123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- vector = {}
- function vector.new(a, b, c)
- if type(a) == "table" then
- assert(a.x and a.y and a.z, "Invalid vector passed to vector.new()")
- return {x=a.x, y=a.y, z=a.z}
- elseif a then
- assert(b and c, "Invalid arguments for vector.new()")
- return {x=a, y=b, z=c}
- end
- return {x=0, y=0, z=0}
- end
- function vector.equals(a, b)
- return a.x == b.x and
- a.y == b.y and
- a.z == b.z
- end
- function vector.length(v)
- return math.hypot(v.x, math.hypot(v.y, v.z))
- end
- function vector.normalize(v)
- local len = vector.length(v)
- if len == 0 then
- return {x=0, y=0, z=0}
- else
- return vector.divide(v, len)
- end
- end
- function vector.floor(v)
- return {
- x = math.floor(v.x),
- y = math.floor(v.y),
- z = math.floor(v.z)
- }
- end
- function vector.round(v)
- return {
- x = math.floor(v.x + 0.5),
- y = math.floor(v.y + 0.5),
- z = math.floor(v.z + 0.5)
- }
- end
- function vector.apply(v, func)
- return {
- x = func(v.x),
- y = func(v.y),
- z = func(v.z)
- }
- end
- function vector.distance(a, b)
- local x = a.x - b.x
- local y = a.y - b.y
- local z = a.z - b.z
- return math.hypot(x, math.hypot(y, z))
- end
- function vector.direction(pos1, pos2)
- return vector.normalize({
- x = pos2.x - pos1.x,
- y = pos2.y - pos1.y,
- z = pos2.z - pos1.z
- })
- end
- function vector.angle(a, b)
- local dotp = vector.dot(a, b)
- local cp = vector.cross(a, b)
- local crossplen = vector.length(cp)
- return math.atan2(crossplen, dotp)
- end
- function vector.dot(a, b)
- return a.x * b.x + a.y * b.y + a.z * b.z
- end
- function vector.cross(a, b)
- return {
- x = a.y * b.z - a.z * b.y,
- y = a.z * b.x - a.x * b.z,
- z = a.x * b.y - a.y * b.x
- }
- end
- function vector.add(a, b)
- if type(b) == "table" then
- return {x = a.x + b.x,
- y = a.y + b.y,
- z = a.z + b.z}
- else
- return {x = a.x + b,
- y = a.y + b,
- z = a.z + b}
- end
- end
- function vector.subtract(a, b)
- if type(b) == "table" then
- return {x = a.x - b.x,
- y = a.y - b.y,
- z = a.z - b.z}
- else
- return {x = a.x - b,
- y = a.y - b,
- z = a.z - b}
- end
- end
- function vector.multiply(a, b)
- if type(b) == "table" then
- return {x = a.x * b.x,
- y = a.y * b.y,
- z = a.z * b.z}
- else
- return {x = a.x * b,
- y = a.y * b,
- z = a.z * b}
- end
- end
- function vector.divide(a, b)
- if type(b) == "table" then
- return {x = a.x / b.x,
- y = a.y / b.y,
- z = a.z / b.z}
- else
- return {x = a.x / b,
- y = a.y / b,
- z = a.z / b}
- end
- end
- function vector.offset(v, x, y, z)
- return {x = v.x + x,
- y = v.y + y,
- z = v.z + z}
- end
- function vector.sort(a, b)
- return {x = math.min(a.x, b.x), y = math.min(a.y, b.y), z = math.min(a.z, b.z)},
- {x = math.max(a.x, b.x), y = math.max(a.y, b.y), z = math.max(a.z, b.z)}
- end
- local function sin(x)
- if x % math.pi == 0 then
- return 0
- else
- return math.sin(x)
- end
- end
- local function cos(x)
- if x % math.pi == math.pi / 2 then
- return 0
- else
- return math.cos(x)
- end
- end
- function vector.rotate_around_axis(v, axis, angle)
- local cosangle = cos(angle)
- local sinangle = sin(angle)
- axis = vector.normalize(axis)
- -- https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
- local dot_axis = vector.multiply(axis, vector.dot(axis, v))
- local cross = vector.cross(v, axis)
- return vector.new(
- cross.x * sinangle + (v.x - dot_axis.x) * cosangle + dot_axis.x,
- cross.y * sinangle + (v.y - dot_axis.y) * cosangle + dot_axis.y,
- cross.z * sinangle + (v.z - dot_axis.z) * cosangle + dot_axis.z
- )
- end
- function vector.rotate(v, rot)
- local sinpitch = sin(-rot.x)
- local sinyaw = sin(-rot.y)
- local sinroll = sin(-rot.z)
- local cospitch = cos(rot.x)
- local cosyaw = cos(rot.y)
- local cosroll = math.cos(rot.z)
- -- Rotation matrix that applies yaw, pitch and roll
- local matrix = {
- {
- sinyaw * sinpitch * sinroll + cosyaw * cosroll,
- sinyaw * sinpitch * cosroll - cosyaw * sinroll,
- sinyaw * cospitch,
- },
- {
- cospitch * sinroll,
- cospitch * cosroll,
- -sinpitch,
- },
- {
- cosyaw * sinpitch * sinroll - sinyaw * cosroll,
- cosyaw * sinpitch * cosroll + sinyaw * sinroll,
- cosyaw * cospitch,
- },
- }
- -- Compute matrix multiplication: `matrix` * `v`
- return vector.new(
- matrix[1][1] * v.x + matrix[1][2] * v.y + matrix[1][3] * v.z,
- matrix[2][1] * v.x + matrix[2][2] * v.y + matrix[2][3] * v.z,
- matrix[3][1] * v.x + matrix[3][2] * v.y + matrix[3][3] * v.z
- )
- end
- function vector.dir_to_rotation(forward, up)
- forward = vector.normalize(forward)
- local rot = {x = math.asin(forward.y), y = -math.atan2(forward.x, forward.z), z = 0}
- if not up then
- return rot
- end
- assert(vector.dot(forward, up) < 0.000001,
- "Invalid vectors passed to vector.dir_to_rotation().")
- up = vector.normalize(up)
- -- Calculate vector pointing up with roll = 0, just based on forward vector.
- local forwup = vector.rotate({x = 0, y = 1, z = 0}, rot)
- -- 'forwup' and 'up' are now in a plane with 'forward' as normal.
- -- The angle between them is the absolute of the roll value we're looking for.
- rot.z = vector.angle(forwup, up)
- -- Since vector.angle never returns a negative value or a value greater
- -- than math.pi, rot.z has to be inverted sometimes.
- -- To determine wether this is the case, we rotate the up vector back around
- -- the forward vector and check if it worked out.
- local back = vector.rotate_around_axis(up, forward, -rot.z)
- -- We don't use vector.equals for this because of floating point imprecision.
- if (back.x - forwup.x) * (back.x - forwup.x) +
- (back.y - forwup.y) * (back.y - forwup.y) +
- (back.z - forwup.z) * (back.z - forwup.z) > 0.0000001 then
- rot.z = -rot.z
- end
- return rot
- end
|