uniform sampler2D baseTexture; uniform vec3 dayLight; uniform lowp vec4 fogColor; uniform float fogDistance; uniform float fogShadingParameter; // The cameraOffset is the current center of the visible world. uniform highp vec3 cameraOffset; uniform vec3 cameraPosition; uniform float animationTimer; #ifdef ENABLE_DYNAMIC_SHADOWS // shadow texture uniform sampler2D ShadowMapSampler; // shadow uniforms uniform vec3 v_LightDirection; uniform float f_textureresolution; uniform mat4 m_ShadowViewProj; uniform float f_shadowfar; uniform float f_shadow_strength; uniform vec4 CameraPos; uniform float xyPerspectiveBias0; uniform float xyPerspectiveBias1; uniform vec3 shadow_tint; varying float adj_shadow_strength; varying float cosLight; varying float f_normal_length; varying vec3 shadow_position; varying float perspective_factor; #endif varying vec3 vNormal; varying vec3 vPosition; // World position in the visible world (i.e. relative to the cameraOffset.) // This can be used for many shader effects without loss of precision. // If the absolute position is required it can be calculated with // cameraOffset + worldPosition (for large coordinates the limits of float // precision must be considered). varying vec3 worldPosition; varying lowp vec4 varColor; #ifdef GL_ES varying mediump vec2 varTexCoord; #else centroid varying vec2 varTexCoord; #endif varying highp vec3 eyeVec; varying float nightRatio; #ifdef ENABLE_DYNAMIC_SHADOWS #if (defined(ENABLE_WATER_REFLECTIONS) && MATERIAL_WAVING_LIQUID && ENABLE_WAVING_WATER) vec4 perm(vec4 x) { return mod(((x * 34.0) + 1.0) * x, 289.0); } // Corresponding gradient of snoise vec3 gnoise(vec3 p){ vec3 a = floor(p); vec3 d = p - a; vec3 dd = 6.0 * d * (1.0 - d); d = d * d * (3.0 - 2.0 * d); vec4 b = a.xxyy + vec4(0.0, 1.0, 0.0, 1.0); vec4 k1 = perm(b.xyxy); vec4 k2 = perm(k1.xyxy + b.zzww); vec4 c = k2 + a.zzzz; vec4 k3 = perm(c); vec4 k4 = perm(c + 1.0); vec4 o1 = fract(k3 * (1.0 / 41.0)); vec4 o2 = fract(k4 * (1.0 / 41.0)); vec4 o3 = o2 * d.z + o1 * (1.0 - d.z); vec2 o4 = o3.yw * d.x + o3.xz * (1.0 - d.x); vec4 dz1 = (o2 - o1) * dd.z; vec2 dz2 = dz1.yw * d.x + dz1.xz * (1.0 - d.x); vec2 dx = (o3.yw - o3.xz) * dd.x; return vec3( dx.y * d.y + dx.x * (1. - d.y), (o4.y - o4.x) * dd.y, dz2.y * d.y + dz2.x * (1. - d.y) ); } vec2 wave_noise(vec3 p, float off) { return (gnoise(p + vec3(0.0, 0.0, off)) * 0.4 + gnoise(2.0 * p + vec3(0.0, off, off)) * 0.2 + gnoise(3.0 * p + vec3(0.0, off, off)) * 0.225 + gnoise(4.0 * p + vec3(-off, off, 0.0)) * 0.2).xz; } #endif // assuming near is always 1.0 float getLinearDepth() { return 2.0 * f_shadowfar / (f_shadowfar + 1.0 - (2.0 * gl_FragCoord.z - 1.0) * (f_shadowfar - 1.0)); } vec3 getLightSpacePosition() { return shadow_position * 0.5 + 0.5; } // custom smoothstep implementation because it's not defined in glsl1.2 // https://docs.gl/sl4/smoothstep float mtsmoothstep(in float edge0, in float edge1, in float x) { float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); return t * t * (3.0 - 2.0 * t); } float shadowCutoff(float x) { #if defined(ENABLE_TRANSLUCENT_FOLIAGE) && MATERIAL_TYPE == TILE_MATERIAL_WAVING_LEAVES return mtsmoothstep(0.0, 0.002, x); #else return step(0.0, x); #endif } #ifdef COLORED_SHADOWS // c_precision of 128 fits within 7 base-10 digits const float c_precision = 128.0; const float c_precisionp1 = c_precision + 1.0; float packColor(vec3 color) { return floor(color.b * c_precision + 0.5) + floor(color.g * c_precision + 0.5) * c_precisionp1 + floor(color.r * c_precision + 0.5) * c_precisionp1 * c_precisionp1; } vec3 unpackColor(float value) { vec3 color; color.b = mod(value, c_precisionp1) / c_precision; color.g = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision; color.r = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision; return color; } vec4 getHardShadowColor(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { vec4 texDepth = texture2D(shadowsampler, smTexCoord.xy).rgba; float visibility = shadowCutoff(realDistance - texDepth.r); vec4 result = vec4(visibility, vec3(0.0,0.0,0.0));//unpackColor(texDepth.g)); if (visibility < 0.1) { visibility = shadowCutoff(realDistance - texDepth.b); result = vec4(visibility, unpackColor(texDepth.a)); } return result; } #else float getHardShadow(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { float texDepth = texture2D(shadowsampler, smTexCoord.xy).r; float visibility = shadowCutoff(realDistance - texDepth); return visibility; } #endif #if SHADOW_FILTER == 2 #define PCFBOUND 2.0 // 5x5 #define PCFSAMPLES 25 #elif SHADOW_FILTER == 1 #define PCFBOUND 1.0 // 3x3 #define PCFSAMPLES 9 #else #define PCFBOUND 0.0 #define PCFSAMPLES 1 #endif #ifdef COLORED_SHADOWS float getHardShadowDepth(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { vec4 texDepth = texture2D(shadowsampler, smTexCoord.xy); float depth = max(realDistance - texDepth.r, realDistance - texDepth.b); return depth; } #else float getHardShadowDepth(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { float texDepth = texture2D(shadowsampler, smTexCoord.xy).r; float depth = realDistance - texDepth; return depth; } #endif #define BASEFILTERRADIUS 1.0 float getPenumbraRadius(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { // Return fast if sharp shadows are requested if (PCFBOUND == 0.0 || SOFTSHADOWRADIUS <= 0.0) return 0.0; vec2 clampedpos; float y, x; float depth = getHardShadowDepth(shadowsampler, smTexCoord.xy, realDistance); // A factor from 0 to 1 to reduce blurring of short shadows float sharpness_factor = 1.0; // conversion factor from shadow depth to blur radius float depth_to_blur = f_shadowfar / SOFTSHADOWRADIUS / xyPerspectiveBias0; if (depth > 0.0 && f_normal_length > 0.0) // 5 is empirical factor that controls how fast shadow loses sharpness sharpness_factor = clamp(5.0 * depth * depth_to_blur, 0.0, 1.0); depth = 0.0; float world_to_texture = xyPerspectiveBias1 / perspective_factor / perspective_factor * f_textureresolution / 2.0 / f_shadowfar; float world_radius = 0.2; // shadow blur radius in world float coordinates, e.g. 0.2 = 0.02 of one node return max(BASEFILTERRADIUS * f_textureresolution / 4096.0, sharpness_factor * world_radius * world_to_texture * SOFTSHADOWRADIUS); } #ifdef POISSON_FILTER const vec2[64] poissonDisk = vec2[64]( vec2(0.170019, -0.040254), vec2(-0.299417, 0.791925), vec2(0.645680, 0.493210), vec2(-0.651784, 0.717887), vec2(0.421003, 0.027070), vec2(-0.817194, -0.271096), vec2(-0.705374, -0.668203), vec2(0.977050, -0.108615), vec2(0.063326, 0.142369), vec2(0.203528, 0.214331), vec2(-0.667531, 0.326090), vec2(-0.098422, -0.295755), vec2(-0.885922, 0.215369), vec2(0.566637, 0.605213), vec2(0.039766, -0.396100), vec2(0.751946, 0.453352), vec2(0.078707, -0.715323), vec2(-0.075838, -0.529344), vec2(0.724479, -0.580798), vec2(0.222999, -0.215125), vec2(-0.467574, -0.405438), vec2(-0.248268, -0.814753), vec2(0.354411, -0.887570), vec2(0.175817, 0.382366), vec2(0.487472, -0.063082), vec2(0.355476, 0.025357), vec2(-0.084078, 0.898312), vec2(0.488876, -0.783441), vec2(0.470016, 0.217933), vec2(-0.696890, -0.549791), vec2(-0.149693, 0.605762), vec2(0.034211, 0.979980), vec2(0.503098, -0.308878), vec2(-0.016205, -0.872921), vec2(0.385784, -0.393902), vec2(-0.146886, -0.859249), vec2(0.643361, 0.164098), vec2(0.634388, -0.049471), vec2(-0.688894, 0.007843), vec2(0.464034, -0.188818), vec2(-0.440840, 0.137486), vec2(0.364483, 0.511704), vec2(0.034028, 0.325968), vec2(0.099094, -0.308023), vec2(0.693960, -0.366253), vec2(0.678884, -0.204688), vec2(0.001801, 0.780328), vec2(0.145177, -0.898984), vec2(0.062655, -0.611866), vec2(0.315226, -0.604297), vec2(-0.780145, 0.486251), vec2(-0.371868, 0.882138), vec2(0.200476, 0.494430), vec2(-0.494552, -0.711051), vec2(0.612476, 0.705252), vec2(-0.578845, -0.768792), vec2(-0.772454, -0.090976), vec2(0.504440, 0.372295), vec2(0.155736, 0.065157), vec2(0.391522, 0.849605), vec2(-0.620106, -0.328104), vec2(0.789239, -0.419965), vec2(-0.545396, 0.538133), vec2(-0.178564, -0.596057) ); #ifdef COLORED_SHADOWS vec4 getShadowColor(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { float radius = getPenumbraRadius(shadowsampler, smTexCoord, realDistance); if (radius < 0.1) { // we are in the middle of even brightness, no need for filtering return getHardShadowColor(shadowsampler, smTexCoord.xy, realDistance); } vec2 clampedpos; vec4 visibility = vec4(0.0); float scale_factor = radius / f_textureresolution; int samples = (1 + 1 * int(SOFTSHADOWRADIUS > 1.0)) * PCFSAMPLES; // scale max samples for the soft shadows samples = int(clamp(pow(4.0 * radius + 1.0, 2.0), 1.0, float(samples))); int init_offset = int(floor(mod(((smTexCoord.x * 34.0) + 1.0) * smTexCoord.y, 64.0-samples))); int end_offset = int(samples) + init_offset; for (int x = init_offset; x < end_offset; x++) { clampedpos = poissonDisk[x] * scale_factor + smTexCoord.xy; visibility += getHardShadowColor(shadowsampler, clampedpos.xy, realDistance); } return visibility / samples; } #else float getShadow(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { float radius = getPenumbraRadius(shadowsampler, smTexCoord, realDistance); if (radius < 0.1) { // we are in the middle of even brightness, no need for filtering return getHardShadow(shadowsampler, smTexCoord.xy, realDistance); } vec2 clampedpos; float visibility = 0.0; float scale_factor = radius / f_textureresolution; int samples = (1 + 1 * int(SOFTSHADOWRADIUS > 1.0)) * PCFSAMPLES; // scale max samples for the soft shadows samples = int(clamp(pow(4.0 * radius + 1.0, 2.0), 1.0, float(samples))); int init_offset = int(floor(mod(((smTexCoord.x * 34.0) + 1.0) * smTexCoord.y, 64.0-samples))); int end_offset = int(samples) + init_offset; for (int x = init_offset; x < end_offset; x++) { clampedpos = poissonDisk[x] * scale_factor + smTexCoord.xy; visibility += getHardShadow(shadowsampler, clampedpos.xy, realDistance); } return visibility / samples; } #endif #else /* poisson filter disabled */ #ifdef COLORED_SHADOWS vec4 getShadowColor(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { float radius = getPenumbraRadius(shadowsampler, smTexCoord, realDistance); if (radius < 0.1) { // we are in the middle of even brightness, no need for filtering return getHardShadowColor(shadowsampler, smTexCoord.xy, realDistance); } vec2 clampedpos; vec4 visibility = vec4(0.0); float x, y; float bound = (1 + 0.5 * int(SOFTSHADOWRADIUS > 1.0)) * PCFBOUND; // scale max bound for soft shadows bound = clamp(0.5 * (4.0 * radius - 1.0), 0.5, bound); float scale_factor = radius / bound / f_textureresolution; float n = 0.0; // basic PCF filter for (y = -bound; y <= bound; y += 1.0) for (x = -bound; x <= bound; x += 1.0) { clampedpos = vec2(x,y) * scale_factor + smTexCoord.xy; visibility += getHardShadowColor(shadowsampler, clampedpos.xy, realDistance); n += 1.0; } return visibility / max(n, 1.0); } #else float getShadow(sampler2D shadowsampler, vec2 smTexCoord, float realDistance) { float radius = getPenumbraRadius(shadowsampler, smTexCoord, realDistance); if (radius < 0.1) { // we are in the middle of even brightness, no need for filtering return getHardShadow(shadowsampler, smTexCoord.xy, realDistance); } vec2 clampedpos; float visibility = 0.0; float x, y; float bound = (1 + 0.5 * int(SOFTSHADOWRADIUS > 1.0)) * PCFBOUND; // scale max bound for soft shadows bound = clamp(0.5 * (4.0 * radius - 1.0), 0.5, bound); float scale_factor = radius / bound / f_textureresolution; float n = 0.0; // basic PCF filter for (y = -bound; y <= bound; y += 1.0) for (x = -bound; x <= bound; x += 1.0) { clampedpos = vec2(x,y) * scale_factor + smTexCoord.xy; visibility += getHardShadow(shadowsampler, clampedpos.xy, realDistance); n += 1.0; } return visibility / max(n, 1.0); } #endif #endif #endif void main(void) { vec3 color; vec2 uv = varTexCoord.st; vec4 base = texture2D(baseTexture, uv).rgba; // If alpha is zero, we can just discard the pixel. This fixes transparency // on GPUs like GC7000L, where GL_ALPHA_TEST is not implemented in mesa, // and also on GLES 2, where GL_ALPHA_TEST is missing entirely. #ifdef USE_DISCARD if (base.a == 0.0) discard; #endif #ifdef USE_DISCARD_REF if (base.a < 0.5) discard; #endif color = base.rgb; vec4 col = vec4(color.rgb * varColor.rgb, 1.0); #ifdef ENABLE_DYNAMIC_SHADOWS // Fragment normal, can differ from vNormal which is derived from vertex normals. vec3 fNormal = vNormal; if (f_shadow_strength > 0.0) { float shadow_int = 0.0; vec3 shadow_color = vec3(0.0, 0.0, 0.0); vec3 posLightSpace = getLightSpacePosition(); float distance_rate = (1.0 - pow(clamp(2.0 * length(posLightSpace.xy - 0.5),0.0,1.0), 10.0)); if (max(abs(posLightSpace.x - 0.5), abs(posLightSpace.y - 0.5)) > 0.5) distance_rate = 0.0; float f_adj_shadow_strength = max(adj_shadow_strength - mtsmoothstep(0.9, 1.1, posLightSpace.z),0.0); if (distance_rate > 1e-7) { #ifdef COLORED_SHADOWS vec4 visibility; if (cosLight > 0.0 || f_normal_length < 1e-3) visibility = getShadowColor(ShadowMapSampler, posLightSpace.xy, posLightSpace.z); else visibility = vec4(1.0, 0.0, 0.0, 0.0); shadow_int = visibility.r; shadow_color = visibility.gba; #else if (cosLight > 0.0 || f_normal_length < 1e-3) shadow_int = getShadow(ShadowMapSampler, posLightSpace.xy, posLightSpace.z); else shadow_int = 1.0; #endif shadow_int *= distance_rate; shadow_int = clamp(shadow_int, 0.0, 1.0); } // turns out that nightRatio falls off much faster than // actual brightness of artificial light in relation to natual light. // Power ratio was measured on torches in MTG (brightness = 14). float adjusted_night_ratio = pow(max(0.0, nightRatio), 0.6); float shadow_uncorrected = shadow_int; // Apply self-shadowing when light falls at a narrow angle to the surface // Cosine of the cut-off angle. const float self_shadow_cutoff_cosine = 0.035; if (f_normal_length != 0 && cosLight < self_shadow_cutoff_cosine) { shadow_int = max(shadow_int, 1 - clamp(cosLight, 0.0, self_shadow_cutoff_cosine)/self_shadow_cutoff_cosine); shadow_color = mix(vec3(0.0), shadow_color, min(cosLight, self_shadow_cutoff_cosine)/self_shadow_cutoff_cosine); #if (MATERIAL_TYPE == TILE_MATERIAL_WAVING_LEAVES || MATERIAL_TYPE == TILE_MATERIAL_WAVING_PLANTS) // Prevents foliage from becoming insanely bright outside the shadow map. shadow_uncorrected = mix(shadow_int, shadow_uncorrected, clamp(distance_rate * 4.0 - 3.0, 0.0, 1.0)); #endif } shadow_int *= f_adj_shadow_strength; // calculate fragment color from components: col.rgb = adjusted_night_ratio * col.rgb + // artificial light (1.0 - adjusted_night_ratio) * ( // natural light col.rgb * (1.0 - shadow_int * (1.0 - shadow_color) * (1.0 - shadow_tint)) + // filtered texture color dayLight * shadow_color * shadow_int); // reflected filtered sunlight/moonlight vec3 reflect_ray = -normalize(v_LightDirection - fNormal * dot(v_LightDirection, fNormal) * 2.0); vec3 viewVec = normalize(worldPosition + cameraOffset - cameraPosition); // Water reflections #if (defined(ENABLE_WATER_REFLECTIONS) && MATERIAL_WAVING_LIQUID && ENABLE_WAVING_WATER) vec3 wavePos = worldPosition * vec3(2.0, 0.0, 2.0); float off = animationTimer * WATER_WAVE_SPEED * 10.0; wavePos.x /= WATER_WAVE_LENGTH * 3.0; wavePos.z /= WATER_WAVE_LENGTH * 2.0; // This is an analogous method to the bumpmap, except we get the gradient information directly from gnoise. vec2 gradient = wave_noise(wavePos, off); fNormal = normalize(normalize(fNormal) + vec3(gradient.x, 0., gradient.y) * WATER_WAVE_HEIGHT * abs(fNormal.y) * 0.25); reflect_ray = -normalize(v_LightDirection - fNormal * dot(v_LightDirection, fNormal) * 2.0); float fresnel_factor = dot(fNormal, viewVec); float brightness_factor = 1.0 - adjusted_night_ratio; // A little trig hack. We go from the dot product of viewVec and normal to the dot product of viewVec and tangent to apply a fresnel effect. fresnel_factor = clamp(pow(1.0 - fresnel_factor * fresnel_factor, 8.0), 0.0, 1.0) * 0.8 + 0.2; col.rgb *= 0.5; vec3 reflection_color = mix(vec3(max(fogColor.r, max(fogColor.g, fogColor.b))), fogColor.rgb, f_shadow_strength); // Sky reflection col.rgb += reflection_color * pow(fresnel_factor, 2.0) * 0.5 * brightness_factor; vec3 water_reflect_color = 12.0 * dayLight * fresnel_factor * mtsmoothstep(0.85, 0.9, pow(clamp(dot(reflect_ray, viewVec), 0.0, 1.0), 32.0)) * max(1.0 - shadow_uncorrected, 0.0); // This line exists to prevent ridiculously bright reflection colors. water_reflect_color /= clamp(max(water_reflect_color.r, max(water_reflect_color.g, water_reflect_color.b)) * 0.375, 1.0, 400.0); col.rgb += water_reflect_color * f_adj_shadow_strength * brightness_factor; #endif #if (defined(ENABLE_NODE_SPECULAR) && !MATERIAL_WAVING_LIQUID) // Apply specular to blocks. if (dot(v_LightDirection, vNormal) < 0.0) { float intensity = 2.0 * (1.0 - (base.r * varColor.r)); const float specular_exponent = 5.0; const float fresnel_exponent = 4.0; col.rgb += intensity * dayLight * (1.0 - nightRatio) * (1.0 - shadow_uncorrected) * f_adj_shadow_strength * pow(max(dot(reflect_ray, viewVec), 0.0), fresnel_exponent) * pow(1.0 - abs(dot(viewVec, fNormal)), specular_exponent); } #endif #if (MATERIAL_TYPE == TILE_MATERIAL_WAVING_PLANTS || MATERIAL_TYPE == TILE_MATERIAL_WAVING_LEAVES) && defined(ENABLE_TRANSLUCENT_FOLIAGE) // Simulate translucent foliage. col.rgb += 4.0 * dayLight * base.rgb * normalize(base.rgb * varColor.rgb * varColor.rgb) * f_adj_shadow_strength * pow(max(-dot(v_LightDirection, viewVec), 0.0), 4.0) * max(1.0 - shadow_uncorrected, 0.0); #endif } #endif // Due to a bug in some (older ?) graphics stacks (possibly in the glsl compiler ?), // the fog will only be rendered correctly if the last operation before the // clamp() is an addition. Else, the clamp() seems to be ignored. // E.g. the following won't work: // float clarity = clamp(fogShadingParameter // * (fogDistance - length(eyeVec)) / fogDistance), 0.0, 1.0); // As additions usually come for free following a multiplication, the new formula // should be more efficient as well. // Note: clarity = (1 - fogginess) float clarity = clamp(fogShadingParameter - fogShadingParameter * length(eyeVec) / fogDistance, 0.0, 1.0); float fogColorMax = max(max(fogColor.r, fogColor.g), fogColor.b); // Prevent zero division. if (fogColorMax < 0.0000001) fogColorMax = 1.0; // For high clarity (light fog) we tint the fog color. // For this to not make the fog color artificially dark we need to normalize using the // fog color's brightest value. We then blend our base color with this to make the fog. col = mix(fogColor * pow(fogColor / fogColorMax, vec4(2.0 * clarity)), col, clarity); col = vec4(col.rgb, base.a); gl_FragData[0] = col; }