_mod[mod_offset]);
|
|
bi_free(ctx, ctx->bi_mod[mod_offset]);
|
|
#if defined (CONFIG_BIGINT_MONTGOMERY)
|
|
bi_depermanent(ctx->bi_RR_mod_m[mod_offset]);
|
|
bi_depermanent(ctx->bi_R_mod_m[mod_offset]);
|
|
bi_free(ctx, ctx->bi_RR_mod_m[mod_offset]);
|
|
bi_free(ctx, ctx->bi_R_mod_m[mod_offset]);
|
|
#elif defined(CONFIG_BIGINT_BARRETT)
|
|
bi_depermanent(ctx->bi_mu[mod_offset]);
|
|
bi_free(ctx, ctx->bi_mu[mod_offset]);
|
|
#endif
|
|
bi_depermanent(ctx->bi_normalised_mod[mod_offset]);
|
|
bi_free(ctx, ctx->bi_normalised_mod[mod_offset]);
|
|
}
|
|
|
|
/**
|
|
* Perform a standard multiplication between two bigints.
|
|
*/
|
|
static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
|
|
{
|
|
int i, j, i_plus_j;
|
|
int n = bia->size;
|
|
int t = bib->size;
|
|
bigint *biR = alloc(ctx, n + t);
|
|
comp *sr = biR->comps;
|
|
comp *sa = bia->comps;
|
|
comp *sb = bib->comps;
|
|
|
|
check(bia);
|
|
check(bib);
|
|
|
|
/* clear things to start with */
|
|
memset(biR->comps, 0, ((n+t)*COMP_BYTE_SIZE));
|
|
i = 0;
|
|
|
|
do
|
|
{
|
|
comp carry = 0;
|
|
comp b = *sb++;
|
|
i_plus_j = i;
|
|
j = 0;
|
|
|
|
do
|
|
{
|
|
long_comp tmp = sr[i_plus_j] + (long_comp)sa[j]*b + carry;
|
|
sr[i_plus_j++] = (comp)tmp; /* downsize */
|
|
carry = (comp)(tmp >> COMP_BIT_SIZE);
|
|
} while (++j < n);
|
|
|
|
sr[i_plus_j] = carry;
|
|
} while (++i < t);
|
|
|
|
bi_free(ctx, bia);
|
|
bi_free(ctx, bib);
|
|
return trim(biR);
|
|
}
|
|
|
|
#ifdef CONFIG_BIGINT_KARATSUBA
|
|
/*
|
|
* Karatsuba improves on regular multiplication due to only 3 multiplications
|
|
* being done instead of 4. The additional additions/subtractions are O(N)
|
|
* rather than O(N^2) and so for big numbers it saves on a few operations
|
|
*/
|
|
static bigint *karatsuba(BI_CTX *ctx, bigint *bia, bigint *bib, int is_square)
|
|
{
|
|
bigint *x0, *x1;
|
|
bigint *p0, *p1, *p2;
|
|
int m;
|
|
|
|
if (is_square)
|
|
{
|
|
m = (bia->size + 1)/2;
|
|
}
|
|
else
|
|
{
|
|
m = (max(bia->size, bib->size) + 1)/2;
|
|
}
|
|
|
|
x0 = bi_clone(ctx, bia);
|
|
x0->size = m;
|
|
x1 = bi_clone(ctx, bia);
|
|
comp_right_shift(x1, m);
|
|
bi_free(ctx, bia);
|
|
|
|
/* work out the 3 partial products */
|
|
if (is_square)
|
|
{
|
|
p0 = bi_square(ctx, bi_copy(x0));
|
|
p2 = bi_square(ctx, bi_copy(x1));
|
|
p1 = bi_square(ctx, bi_add(ctx, x0, x1));
|
|
}
|
|
else /* normal multiply */
|
|
{
|
|
bigint *y0, *y1;
|
|
y0 = bi_clone(ctx, bib);
|
|
y0->size = m;
|
|
y1 = bi_clone(ctx, bib);
|
|
comp_right_shift(y1, m);
|
|
bi_free(ctx, bib);
|
|
|
|
p0 = bi_multiply(ctx, bi_copy(x0), bi_copy(y0));
|
|
p2 = bi_multiply(ctx, bi_copy(x1), bi_copy(y1));
|
|
p1 = bi_multiply(ctx, bi_add(ctx, x0, x1), bi_add(ctx, y0, y1));
|
|
}
|
|
|
|
p1 = bi_subtract(ctx,
|
|
bi_subtract(ctx, p1, bi_copy(p2), NULL), bi_copy(p0), NULL);
|
|
|
|
comp_left_shift(p1, m);
|
|
comp_left_shift(p2, 2*m);
|
|
return bi_add(ctx, p1, bi_add(ctx, p0, p2));
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Perform a multiplication operation between two bigints.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bia [in] A bigint.
|
|
* @param bib [in] Another bigint.
|
|
* @return The result of the multiplication.
|
|
*/
|
|
bigint *bi_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
|
|
{
|
|
check(bia);
|
|
check(bib);
|
|
|
|
#ifdef CONFIG_BIGINT_KARATSUBA
|
|
if (min(bia->size, bib->size) < MUL_KARATSUBA_THRESH)
|
|
{
|
|
return regular_multiply(ctx, bia, bib);
|
|
}
|
|
|
|
return karatsuba(ctx, bia, bib, 0);
|
|
#else
|
|
return regular_multiply(ctx, bia, bib);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_BIGINT_SQUARE
|
|
/*
|
|
* Perform the actual square operion. It takes into account overflow.
|
|
*/
|
|
static bigint *regular_square(BI_CTX *ctx, bigint *bi)
|
|
{
|
|
int t = bi->size;
|
|
int i = 0, j;
|
|
bigint *biR = alloc(ctx, t*2);
|
|
comp *w = biR->comps;
|
|
comp *x = bi->comps;
|
|
comp carry;
|
|
|
|
memset(w, 0, biR->size*COMP_BYTE_SIZE);
|
|
|
|
do
|
|
{
|
|
long_comp tmp = w[2*i] + (long_comp)x[i]*x[i];
|
|
comp u = 0;
|
|
w[2*i] = (comp)tmp;
|
|
carry = (comp)(tmp >> COMP_BIT_SIZE);
|
|
|
|
for (j = i+1; j < t; j++)
|
|
{
|
|
long_comp xx = (long_comp)x[i]*x[j];
|
|
long_comp xx2 = 2*xx;
|
|
long_comp blob = (long_comp)w[i+j]+carry;
|
|
|
|
if (u) /* previous overflow */
|
|
{
|
|
blob += COMP_RADIX;
|
|
}
|
|
|
|
|
|
u = 0;
|
|
tmp = xx2 + blob;
|
|
|
|
/* check for overflow */
|
|
if ((COMP_MAX-xx) < xx || (COMP_MAX-xx2) < blob)
|
|
{
|
|
u = 1;
|
|
}
|
|
|
|
w[i+j] = (comp)tmp;
|
|
carry = (comp)(tmp >> COMP_BIT_SIZE);
|
|
}
|
|
|
|
w[i+t] += carry;
|
|
|
|
if (u)
|
|
{
|
|
w[i+t+1] = 1; /* add carry */
|
|
}
|
|
} while (++i < t);
|
|
|
|
bi_free(ctx, bi);
|
|
return trim(biR);
|
|
}
|
|
|
|
/**
|
|
* @brief Perform a square operation on a bigint.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bia [in] A bigint.
|
|
* @return The result of the multiplication.
|
|
*/
|
|
bigint *bi_square(BI_CTX *ctx, bigint *bia)
|
|
{
|
|
check(bia);
|
|
|
|
#ifdef CONFIG_BIGINT_KARATSUBA
|
|
if (bia->size < SQU_KARATSUBA_THRESH)
|
|
{
|
|
return regular_square(ctx, bia);
|
|
}
|
|
|
|
return karatsuba(ctx, bia, NULL, 1);
|
|
#else
|
|
return regular_square(ctx, bia);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Compare two bigints.
|
|
* @param bia [in] A bigint.
|
|
* @param bib [in] Another bigint.
|
|
* @return -1 if smaller, 1 if larger and 0 if equal.
|
|
*/
|
|
int bi_compare(bigint *bia, bigint *bib)
|
|
{
|
|
int r, i;
|
|
|
|
check(bia);
|
|
check(bib);
|
|
|
|
if (bia->size > bib->size)
|
|
r = 1;
|
|
else if (bia->size < bib->size)
|
|
r = -1;
|
|
else
|
|
{
|
|
comp *a = bia->comps;
|
|
comp *b = bib->comps;
|
|
|
|
/* Same number of components. Compare starting from the high end
|
|
* and working down. */
|
|
r = 0;
|
|
i = bia->size - 1;
|
|
|
|
do
|
|
{
|
|
if (a[i] > b[i])
|
|
{
|
|
r = 1;
|
|
break;
|
|
}
|
|
else if (a[i] < b[i])
|
|
{
|
|
r = -1;
|
|
break;
|
|
}
|
|
} while (--i >= 0);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Allocate and zero more components. Does not consume bi.
|
|
*/
|
|
static void more_comps(bigint *bi, int n)
|
|
{
|
|
if (n > bi->max_comps)
|
|
{
|
|
bi->max_comps = max(bi->max_comps * 2, n);
|
|
bi->comps = (comp*)realloc(bi->comps, bi->max_comps * COMP_BYTE_SIZE);
|
|
}
|
|
|
|
if (n > bi->size)
|
|
{
|
|
memset(&bi->comps[bi->size], 0, (n-bi->size)*COMP_BYTE_SIZE);
|
|
}
|
|
|
|
bi->size = n;
|
|
}
|
|
|
|
/*
|
|
* Make a new empty bigint. It may just use an old one if one is available.
|
|
* Otherwise get one off the heap.
|
|
*/
|
|
static bigint *alloc(BI_CTX *ctx, int size)
|
|
{
|
|
bigint *biR;
|
|
|
|
/* Can we recycle an old bigint? */
|
|
if (ctx->free_list != NULL)
|
|
{
|
|
biR = ctx->free_list;
|
|
ctx->free_list = biR->next;
|
|
ctx->free_count--;
|
|
|
|
if (biR->refs != 0)
|
|
{
|
|
#ifdef CONFIG_SSL_FULL_MODE
|
|
printf("alloc: refs was not 0\n");
|
|
#endif
|
|
abort(); /* create a stack trace from a core dump */
|
|
}
|
|
|
|
more_comps(biR, size);
|
|
}
|
|
else
|
|
{
|
|
/* No free bigints available - create a new one. */
|
|
biR = (bigint *)malloc(sizeof(bigint));
|
|
biR->comps = (comp*)malloc(size * COMP_BYTE_SIZE);
|
|
biR->max_comps = size; /* give some space to spare */
|
|
}
|
|
|
|
biR->size = size;
|
|
biR->refs = 1;
|
|
biR->next = NULL;
|
|
ctx->active_count++;
|
|
return biR;
|
|
}
|
|
|
|
/*
|
|
* Work out the highest '1' bit in an exponent. Used when doing sliding-window
|
|
* exponentiation.
|
|
*/
|
|
static int find_max_exp_index(bigint *biexp)
|
|
{
|
|
int i = COMP_BIT_SIZE-1;
|
|
comp shift = COMP_RADIX/2;
|
|
comp test = biexp->comps[biexp->size-1]; /* assume no leading zeroes */
|
|
|
|
check(biexp);
|
|
|
|
do
|
|
{
|
|
if (test & shift)
|
|
{
|
|
return i+(biexp->size-1)*COMP_BIT_SIZE;
|
|
}
|
|
|
|
shift >>= 1;
|
|
} while (--i != 0);
|
|
|
|
return -1; /* error - must have been a leading 0 */
|
|
}
|
|
|
|
/*
|
|
* Is a particular bit is an exponent 1 or 0? Used when doing sliding-window
|
|
* exponentiation.
|
|
*/
|
|
static int exp_bit_is_one(bigint *biexp, int offset)
|
|
{
|
|
comp test = biexp->comps[offset / COMP_BIT_SIZE];
|
|
int num_shifts = offset % COMP_BIT_SIZE;
|
|
comp shift = 1;
|
|
int i;
|
|
|
|
check(biexp);
|
|
|
|
for (i = 0; i < num_shifts; i++)
|
|
{
|
|
shift <<= 1;
|
|
}
|
|
|
|
return test & shift;
|
|
}
|
|
|
|
#ifdef CONFIG_BIGINT_CHECK_ON
|
|
/*
|
|
* Perform a sanity check on bi.
|
|
*/
|
|
static void check(const bigint *bi)
|
|
{
|
|
if (bi->refs <= 0)
|
|
{
|
|
printf("check: zero or negative refs in bigint\n");
|
|
abort();
|
|
}
|
|
|
|
if (bi->next != NULL)
|
|
{
|
|
printf("check: attempt to use a bigint from "
|
|
"the free list\n");
|
|
abort();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Delete any leading 0's (and allow for 0).
|
|
*/
|
|
static bigint *trim(bigint *bi)
|
|
{
|
|
check(bi);
|
|
|
|
while (bi->comps[bi->size-1] == 0 && bi->size > 1)
|
|
{
|
|
bi->size--;
|
|
}
|
|
|
|
return bi;
|
|
}
|
|
|
|
#if defined(CONFIG_BIGINT_MONTGOMERY)
|
|
/**
|
|
* @brief Perform a single montgomery reduction.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bixy [in] A bigint.
|
|
* @return The result of the montgomery reduction.
|
|
*/
|
|
bigint *bi_mont(BI_CTX *ctx, bigint *bixy)
|
|
{
|
|
int i = 0, n;
|
|
uint8_t mod_offset = ctx->mod_offset;
|
|
bigint *bim = ctx->bi_mod[mod_offset];
|
|
comp mod_inv = ctx->N0_dash[mod_offset];
|
|
|
|
check(bixy);
|
|
|
|
if (ctx->use_classical) /* just use classical instead */
|
|
{
|
|
return bi_mod(ctx, bixy);
|
|
}
|
|
|
|
n = bim->size;
|
|
|
|
do
|
|
{
|
|
bixy = bi_add(ctx, bixy, comp_left_shift(
|
|
bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i));
|
|
} while (++i < n);
|
|
|
|
comp_right_shift(bixy, n);
|
|
|
|
if (bi_compare(bixy, bim) >= 0)
|
|
{
|
|
bixy = bi_subtract(ctx, bixy, bim, NULL);
|
|
}
|
|
|
|
return bixy;
|
|
}
|
|
|
|
#elif defined(CONFIG_BIGINT_BARRETT)
|
|
/*
|
|
* Stomp on the most significant components to give the illusion of a "mod base
|
|
* radix" operation
|
|
*/
|
|
static bigint *comp_mod(bigint *bi, int mod)
|
|
{
|
|
check(bi);
|
|
|
|
if (bi->size > mod)
|
|
{
|
|
bi->size = mod;
|
|
}
|
|
|
|
return bi;
|
|
}
|
|
|
|
/*
|
|
* Barrett reduction has no need for some parts of the product, so ignore bits
|
|
* of the multiply. This routine gives Barrett its big performance
|
|
* improvements over Classical/Montgomery reduction methods.
|
|
*/
|
|
static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib,
|
|
int inner_partial, int outer_partial)
|
|
{
|
|
int i = 0, j, n = bia->size, t = bib->size;
|
|
bigint *biR;
|
|
comp carry;
|
|
comp *sr, *sa, *sb;
|
|
|
|
check(bia);
|
|
check(bib);
|
|
|
|
biR = alloc(ctx, n + t);
|
|
sa = bia->comps;
|
|
sb = bib->comps;
|
|
sr = biR->comps;
|
|
|
|
if (inner_partial)
|
|
{
|
|
memset(sr, 0, inner_partial*COMP_BYTE_SIZE);
|
|
}
|
|
else /* outer partial */
|
|
{
|
|
if (n < outer_partial || t < outer_partial) /* should we bother? */
|
|
{
|
|
bi_free(ctx, bia);
|
|
bi_free(ctx, bib);
|
|
biR->comps[0] = 0; /* return 0 */
|
|
biR->size = 1;
|
|
return biR;
|
|
}
|
|
|
|
memset(&sr[outer_partial], 0, (n+t-outer_partial)*COMP_BYTE_SIZE);
|
|
}
|
|
|
|
do
|
|
{
|
|
comp *a = sa;
|
|
comp b = *sb++;
|
|
long_comp tmp;
|
|
int i_plus_j = i;
|
|
carry = 0;
|
|
j = n;
|
|
|
|
if (outer_partial && i_plus_j < outer_partial)
|
|
{
|
|
i_plus_j = outer_partial;
|
|
a = &sa[outer_partial-i];
|
|
j = n-(outer_partial-i);
|
|
}
|
|
|
|
do
|
|
{
|
|
if (inner_partial && i_plus_j >= inner_partial)
|
|
{
|
|
break;
|
|
}
|
|
|
|
tmp = sr[i_plus_j] + ((long_comp)*a++)*b + carry;
|
|
sr[i_plus_j++] = (comp)tmp; /* downsize */
|
|
carry = (comp)(tmp >> COMP_BIT_SIZE);
|
|
} while (--j != 0);
|
|
|
|
sr[i_plus_j] = carry;
|
|
} while (++i < t);
|
|
|
|
bi_free(ctx, bia);
|
|
bi_free(ctx, bib);
|
|
return trim(biR);
|
|
}
|
|
|
|
/**
|
|
* @brief Perform a single Barrett reduction.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bi [in] A bigint.
|
|
* @return The result of the Barrett reduction.
|
|
*/
|
|
bigint *bi_barrett(BI_CTX *ctx, bigint *bi)
|
|
{
|
|
bigint *q1, *q2, *q3, *r1, *r2, *r;
|
|
uint8_t mod_offset = ctx->mod_offset;
|
|
bigint *bim = ctx->bi_mod[mod_offset];
|
|
int k = bim->size;
|
|
|
|
check(bi);
|
|
check(bim);
|
|
|
|
/* use Classical method instead - Barrett cannot help here */
|
|
if (bi->size > k*2)
|
|
{
|
|
return bi_mod(ctx, bi);
|
|
}
|
|
|
|
q1 = comp_right_shift(bi_clone(ctx, bi), k-1);
|
|
|
|
/* do outer partial multiply */
|
|
q2 = partial_multiply(ctx, q1, ctx->bi_mu[mod_offset], 0, k-1);
|
|
q3 = comp_right_shift(q2, k+1);
|
|
r1 = comp_mod(bi, k+1);
|
|
|
|
/* do inner partial multiply */
|
|
r2 = comp_mod(partial_multiply(ctx, q3, bim, k+1, 0), k+1);
|
|
r = bi_subtract(ctx, r1, r2, NULL);
|
|
|
|
/* if (r >= m) r = r - m; */
|
|
if (bi_compare(r, bim) >= 0)
|
|
{
|
|
r = bi_subtract(ctx, r, bim, NULL);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
#endif /* CONFIG_BIGINT_BARRETT */
|
|
|
|
#ifdef CONFIG_BIGINT_SLIDING_WINDOW
|
|
/*
|
|
* Work out g1, g3, g5, g7... etc for the sliding-window algorithm
|
|
*/
|
|
static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1)
|
|
{
|
|
int k = 1, i;
|
|
bigint *g2;
|
|
|
|
for (i = 0; i < window-1; i++) /* compute 2^(window-1) */
|
|
{
|
|
k <<= 1;
|
|
}
|
|
|
|
ctx->g = (bigint **)malloc(k*sizeof(bigint *));
|
|
ctx->g[0] = bi_clone(ctx, g1);
|
|
bi_permanent(ctx->g[0]);
|
|
g2 = bi_residue(ctx, bi_square(ctx, ctx->g[0])); /* g^2 */
|
|
|
|
for (i = 1; i < k; i++)
|
|
{
|
|
ctx->g[i] = bi_residue(ctx, bi_multiply(ctx, ctx->g[i-1], bi_copy(g2)));
|
|
bi_permanent(ctx->g[i]);
|
|
}
|
|
|
|
bi_free(ctx, g2);
|
|
ctx->window = k;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Perform a modular exponentiation.
|
|
*
|
|
* This function requires bi_set_mod() to have been called previously. This is
|
|
* one of the optimisations used for performance.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bi [in] The bigint on which to perform the mod power operation.
|
|
* @param biexp [in] The bigint exponent.
|
|
* @return The result of the mod exponentiation operation
|
|
* @see bi_set_mod().
|
|
*/
|
|
bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp)
|
|
{
|
|
int i = find_max_exp_index(biexp), j, window_size = 1;
|
|
bigint *biR = int_to_bi(ctx, 1);
|
|
|
|
#if defined(CONFIG_BIGINT_MONTGOMERY)
|
|
uint8_t mod_offset = ctx->mod_offset;
|
|
if (!ctx->use_classical)
|
|
{
|
|
/* preconvert */
|
|
bi = bi_mont(ctx,
|
|
bi_multiply(ctx, bi, ctx->bi_RR_mod_m[mod_offset])); /* x' */
|
|
bi_free(ctx, biR);
|
|
biR = ctx->bi_R_mod_m[mod_offset]; /* A */
|
|
}
|
|
#endif
|
|
|
|
check(bi);
|
|
check(biexp);
|
|
|
|
#ifdef CONFIG_BIGINT_SLIDING_WINDOW
|
|
for (j = i; j > 32; j /= 5) /* work out an optimum size */
|
|
window_size++;
|
|
|
|
/* work out the slide constants */
|
|
precompute_slide_window(ctx, window_size, bi);
|
|
#else /* just one constant */
|
|
ctx->g = (bigint **)malloc(sizeof(bigint *));
|
|
ctx->g[0] = bi_clone(ctx, bi);
|
|
ctx->window = 1;
|
|
bi_permanent(ctx->g[0]);
|
|
#endif
|
|
|
|
/* if sliding-window is off, then only one bit will be done at a time and
|
|
* will reduce to standard left-to-right exponentiation */
|
|
do
|
|
{
|
|
if (exp_bit_is_one(biexp, i))
|
|
{
|
|
int l = i-window_size+1;
|
|
int part_exp = 0;
|
|
|
|
if (l < 0) /* LSB of exponent will always be 1 */
|
|
l = 0;
|
|
else
|
|
{
|
|
while (exp_bit_is_one(biexp, l) == 0)
|
|
l++; /* go back up */
|
|
}
|
|
|
|
/* build up the section of the exponent */
|
|
for (j = i; j >= l; j--)
|
|
{
|
|
biR = bi_residue(ctx, bi_square(ctx, biR));
|
|
if (exp_bit_is_one(biexp, j))
|
|
part_exp++;
|
|
|
|
if (j != l)
|
|
part_exp <<= 1;
|
|
}
|
|
|
|
part_exp = (part_exp-1)/2; /* adjust for array */
|
|
biR = bi_residue(ctx, bi_multiply(ctx, biR, ctx->g[part_exp]));
|
|
i = l-1;
|
|
}
|
|
else /* square it */
|
|
{
|
|
biR = bi_residue(ctx, bi_square(ctx, biR));
|
|
i--;
|
|
}
|
|
} while (i >= 0);
|
|
|
|
/* cleanup */
|
|
for (i = 0; i < ctx->window; i++)
|
|
{
|
|
bi_depermanent(ctx->g[i]);
|
|
bi_free(ctx, ctx->g[i]);
|
|
}
|
|
|
|
free(ctx->g);
|
|
bi_free(ctx, bi);
|
|
bi_free(ctx, biexp);
|
|
#if defined CONFIG_BIGINT_MONTGOMERY
|
|
return ctx->use_classical ? biR : bi_mont(ctx, biR); /* convert back */
|
|
#else /* CONFIG_BIGINT_CLASSICAL or CONFIG_BIGINT_BARRETT */
|
|
return biR;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SSL_CERT_VERIFICATION
|
|
/**
|
|
* @brief Perform a modular exponentiation using a temporary modulus.
|
|
*
|
|
* We need this function to check the signatures of certificates. The modulus
|
|
* of this function is temporary as it's just used for authentication.
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bi [in] The bigint to perform the exp/mod.
|
|
* @param bim [in] The temporary modulus.
|
|
* @param biexp [in] The bigint exponent.
|
|
* @return The result of the mod exponentiation operation
|
|
* @see bi_set_mod().
|
|
*/
|
|
bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp)
|
|
{
|
|
bigint *biR, *tmp_biR;
|
|
|
|
/* Set up a temporary bigint context and transfer what we need between
|
|
* them. We need to do this since we want to keep the original modulus
|
|
* which is already in this context. This operation is only called when
|
|
* doing peer verification, and so is not expensive :-) */
|
|
BI_CTX *tmp_ctx = bi_initialize();
|
|
bi_set_mod(tmp_ctx, bi_clone(tmp_ctx, bim), BIGINT_M_OFFSET);
|
|
tmp_biR = bi_mod_power(tmp_ctx,
|
|
bi_clone(tmp_ctx, bi),
|
|
bi_clone(tmp_ctx, biexp));
|
|
biR = bi_clone(ctx, tmp_biR);
|
|
bi_free(tmp_ctx, tmp_biR);
|
|
bi_free_mod(tmp_ctx, BIGINT_M_OFFSET);
|
|
bi_terminate(tmp_ctx);
|
|
|
|
bi_free(ctx, bi);
|
|
bi_free(ctx, bim);
|
|
bi_free(ctx, biexp);
|
|
return biR;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_BIGINT_CRT
|
|
/**
|
|
* @brief Use the Chinese Remainder Theorem to quickly perform RSA decrypts.
|
|
*
|
|
* @param ctx [in] The bigint session context.
|
|
* @param bi [in] The bigint to perform the exp/mod.
|
|
* @param dP [in] CRT's dP bigint
|
|
* @param dQ [in] CRT's dQ bigint
|
|
* @param p [in] CRT's p bigint
|
|
* @param q [in] CRT's q bigint
|
|
* @param qInv [in] CRT's qInv bigint
|
|
* @return The result of the CRT operation
|
|
*/
|
|
bigint *bi_crt(BI_CTX *ctx, bigint *bi,
|
|
bigint *dP, bigint *dQ,
|
|
bigint *p, bigint *q, bigint *qInv)
|
|
{
|
|
bigint *m1, *m2, *h;
|
|
|
|
/* Montgomery has a condition the 0 < x, y < m and these products violate
|
|
* that condition. So disable Montgomery when using CRT */
|
|
#if defined(CONFIG_BIGINT_MONTGOMERY)
|
|
ctx->use_classical = 1;
|
|
#endif
|
|
ctx->mod_offset = BIGINT_P_OFFSET;
|
|
m1 = bi_mod_power(ctx, bi_copy(bi), dP);
|
|
|
|
ctx->mod_offset = BIGINT_Q_OFFSET;
|
|
m2 = bi_mod_power(ctx, bi, dQ);
|
|
|
|
h = bi_subtract(ctx, bi_add(ctx, m1, p), bi_copy(m2), NULL);
|
|
h = bi_multiply(ctx, h, qInv);
|
|
ctx->mod_offset = BIGINT_P_OFFSET;
|
|
h = bi_residue(ctx, h);
|
|
#if defined(CONFIG_BIGINT_MONTGOMERY)
|
|
ctx->use_classical = 0; /* reset for any further operation */
|
|
#endif
|
|
return bi_add(ctx, m2, bi_multiply(ctx, q, h));
|
|
}
|
|
#endif
|
|
/** @} */
|