12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096 |
- // Copyright (C) 2002-2012 Nikolaus Gebhardt
- // This file is part of the "Irrlicht Engine".
- // For conditions of distribution and use, see copyright notice in irrlicht.h
- #pragma once
- #include <cstring> // memset, memcpy
- #include "irrMath.h"
- #include "vector3d.h"
- #include "vector2d.h"
- #include "plane3d.h"
- #include "aabbox3d.h"
- #include "rect.h"
- #include "IrrCompileConfig.h" // for IRRLICHT_API
- namespace irr
- {
- namespace core
- {
- //! 4x4 matrix. Mostly used as transformation matrix for 3d calculations.
- /** Conventions: Matrices are considered to be in row-major order.
- * Multiplication of a matrix A with a row vector v is the premultiplication vA.
- * Translations are thus in the 4th row.
- * The matrix product AB yields a matrix C such that vC = (vB)A:
- * B is applied first, then A.
- */
- template <class T>
- class CMatrix4
- {
- public:
- //! Constructor Flags
- enum eConstructor
- {
- EM4CONST_NOTHING = 0,
- EM4CONST_COPY,
- EM4CONST_IDENTITY,
- EM4CONST_TRANSPOSED,
- EM4CONST_INVERSE,
- EM4CONST_INVERSE_TRANSPOSED
- };
- //! Default constructor
- /** \param constructor Choose the initialization style */
- CMatrix4(eConstructor constructor = EM4CONST_IDENTITY);
- //! Constructor with value initialization
- constexpr CMatrix4(const T &r0c0, const T &r0c1, const T &r0c2, const T &r0c3,
- const T &r1c0, const T &r1c1, const T &r1c2, const T &r1c3,
- const T &r2c0, const T &r2c1, const T &r2c2, const T &r2c3,
- const T &r3c0, const T &r3c1, const T &r3c2, const T &r3c3)
- {
- M[0] = r0c0;
- M[1] = r0c1;
- M[2] = r0c2;
- M[3] = r0c3;
- M[4] = r1c0;
- M[5] = r1c1;
- M[6] = r1c2;
- M[7] = r1c3;
- M[8] = r2c0;
- M[9] = r2c1;
- M[10] = r2c2;
- M[11] = r2c3;
- M[12] = r3c0;
- M[13] = r3c1;
- M[14] = r3c2;
- M[15] = r3c3;
- }
- //! Copy constructor
- /** \param other Other matrix to copy from
- \param constructor Choose the initialization style */
- CMatrix4(const CMatrix4<T> &other, eConstructor constructor = EM4CONST_COPY);
- //! Simple operator for directly accessing every element of the matrix.
- T &operator()(const s32 row, const s32 col)
- {
- return M[row * 4 + col];
- }
- //! Simple operator for directly accessing every element of the matrix.
- const T &operator()(const s32 row, const s32 col) const { return M[row * 4 + col]; }
- //! Simple operator for linearly accessing every element of the matrix.
- T &operator[](u32 index)
- {
- return M[index];
- }
- //! Simple operator for linearly accessing every element of the matrix.
- const T &operator[](u32 index) const { return M[index]; }
- //! Sets this matrix equal to the other matrix.
- CMatrix4<T> &operator=(const CMatrix4<T> &other) = default;
- //! Sets all elements of this matrix to the value.
- inline CMatrix4<T> &operator=(const T &scalar);
- //! Returns pointer to internal array
- const T *pointer() const { return M; }
- T *pointer()
- {
- return M;
- }
- //! Returns true if other matrix is equal to this matrix.
- constexpr bool operator==(const CMatrix4<T> &other) const
- {
- for (s32 i = 0; i < 16; ++i)
- if (M[i] != other.M[i])
- return false;
- return true;
- }
- //! Returns true if other matrix is not equal to this matrix.
- constexpr bool operator!=(const CMatrix4<T> &other) const
- {
- return !(*this == other);
- }
- //! Add another matrix.
- CMatrix4<T> operator+(const CMatrix4<T> &other) const;
- //! Add another matrix.
- CMatrix4<T> &operator+=(const CMatrix4<T> &other);
- //! Subtract another matrix.
- CMatrix4<T> operator-(const CMatrix4<T> &other) const;
- //! Subtract another matrix.
- CMatrix4<T> &operator-=(const CMatrix4<T> &other);
- //! set this matrix to the product of two matrices
- /** Calculate b*a */
- inline CMatrix4<T> &setbyproduct(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b);
- //! Set this matrix to the product of two matrices
- /** Calculate b*a, no optimization used,
- use it if you know you never have an identity matrix */
- CMatrix4<T> &setbyproduct_nocheck(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b);
- //! Multiply by another matrix.
- /** Calculate other*this */
- CMatrix4<T> operator*(const CMatrix4<T> &other) const;
- //! Multiply by another matrix.
- /** Like calling: (*this) = (*this) * other
- */
- CMatrix4<T> &operator*=(const CMatrix4<T> &other);
- //! Multiply by scalar.
- CMatrix4<T> operator*(const T &scalar) const;
- //! Multiply by scalar.
- CMatrix4<T> &operator*=(const T &scalar);
- //! Set matrix to identity.
- inline CMatrix4<T> &makeIdentity();
- //! Returns true if the matrix is the identity matrix
- inline bool isIdentity() const;
- //! Returns true if the matrix is orthogonal
- inline bool isOrthogonal() const;
- //! Returns true if the matrix is the identity matrix
- bool isIdentity_integer_base() const;
- //! Set the translation of the current matrix. Will erase any previous values.
- CMatrix4<T> &setTranslation(const vector3d<T> &translation);
- //! Gets the current translation
- vector3d<T> getTranslation() const;
- //! Set the inverse translation of the current matrix. Will erase any previous values.
- CMatrix4<T> &setInverseTranslation(const vector3d<T> &translation);
- //! Make a rotation matrix from Euler angles. The 4th row and column are unmodified.
- //! NOTE: Rotation order is ZYX. This means that vectors are
- //! first rotated around the X, then the Y, and finally the Z axis.
- //! NOTE: The rotation is done as per the right-hand rule.
- //! See test_irr_matrix4.cpp if you're still unsure about the conventions used here.
- inline CMatrix4<T> &setRotationRadians(const vector3d<T> &rotation);
- //! Same as `setRotationRadians`, but uses degrees.
- CMatrix4<T> &setRotationDegrees(const vector3d<T> &rotation);
- //! Get the rotation, as set by setRotation() when you already know the scale used to create the matrix
- /** NOTE: The scale needs to be the correct one used to create this matrix.
- You can _not_ use the result of getScale(), but have to save your scale
- variable in another place (like ISceneNode does).
- NOTE: No scale value can be 0 or the result is undefined.
- NOTE: It does not necessarily return the *same* Euler angles as those set by setRotationDegrees(),
- but the rotation will be equivalent, i.e. will have the same result when used to rotate a vector or node.
- NOTE: It will (usually) give wrong results when further transformations have been added in the matrix (like shear).
- WARNING: There have been troubles with this function over the years and we may still have missed some corner cases.
- It's generally safer to keep the rotation and scale you used to create the matrix around and work with those.
- */
- core::vector3d<T> getRotationDegrees(const vector3d<T> &scale) const;
- //! Returns the rotation, as set by setRotation().
- /** NOTE: You will have the same end-rotation as used in setRotation, but it might not use the same axis values.
- NOTE: This only works correct if no other matrix operations have been done on the inner 3x3 matrix besides
- setting rotation (so no scale/shear). Thought it (probably) works as long as scale doesn't flip handedness.
- NOTE: It does not necessarily return the *same* Euler angles as those set by setRotationDegrees(),
- but the rotation will be equivalent, i.e. will have the same result when used to rotate a vector or node.
- */
- core::vector3d<T> getRotationDegrees() const;
- //! Make an inverted rotation matrix from Euler angles.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T> &setInverseRotationRadians(const vector3d<T> &rotation);
- //! Make an inverted rotation matrix from Euler angles.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T> &setInverseRotationDegrees(const vector3d<T> &rotation);
- //! Make a rotation matrix from angle and axis, assuming left handed rotation.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T> &setRotationAxisRadians(const T &angle, const vector3d<T> &axis);
- //! Set Scale
- CMatrix4<T> &setScale(const vector3d<T> &scale);
- //! Set Scale
- CMatrix4<T> &setScale(const T scale) { return setScale(core::vector3d<T>(scale, scale, scale)); }
- //! Get Scale
- core::vector3d<T> getScale() const;
- //! Translate a vector by the inverse of the translation part of this matrix.
- void inverseTranslateVect(vector3df &vect) const;
- //! Scale a vector, then rotate by the inverse of the rotation part of this matrix.
- [[nodiscard]] vector3d<T> scaleThenInvRotVect(const vector3d<T> &vect) const;
- //! Rotate and scale a vector. Applies both rotation & scale part of the matrix.
- [[nodiscard]] vector3d<T> rotateAndScaleVect(const vector3d<T> &vect) const;
- //! Transforms the vector by this matrix
- /** This operation is performed as if the vector was 4d with the 4th component = 1 */
- [[nodiscard]] vector3d<T> transformVect(const vector3d<T> &v) const;
- //! Transforms the vector by this matrix
- /** This operation is performed as if the vector was 4d with the 4th component = 1 */
- void transformVect(vector3d<T> &vect) const {
- const vector3d<T> &v = vect;
- vect = transformVect(v);
- }
- //! Transforms input vector by this matrix and stores result in output vector
- /** This operation is performed as if the vector was 4d with the 4th component = 1 */
- void transformVect(vector3d<T> &out, const vector3d<T> &in) const {
- out = transformVect(in);
- }
- //! An alternate transform vector method, writing into an array of 4 floats
- /** This operation is performed as if the vector was 4d with the 4th component =1.
- NOTE: out[3] will be written to (4th vector component)*/
- void transformVect(T *out, const core::vector3df &in) const;
- //! An alternate transform vector method, reading from and writing to an array of 3 floats
- /** This operation is performed as if the vector was 4d with the 4th component =1
- NOTE: out[3] will be written to (4th vector component)*/
- void transformVec3(T *out, const T *in) const;
- //! An alternate transform vector method, reading from and writing to an array of 4 floats
- void transformVec4(T *out, const T *in) const;
- //! Translate a vector by the translation part of this matrix.
- /** This operation is performed as if the vector was 4d with the 4th component =1 */
- void translateVect(vector3df &vect) const;
- //! Transforms a plane by this matrix
- void transformPlane(core::plane3d<f32> &plane) const;
- //! Transforms a plane by this matrix
- void transformPlane(const core::plane3d<f32> &in, core::plane3d<f32> &out) const;
- //! Transforms a axis aligned bounding box
- void transformBoxEx(core::aabbox3d<f32> &box) const;
- //! Multiplies this matrix by a 1x4 matrix
- void multiplyWith1x4Matrix(T *matrix) const;
- //! Calculates inverse of matrix. Slow.
- /** \return Returns false if there is no inverse matrix.*/
- bool makeInverse();
- //! Inverts a primitive matrix which only contains a translation and a rotation
- /** \param out: where result matrix is written to. */
- bool getInversePrimitive(CMatrix4<T> &out) const;
- //! Gets the inverse matrix of this one
- /** \param out: where result matrix is written to.
- \return Returns false if there is no inverse matrix. */
- bool getInverse(CMatrix4<T> &out) const;
- //! Builds a right-handed perspective projection matrix based on a field of view
- //\param zClipFromZero: Clipping of z can be projected from 0 to w when true (D3D style) and from -w to w when false (OGL style).
- CMatrix4<T> &buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed perspective projection matrix based on a field of view
- CMatrix4<T> &buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed perspective projection matrix based on a field of view, with far plane at infinity
- CMatrix4<T> &buildProjectionMatrixPerspectiveFovInfinityLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon = 0);
- //! Builds a right-handed perspective projection matrix.
- CMatrix4<T> &buildProjectionMatrixPerspectiveRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed perspective projection matrix.
- CMatrix4<T> &buildProjectionMatrixPerspectiveLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed orthogonal projection matrix.
- //\param zClipFromZero: Clipping of z can be projected from 0 to 1 when true (D3D style) and from -1 to 1 when false (OGL style).
- CMatrix4<T> &buildProjectionMatrixOrthoLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a right-handed orthogonal projection matrix.
- CMatrix4<T> &buildProjectionMatrixOrthoRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed look-at matrix.
- CMatrix4<T> &buildCameraLookAtMatrixLH(
- const vector3df &position,
- const vector3df &target,
- const vector3df &upVector);
- //! Builds a right-handed look-at matrix.
- CMatrix4<T> &buildCameraLookAtMatrixRH(
- const vector3df &position,
- const vector3df &target,
- const vector3df &upVector);
- //! Builds a matrix that flattens geometry into a plane.
- /** \param light: light source
- \param plane: plane into which the geometry if flattened into
- \param point: value between 0 and 1, describing the light source.
- If this is 1, it is a point light, if it is 0, it is a directional light. */
- CMatrix4<T> &buildShadowMatrix(const core::vector3df &light, core::plane3df plane, f32 point = 1.0f);
- //! Builds a matrix which transforms a normalized Device Coordinate to Device Coordinates.
- /** Used to scale <-1,-1><1,1> to viewport, for example from <-1,-1> <1,1> to the viewport <0,0><0,640> */
- CMatrix4<T> &buildNDCToDCMatrix(const core::rect<s32> &area, f32 zScale);
- //! Creates a new matrix as interpolated matrix from two other ones.
- /** \param b: other matrix to interpolate with
- \param time: Must be a value between 0 and 1. */
- CMatrix4<T> interpolate(const core::CMatrix4<T> &b, f32 time) const;
- //! Gets transposed matrix
- CMatrix4<T> getTransposed() const;
- //! Gets transposed matrix
- inline void getTransposed(CMatrix4<T> &dest) const;
- //! Builds a matrix that rotates from one vector to another
- /** \param from: vector to rotate from
- \param to: vector to rotate to
- */
- CMatrix4<T> &buildRotateFromTo(const core::vector3df &from, const core::vector3df &to);
- //! Builds a combined matrix which translates to a center before rotation and translates from origin afterwards
- /** \param center Position to rotate around
- \param translate Translation applied after the rotation
- */
- void setRotationCenter(const core::vector3df ¢er, const core::vector3df &translate);
- //! Builds a matrix which rotates a source vector to a look vector over an arbitrary axis
- /** \param camPos: viewer position in world coo
- \param center: object position in world-coo and rotation pivot
- \param translation: object final translation from center
- \param axis: axis to rotate about
- \param from: source vector to rotate from
- */
- void buildAxisAlignedBillboard(const core::vector3df &camPos,
- const core::vector3df ¢er,
- const core::vector3df &translation,
- const core::vector3df &axis,
- const core::vector3df &from);
- /*
- construct 2D Texture transformations
- rotate about center, scale, and transform.
- */
- //! Set to a texture transformation matrix with the given parameters.
- CMatrix4<T> &buildTextureTransform(f32 rotateRad,
- const core::vector2df &rotatecenter,
- const core::vector2df &translate,
- const core::vector2df &scale);
- //! Set texture transformation rotation
- /** Rotate about z axis, recenter at (0.5,0.5).
- Doesn't clear other elements than those affected
- \param radAngle Angle in radians
- \return Altered matrix */
- CMatrix4<T> &setTextureRotationCenter(f32 radAngle);
- //! Set texture transformation translation
- /** Doesn't clear other elements than those affected.
- \param x Offset on x axis
- \param y Offset on y axis
- \return Altered matrix */
- CMatrix4<T> &setTextureTranslate(f32 x, f32 y);
- //! Get texture transformation translation
- /** \param x returns offset on x axis
- \param y returns offset on y axis */
- void getTextureTranslate(f32 &x, f32 &y) const;
- //! Set texture transformation translation, using a transposed representation
- /** Doesn't clear other elements than those affected.
- \param x Offset on x axis
- \param y Offset on y axis
- \return Altered matrix */
- CMatrix4<T> &setTextureTranslateTransposed(f32 x, f32 y);
- //! Set texture transformation scale
- /** Doesn't clear other elements than those affected.
- \param sx Scale factor on x axis
- \param sy Scale factor on y axis
- \return Altered matrix. */
- CMatrix4<T> &setTextureScale(f32 sx, f32 sy);
- //! Get texture transformation scale
- /** \param sx Returns x axis scale factor
- \param sy Returns y axis scale factor */
- void getTextureScale(f32 &sx, f32 &sy) const;
- //! Set texture transformation scale, and recenter at (0.5,0.5)
- /** Doesn't clear other elements than those affected.
- \param sx Scale factor on x axis
- \param sy Scale factor on y axis
- \return Altered matrix. */
- CMatrix4<T> &setTextureScaleCenter(f32 sx, f32 sy);
- //! Sets all matrix data members at once
- CMatrix4<T> &setM(const T *data);
- //! Compare two matrices using the equal method
- bool equals(const core::CMatrix4<T> &other, const T tolerance = (T)ROUNDING_ERROR_f64) const;
- private:
- //! Matrix data, stored in row-major order
- T M[16];
- };
- // Default constructor
- template <class T>
- inline CMatrix4<T>::CMatrix4(eConstructor constructor)
- {
- switch (constructor) {
- case EM4CONST_NOTHING:
- case EM4CONST_COPY:
- break;
- case EM4CONST_IDENTITY:
- case EM4CONST_INVERSE:
- default:
- makeIdentity();
- break;
- }
- }
- // Copy constructor
- template <class T>
- inline CMatrix4<T>::CMatrix4(const CMatrix4<T> &other, eConstructor constructor)
- {
- switch (constructor) {
- case EM4CONST_IDENTITY:
- makeIdentity();
- break;
- case EM4CONST_NOTHING:
- break;
- case EM4CONST_COPY:
- *this = other;
- break;
- case EM4CONST_TRANSPOSED:
- other.getTransposed(*this);
- break;
- case EM4CONST_INVERSE:
- if (!other.getInverse(*this))
- memset(M, 0, 16 * sizeof(T));
- break;
- case EM4CONST_INVERSE_TRANSPOSED:
- if (!other.getInverse(*this))
- memset(M, 0, 16 * sizeof(T));
- else
- *this = getTransposed();
- break;
- }
- }
- //! Add another matrix.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator+(const CMatrix4<T> &other) const
- {
- CMatrix4<T> temp(EM4CONST_NOTHING);
- temp[0] = M[0] + other[0];
- temp[1] = M[1] + other[1];
- temp[2] = M[2] + other[2];
- temp[3] = M[3] + other[3];
- temp[4] = M[4] + other[4];
- temp[5] = M[5] + other[5];
- temp[6] = M[6] + other[6];
- temp[7] = M[7] + other[7];
- temp[8] = M[8] + other[8];
- temp[9] = M[9] + other[9];
- temp[10] = M[10] + other[10];
- temp[11] = M[11] + other[11];
- temp[12] = M[12] + other[12];
- temp[13] = M[13] + other[13];
- temp[14] = M[14] + other[14];
- temp[15] = M[15] + other[15];
- return temp;
- }
- //! Add another matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator+=(const CMatrix4<T> &other)
- {
- M[0] += other[0];
- M[1] += other[1];
- M[2] += other[2];
- M[3] += other[3];
- M[4] += other[4];
- M[5] += other[5];
- M[6] += other[6];
- M[7] += other[7];
- M[8] += other[8];
- M[9] += other[9];
- M[10] += other[10];
- M[11] += other[11];
- M[12] += other[12];
- M[13] += other[13];
- M[14] += other[14];
- M[15] += other[15];
- return *this;
- }
- //! Subtract another matrix.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator-(const CMatrix4<T> &other) const
- {
- CMatrix4<T> temp(EM4CONST_NOTHING);
- temp[0] = M[0] - other[0];
- temp[1] = M[1] - other[1];
- temp[2] = M[2] - other[2];
- temp[3] = M[3] - other[3];
- temp[4] = M[4] - other[4];
- temp[5] = M[5] - other[5];
- temp[6] = M[6] - other[6];
- temp[7] = M[7] - other[7];
- temp[8] = M[8] - other[8];
- temp[9] = M[9] - other[9];
- temp[10] = M[10] - other[10];
- temp[11] = M[11] - other[11];
- temp[12] = M[12] - other[12];
- temp[13] = M[13] - other[13];
- temp[14] = M[14] - other[14];
- temp[15] = M[15] - other[15];
- return temp;
- }
- //! Subtract another matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator-=(const CMatrix4<T> &other)
- {
- M[0] -= other[0];
- M[1] -= other[1];
- M[2] -= other[2];
- M[3] -= other[3];
- M[4] -= other[4];
- M[5] -= other[5];
- M[6] -= other[6];
- M[7] -= other[7];
- M[8] -= other[8];
- M[9] -= other[9];
- M[10] -= other[10];
- M[11] -= other[11];
- M[12] -= other[12];
- M[13] -= other[13];
- M[14] -= other[14];
- M[15] -= other[15];
- return *this;
- }
- //! Multiply by scalar.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator*(const T &scalar) const
- {
- CMatrix4<T> temp(EM4CONST_NOTHING);
- temp[0] = M[0] * scalar;
- temp[1] = M[1] * scalar;
- temp[2] = M[2] * scalar;
- temp[3] = M[3] * scalar;
- temp[4] = M[4] * scalar;
- temp[5] = M[5] * scalar;
- temp[6] = M[6] * scalar;
- temp[7] = M[7] * scalar;
- temp[8] = M[8] * scalar;
- temp[9] = M[9] * scalar;
- temp[10] = M[10] * scalar;
- temp[11] = M[11] * scalar;
- temp[12] = M[12] * scalar;
- temp[13] = M[13] * scalar;
- temp[14] = M[14] * scalar;
- temp[15] = M[15] * scalar;
- return temp;
- }
- //! Multiply by scalar.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator*=(const T &scalar)
- {
- M[0] *= scalar;
- M[1] *= scalar;
- M[2] *= scalar;
- M[3] *= scalar;
- M[4] *= scalar;
- M[5] *= scalar;
- M[6] *= scalar;
- M[7] *= scalar;
- M[8] *= scalar;
- M[9] *= scalar;
- M[10] *= scalar;
- M[11] *= scalar;
- M[12] *= scalar;
- M[13] *= scalar;
- M[14] *= scalar;
- M[15] *= scalar;
- return *this;
- }
- //! Multiply by another matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator*=(const CMatrix4<T> &other)
- {
- #if defined(USE_MATRIX_TEST)
- // do checks on your own in order to avoid copy creation
- if (!other.isIdentity()) {
- if (this->isIdentity()) {
- return (*this = other);
- } else {
- CMatrix4<T> temp(*this);
- return setbyproduct_nocheck(temp, other);
- }
- }
- return *this;
- #else
- CMatrix4<T> temp(*this);
- return setbyproduct_nocheck(temp, other);
- #endif
- }
- //! multiply by another matrix
- // set this matrix to the product of two other matrices
- // goal is to reduce stack use and copy
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setbyproduct_nocheck(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b)
- {
- const T *m1 = other_a.M;
- const T *m2 = other_b.M;
- M[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3];
- M[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3];
- M[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3];
- M[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3];
- M[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7];
- M[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7];
- M[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7];
- M[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7];
- M[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11];
- M[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11];
- M[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11];
- M[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11];
- M[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15];
- M[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15];
- M[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15];
- M[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15];
- return *this;
- }
- //! multiply by another matrix
- // set this matrix to the product of two other matrices
- // goal is to reduce stack use and copy
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setbyproduct(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b)
- {
- #if defined(USE_MATRIX_TEST)
- if (other_a.isIdentity())
- return (*this = other_b);
- else if (other_b.isIdentity())
- return (*this = other_a);
- else
- return setbyproduct_nocheck(other_a, other_b);
- #else
- return setbyproduct_nocheck(other_a, other_b);
- #endif
- }
- //! multiply by another matrix
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator*(const CMatrix4<T> &m2) const
- {
- #if defined(USE_MATRIX_TEST)
- // Testing purpose..
- if (this->isIdentity())
- return m2;
- if (m2.isIdentity())
- return *this;
- #endif
- CMatrix4<T> m3(EM4CONST_NOTHING);
- const T *m1 = M;
- m3[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3];
- m3[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3];
- m3[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3];
- m3[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3];
- m3[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7];
- m3[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7];
- m3[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7];
- m3[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7];
- m3[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11];
- m3[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11];
- m3[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11];
- m3[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11];
- m3[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15];
- m3[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15];
- m3[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15];
- m3[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15];
- return m3;
- }
- template <class T>
- inline vector3d<T> CMatrix4<T>::getTranslation() const
- {
- return vector3d<T>(M[12], M[13], M[14]);
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTranslation(const vector3d<T> &translation)
- {
- M[12] = translation.X;
- M[13] = translation.Y;
- M[14] = translation.Z;
- return *this;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setInverseTranslation(const vector3d<T> &translation)
- {
- M[12] = -translation.X;
- M[13] = -translation.Y;
- M[14] = -translation.Z;
- return *this;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setScale(const vector3d<T> &scale)
- {
- M[0] = scale.X;
- M[5] = scale.Y;
- M[10] = scale.Z;
- return *this;
- }
- //! Returns the absolute values of the scales of the matrix.
- /**
- Note: You only get back original values if the matrix only set the scale.
- Otherwise the result is a scale you can use to normalize the matrix axes,
- but it's usually no longer what you did set with setScale.
- */
- template <class T>
- inline vector3d<T> CMatrix4<T>::getScale() const
- {
- // See http://www.robertblum.com/articles/2005/02/14/decomposing-matrices
- // Deal with the 0 rotation case first
- // Prior to Irrlicht 1.6, we always returned this value.
- if (core::iszero(M[1]) && core::iszero(M[2]) &&
- core::iszero(M[4]) && core::iszero(M[6]) &&
- core::iszero(M[8]) && core::iszero(M[9]))
- return vector3d<T>(M[0], M[5], M[10]);
- // We have to do the full calculation.
- return vector3d<T>(sqrtf(M[0] * M[0] + M[1] * M[1] + M[2] * M[2]),
- sqrtf(M[4] * M[4] + M[5] * M[5] + M[6] * M[6]),
- sqrtf(M[8] * M[8] + M[9] * M[9] + M[10] * M[10]));
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setRotationDegrees(const vector3d<T> &rotation)
- {
- return setRotationRadians(rotation * core::DEGTORAD);
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setInverseRotationDegrees(const vector3d<T> &rotation)
- {
- return setInverseRotationRadians(rotation * core::DEGTORAD);
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setRotationRadians(const vector3d<T> &rotation)
- {
- const f64 cPitch = cos(rotation.X);
- const f64 sPitch = sin(rotation.X);
- const f64 cYaw = cos(rotation.Y);
- const f64 sYaw = sin(rotation.Y);
- const f64 cRoll = cos(rotation.Z);
- const f64 sRoll = sin(rotation.Z);
- M[0] = (T)(cYaw * cRoll);
- M[1] = (T)(cYaw * sRoll);
- M[2] = (T)(-sYaw);
- const f64 sPitch_sYaw = sPitch * sYaw;
- const f64 cPitch_sYaw = cPitch * sYaw;
- M[4] = (T)(sPitch_sYaw * cRoll - cPitch * sRoll);
- M[5] = (T)(sPitch_sYaw * sRoll + cPitch * cRoll);
- M[6] = (T)(sPitch * cYaw);
- M[8] = (T)(cPitch_sYaw * cRoll + sPitch * sRoll);
- M[9] = (T)(cPitch_sYaw * sRoll - sPitch * cRoll);
- M[10] = (T)(cPitch * cYaw);
- return *this;
- }
- //! Returns a rotation which (mostly) works in combination with the given scale
- /**
- This code was originally written by by Chev (assuming no scaling back then,
- we can be blamed for all problems added by regarding scale)
- */
- template <class T>
- inline core::vector3d<T> CMatrix4<T>::getRotationDegrees(const vector3d<T> &scale_) const
- {
- const CMatrix4<T> &mat = *this;
- const core::vector3d<f64> scale(core::iszero(scale_.X) ? FLT_MAX : scale_.X, core::iszero(scale_.Y) ? FLT_MAX : scale_.Y, core::iszero(scale_.Z) ? FLT_MAX : scale_.Z);
- const core::vector3d<f64> invScale(core::reciprocal(scale.X), core::reciprocal(scale.Y), core::reciprocal(scale.Z));
- f64 Y = -asin(core::clamp(mat[2] * invScale.X, -1.0, 1.0));
- const f64 C = cos(Y);
- Y *= RADTODEG64;
- f64 rotx, roty, X, Z;
- if (!core::iszero((T)C)) {
- const f64 invC = core::reciprocal(C);
- rotx = mat[10] * invC * invScale.Z;
- roty = mat[6] * invC * invScale.Y;
- X = atan2(roty, rotx) * RADTODEG64;
- rotx = mat[0] * invC * invScale.X;
- roty = mat[1] * invC * invScale.X;
- Z = atan2(roty, rotx) * RADTODEG64;
- } else {
- X = 0.0;
- rotx = mat[5] * invScale.Y;
- roty = -mat[4] * invScale.Y;
- Z = atan2(roty, rotx) * RADTODEG64;
- }
- // fix values that get below zero
- if (X < 0.0)
- X += 360.0;
- if (Y < 0.0)
- Y += 360.0;
- if (Z < 0.0)
- Z += 360.0;
- return vector3d<T>((T)X, (T)Y, (T)Z);
- }
- //! Returns a rotation that is equivalent to that set by setRotationDegrees().
- template <class T>
- inline core::vector3d<T> CMatrix4<T>::getRotationDegrees() const
- {
- // Note: Using getScale() here make it look like it could do matrix decomposition.
- // It can't! It works (or should work) as long as rotation doesn't flip the handedness
- // aka scale swapping 1 or 3 axes. (I think we could catch that as well by comparing
- // crossproduct of first 2 axes to direction of third axis, but TODO)
- // And maybe it should also offer the solution for the simple calculation
- // without regarding scaling as Irrlicht did before 1.7
- core::vector3d<T> scale(getScale());
- // We assume the matrix uses rotations instead of negative scaling 2 axes.
- // Otherwise it fails even for some simple cases, like rotating around
- // 2 axes by 180° which getScale thinks is a negative scaling.
- if (scale.Y < 0 && scale.Z < 0) {
- scale.Y = -scale.Y;
- scale.Z = -scale.Z;
- } else if (scale.X < 0 && scale.Z < 0) {
- scale.X = -scale.X;
- scale.Z = -scale.Z;
- } else if (scale.X < 0 && scale.Y < 0) {
- scale.X = -scale.X;
- scale.Y = -scale.Y;
- }
- return getRotationDegrees(scale);
- }
- //! Sets matrix to rotation matrix of inverse angles given as parameters
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setInverseRotationRadians(const vector3d<T> &rotation)
- {
- f64 cPitch = cos(rotation.X);
- f64 sPitch = sin(rotation.X);
- f64 cYaw = cos(rotation.Y);
- f64 sYaw = sin(rotation.Y);
- f64 cRoll = cos(rotation.Z);
- f64 sRoll = sin(rotation.Z);
- M[0] = (T)(cYaw * cRoll);
- M[4] = (T)(cYaw * sRoll);
- M[8] = (T)(-sYaw);
- f64 sPitch_sYaw = sPitch * sYaw;
- f64 cPitch_sYaw = cPitch * sYaw;
- M[1] = (T)(sPitch_sYaw * cRoll - cPitch * sRoll);
- M[5] = (T)(sPitch_sYaw * sRoll + cPitch * cRoll);
- M[9] = (T)(sPitch * cYaw);
- M[2] = (T)(cPitch_sYaw * cRoll + sPitch * sRoll);
- M[6] = (T)(cPitch_sYaw * sRoll - sPitch * cRoll);
- M[10] = (T)(cPitch * cYaw);
- return *this;
- }
- //! Sets matrix to rotation matrix defined by axis and angle, assuming LH rotation
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setRotationAxisRadians(const T &angle, const vector3d<T> &axis)
- {
- const f64 c = cos(angle);
- const f64 s = sin(angle);
- const f64 t = 1.0 - c;
- const f64 tx = t * axis.X;
- const f64 ty = t * axis.Y;
- const f64 tz = t * axis.Z;
- const f64 sx = s * axis.X;
- const f64 sy = s * axis.Y;
- const f64 sz = s * axis.Z;
- M[0] = (T)(tx * axis.X + c);
- M[1] = (T)(tx * axis.Y + sz);
- M[2] = (T)(tx * axis.Z - sy);
- M[4] = (T)(ty * axis.X - sz);
- M[5] = (T)(ty * axis.Y + c);
- M[6] = (T)(ty * axis.Z + sx);
- M[8] = (T)(tz * axis.X + sy);
- M[9] = (T)(tz * axis.Y - sx);
- M[10] = (T)(tz * axis.Z + c);
- return *this;
- }
- /*!
- */
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::makeIdentity()
- {
- memset(M, 0, 16 * sizeof(T));
- M[0] = M[5] = M[10] = M[15] = (T)1;
- return *this;
- }
- /*
- check identity with epsilon
- solve floating range problems..
- */
- template <class T>
- inline bool CMatrix4<T>::isIdentity() const
- {
- if (!core::equals(M[12], (T)0) || !core::equals(M[13], (T)0) || !core::equals(M[14], (T)0) || !core::equals(M[15], (T)1))
- return false;
- if (!core::equals(M[0], (T)1) || !core::equals(M[1], (T)0) || !core::equals(M[2], (T)0) || !core::equals(M[3], (T)0))
- return false;
- if (!core::equals(M[4], (T)0) || !core::equals(M[5], (T)1) || !core::equals(M[6], (T)0) || !core::equals(M[7], (T)0))
- return false;
- if (!core::equals(M[8], (T)0) || !core::equals(M[9], (T)0) || !core::equals(M[10], (T)1) || !core::equals(M[11], (T)0))
- return false;
- /*
- if (!core::equals( M[ 0], (T)1 ) ||
- !core::equals( M[ 5], (T)1 ) ||
- !core::equals( M[10], (T)1 ) ||
- !core::equals( M[15], (T)1 ))
- return false;
- for (s32 i=0; i<4; ++i)
- for (s32 j=0; j<4; ++j)
- if ((j != i) && (!iszero((*this)(i,j))))
- return false;
- */
- return true;
- }
- /* Check orthogonality of matrix. */
- template <class T>
- inline bool CMatrix4<T>::isOrthogonal() const
- {
- T dp = M[0] * M[4] + M[1] * M[5] + M[2] * M[6] + M[3] * M[7];
- if (!iszero(dp))
- return false;
- dp = M[0] * M[8] + M[1] * M[9] + M[2] * M[10] + M[3] * M[11];
- if (!iszero(dp))
- return false;
- dp = M[0] * M[12] + M[1] * M[13] + M[2] * M[14] + M[3] * M[15];
- if (!iszero(dp))
- return false;
- dp = M[4] * M[8] + M[5] * M[9] + M[6] * M[10] + M[7] * M[11];
- if (!iszero(dp))
- return false;
- dp = M[4] * M[12] + M[5] * M[13] + M[6] * M[14] + M[7] * M[15];
- if (!iszero(dp))
- return false;
- dp = M[8] * M[12] + M[9] * M[13] + M[10] * M[14] + M[11] * M[15];
- return (iszero(dp));
- }
- /*
- doesn't solve floating range problems..
- but takes care on +/- 0 on translation because we are changing it..
- reducing floating point branches
- but it needs the floats in memory..
- */
- template <class T>
- inline bool CMatrix4<T>::isIdentity_integer_base() const
- {
- if (IR(M[0]) != F32_VALUE_1)
- return false;
- if (IR(M[1]) != 0)
- return false;
- if (IR(M[2]) != 0)
- return false;
- if (IR(M[3]) != 0)
- return false;
- if (IR(M[4]) != 0)
- return false;
- if (IR(M[5]) != F32_VALUE_1)
- return false;
- if (IR(M[6]) != 0)
- return false;
- if (IR(M[7]) != 0)
- return false;
- if (IR(M[8]) != 0)
- return false;
- if (IR(M[9]) != 0)
- return false;
- if (IR(M[10]) != F32_VALUE_1)
- return false;
- if (IR(M[11]) != 0)
- return false;
- if (IR(M[12]) != 0)
- return false;
- if (IR(M[13]) != 0)
- return false;
- if (IR(M[13]) != 0)
- return false;
- if (IR(M[15]) != F32_VALUE_1)
- return false;
- return true;
- }
- template <class T>
- inline vector3d<T> CMatrix4<T>::rotateAndScaleVect(const vector3d<T> &v) const
- {
- return {
- v.X * M[0] + v.Y * M[4] + v.Z * M[8],
- v.X * M[1] + v.Y * M[5] + v.Z * M[9],
- v.X * M[2] + v.Y * M[6] + v.Z * M[10]
- };
- }
- template <class T>
- inline vector3d<T> CMatrix4<T>::scaleThenInvRotVect(const vector3d<T> &v) const
- {
- return {
- v.X * M[0] + v.Y * M[1] + v.Z * M[2],
- v.X * M[4] + v.Y * M[5] + v.Z * M[6],
- v.X * M[8] + v.Y * M[9] + v.Z * M[10]
- };
- }
- template <class T>
- inline vector3d<T> CMatrix4<T>::transformVect(const vector3d<T> &v) const
- {
- return {
- v.X * M[0] + v.Y * M[4] + v.Z * M[8] + M[12],
- v.X * M[1] + v.Y * M[5] + v.Z * M[9] + M[13],
- v.X * M[2] + v.Y * M[6] + v.Z * M[10] + M[14],
- };
- }
- template <class T>
- inline void CMatrix4<T>::transformVect(T *out, const core::vector3df &in) const
- {
- out[0] = in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12];
- out[1] = in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13];
- out[2] = in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14];
- out[3] = in.X * M[3] + in.Y * M[7] + in.Z * M[11] + M[15];
- }
- template <class T>
- inline void CMatrix4<T>::transformVec3(T *out, const T *in) const
- {
- out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + M[12];
- out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + M[13];
- out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + M[14];
- }
- template <class T>
- inline void CMatrix4<T>::transformVec4(T *out, const T *in) const
- {
- out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12];
- out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13];
- out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14];
- out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15];
- }
- //! Transforms a plane by this matrix
- template <class T>
- inline void CMatrix4<T>::transformPlane(core::plane3d<f32> &plane) const
- {
- vector3df member;
- // Transform the plane member point, i.e. rotate, translate and scale it.
- transformVect(member, plane.getMemberPoint());
- // Transform the normal by the transposed inverse of the matrix
- CMatrix4<T> transposedInverse(*this, EM4CONST_INVERSE_TRANSPOSED);
- vector3df normal = transposedInverse.rotateAndScaleVect(plane.Normal);
- plane.setPlane(member, normal.normalize());
- }
- //! Transforms a plane by this matrix
- template <class T>
- inline void CMatrix4<T>::transformPlane(const core::plane3d<f32> &in, core::plane3d<f32> &out) const
- {
- out = in;
- transformPlane(out);
- }
- //! Transforms a axis aligned bounding box more accurately than transformBox()
- template <class T>
- inline void CMatrix4<T>::transformBoxEx(core::aabbox3d<f32> &box) const
- {
- #if defined(USE_MATRIX_TEST)
- if (isIdentity())
- return;
- #endif
- const f32 Amin[3] = {box.MinEdge.X, box.MinEdge.Y, box.MinEdge.Z};
- const f32 Amax[3] = {box.MaxEdge.X, box.MaxEdge.Y, box.MaxEdge.Z};
- f32 Bmin[3];
- f32 Bmax[3];
- Bmin[0] = Bmax[0] = M[12];
- Bmin[1] = Bmax[1] = M[13];
- Bmin[2] = Bmax[2] = M[14];
- const CMatrix4<T> &m = *this;
- for (u32 i = 0; i < 3; ++i) {
- for (u32 j = 0; j < 3; ++j) {
- const f32 a = m(j, i) * Amin[j];
- const f32 b = m(j, i) * Amax[j];
- if (a < b) {
- Bmin[i] += a;
- Bmax[i] += b;
- } else {
- Bmin[i] += b;
- Bmax[i] += a;
- }
- }
- }
- box.MinEdge.X = Bmin[0];
- box.MinEdge.Y = Bmin[1];
- box.MinEdge.Z = Bmin[2];
- box.MaxEdge.X = Bmax[0];
- box.MaxEdge.Y = Bmax[1];
- box.MaxEdge.Z = Bmax[2];
- }
- //! Multiplies this matrix by a 1x4 matrix
- template <class T>
- inline void CMatrix4<T>::multiplyWith1x4Matrix(T *matrix) const
- {
- /*
- 0 1 2 3
- 4 5 6 7
- 8 9 10 11
- 12 13 14 15
- */
- T mat[4];
- mat[0] = matrix[0];
- mat[1] = matrix[1];
- mat[2] = matrix[2];
- mat[3] = matrix[3];
- matrix[0] = M[0] * mat[0] + M[4] * mat[1] + M[8] * mat[2] + M[12] * mat[3];
- matrix[1] = M[1] * mat[0] + M[5] * mat[1] + M[9] * mat[2] + M[13] * mat[3];
- matrix[2] = M[2] * mat[0] + M[6] * mat[1] + M[10] * mat[2] + M[14] * mat[3];
- matrix[3] = M[3] * mat[0] + M[7] * mat[1] + M[11] * mat[2] + M[15] * mat[3];
- }
- template <class T>
- inline void CMatrix4<T>::inverseTranslateVect(vector3df &vect) const
- {
- vect.X = vect.X - M[12];
- vect.Y = vect.Y - M[13];
- vect.Z = vect.Z - M[14];
- }
- template <class T>
- inline void CMatrix4<T>::translateVect(vector3df &vect) const
- {
- vect.X = vect.X + M[12];
- vect.Y = vect.Y + M[13];
- vect.Z = vect.Z + M[14];
- }
- template <class T>
- inline bool CMatrix4<T>::getInverse(CMatrix4<T> &out) const
- {
- /// Calculates the inverse of this Matrix
- /// The inverse is calculated using Cramers rule.
- /// If no inverse exists then 'false' is returned.
- #if defined(USE_MATRIX_TEST)
- if (this->isIdentity()) {
- out = *this;
- return true;
- }
- #endif
- const CMatrix4<T> &m = *this;
- f32 d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
- (m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
- (m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
- (m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
- (m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
- (m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
- if (core::iszero(d, FLT_MIN))
- return false;
- d = core::reciprocal(d);
- out[0] = d * (m[5] * (m[10] * m[15] - m[11] * m[14]) +
- m[6] * (m[11] * m[13] - m[9] * m[15]) +
- m[7] * (m[9] * m[14] - m[10] * m[13]));
- out[1] = d * (m[9] * (m[2] * m[15] - m[3] * m[14]) +
- m[10] * (m[3] * m[13] - m[1] * m[15]) +
- m[11] * (m[1] * m[14] - m[2] * m[13]));
- out[2] = d * (m[13] * (m[2] * m[7] - m[3] * m[6]) +
- m[14] * (m[3] * m[5] - m[1] * m[7]) +
- m[15] * (m[1] * m[6] - m[2] * m[5]));
- out[3] = d * (m[1] * (m[7] * m[10] - m[6] * m[11]) +
- m[2] * (m[5] * m[11] - m[7] * m[9]) +
- m[3] * (m[6] * m[9] - m[5] * m[10]));
- out[4] = d * (m[6] * (m[8] * m[15] - m[11] * m[12]) +
- m[7] * (m[10] * m[12] - m[8] * m[14]) +
- m[4] * (m[11] * m[14] - m[10] * m[15]));
- out[5] = d * (m[10] * (m[0] * m[15] - m[3] * m[12]) +
- m[11] * (m[2] * m[12] - m[0] * m[14]) +
- m[8] * (m[3] * m[14] - m[2] * m[15]));
- out[6] = d * (m[14] * (m[0] * m[7] - m[3] * m[4]) +
- m[15] * (m[2] * m[4] - m[0] * m[6]) +
- m[12] * (m[3] * m[6] - m[2] * m[7]));
- out[7] = d * (m[2] * (m[7] * m[8] - m[4] * m[11]) +
- m[3] * (m[4] * m[10] - m[6] * m[8]) +
- m[0] * (m[6] * m[11] - m[7] * m[10]));
- out[8] = d * (m[7] * (m[8] * m[13] - m[9] * m[12]) +
- m[4] * (m[9] * m[15] - m[11] * m[13]) +
- m[5] * (m[11] * m[12] - m[8] * m[15]));
- out[9] = d * (m[11] * (m[0] * m[13] - m[1] * m[12]) +
- m[8] * (m[1] * m[15] - m[3] * m[13]) +
- m[9] * (m[3] * m[12] - m[0] * m[15]));
- out[10] = d * (m[15] * (m[0] * m[5] - m[1] * m[4]) +
- m[12] * (m[1] * m[7] - m[3] * m[5]) +
- m[13] * (m[3] * m[4] - m[0] * m[7]));
- out[11] = d * (m[3] * (m[5] * m[8] - m[4] * m[9]) +
- m[0] * (m[7] * m[9] - m[5] * m[11]) +
- m[1] * (m[4] * m[11] - m[7] * m[8]));
- out[12] = d * (m[4] * (m[10] * m[13] - m[9] * m[14]) +
- m[5] * (m[8] * m[14] - m[10] * m[12]) +
- m[6] * (m[9] * m[12] - m[8] * m[13]));
- out[13] = d * (m[8] * (m[2] * m[13] - m[1] * m[14]) +
- m[9] * (m[0] * m[14] - m[2] * m[12]) +
- m[10] * (m[1] * m[12] - m[0] * m[13]));
- out[14] = d * (m[12] * (m[2] * m[5] - m[1] * m[6]) +
- m[13] * (m[0] * m[6] - m[2] * m[4]) +
- m[14] * (m[1] * m[4] - m[0] * m[5]));
- out[15] = d * (m[0] * (m[5] * m[10] - m[6] * m[9]) +
- m[1] * (m[6] * m[8] - m[4] * m[10]) +
- m[2] * (m[4] * m[9] - m[5] * m[8]));
- return true;
- }
- //! Inverts a primitive matrix which only contains a translation and a rotation
- //! \param out: where result matrix is written to.
- template <class T>
- inline bool CMatrix4<T>::getInversePrimitive(CMatrix4<T> &out) const
- {
- out.M[0] = M[0];
- out.M[1] = M[4];
- out.M[2] = M[8];
- out.M[3] = 0;
- out.M[4] = M[1];
- out.M[5] = M[5];
- out.M[6] = M[9];
- out.M[7] = 0;
- out.M[8] = M[2];
- out.M[9] = M[6];
- out.M[10] = M[10];
- out.M[11] = 0;
- out.M[12] = (T) - (M[12] * M[0] + M[13] * M[1] + M[14] * M[2]);
- out.M[13] = (T) - (M[12] * M[4] + M[13] * M[5] + M[14] * M[6]);
- out.M[14] = (T) - (M[12] * M[8] + M[13] * M[9] + M[14] * M[10]);
- out.M[15] = 1;
- return true;
- }
- /*!
- */
- template <class T>
- inline bool CMatrix4<T>::makeInverse()
- {
- CMatrix4<T> temp(EM4CONST_NOTHING);
- if (getInverse(temp)) {
- *this = temp;
- return true;
- }
- return false;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator=(const T &scalar)
- {
- for (s32 i = 0; i < 16; ++i)
- M[i] = scalar;
- return *this;
- }
- // Builds a right-handed perspective projection matrix based on a field of view
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovRH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
- _IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
- const T w = static_cast<T>(h / aspectRatio);
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = w;
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)h;
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = -1;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 0;
- if (zClipFromZero) { // DirectX version
- M[10] = (T)(zFar / (zNear - zFar));
- M[14] = (T)(zNear * zFar / (zNear - zFar));
- } else // OpenGL version
- {
- M[10] = (T)((zFar + zNear) / (zNear - zFar));
- M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
- }
- return *this;
- }
- // Builds a left-handed perspective projection matrix based on a field of view
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovLH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
- _IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
- const T w = static_cast<T>(h / aspectRatio);
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = w;
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)h;
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 1;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 0;
- if (zClipFromZero) { // DirectX version
- M[10] = (T)(zFar / (zFar - zNear));
- M[14] = (T)(-zNear * zFar / (zFar - zNear));
- } else // OpenGL version
- {
- M[10] = (T)((zFar + zNear) / (zFar - zNear));
- M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
- }
- return *this;
- }
- // Builds a left-handed perspective projection matrix based on a field of view, with far plane culling at infinity
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovInfinityLH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon)
- {
- const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
- _IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
- const T w = static_cast<T>(h / aspectRatio);
- M[0] = w;
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)h;
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- M[10] = (T)(1.f - epsilon);
- M[11] = 1;
- M[12] = 0;
- M[13] = 0;
- M[14] = (T)(zNear * (epsilon - 1.f));
- M[15] = 0;
- return *this;
- }
- // Builds a left-handed orthogonal projection matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixOrthoLH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- _IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = (T)(2 / widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2 / heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 1;
- if (zClipFromZero) {
- M[10] = (T)(1 / (zFar - zNear));
- M[14] = (T)(zNear / (zNear - zFar));
- } else {
- M[10] = (T)(2 / (zFar - zNear));
- M[14] = (T) - (zFar + zNear) / (zFar - zNear);
- }
- return *this;
- }
- // Builds a right-handed orthogonal projection matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixOrthoRH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- _IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = (T)(2 / widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2 / heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 1;
- if (zClipFromZero) {
- M[10] = (T)(1 / (zNear - zFar));
- M[14] = (T)(zNear / (zNear - zFar));
- } else {
- M[10] = (T)(2 / (zNear - zFar));
- M[14] = (T) - (zFar + zNear) / (zFar - zNear);
- }
- return *this;
- }
- // Builds a right-handed perspective projection matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveRH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- _IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = (T)(2 * zNear / widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2 * zNear / heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = -1;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 0;
- if (zClipFromZero) { // DirectX version
- M[10] = (T)(zFar / (zNear - zFar));
- M[14] = (T)(zNear * zFar / (zNear - zFar));
- } else // OpenGL version
- {
- M[10] = (T)((zFar + zNear) / (zNear - zFar));
- M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
- }
- return *this;
- }
- // Builds a left-handed perspective projection matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveLH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- _IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = (T)(2 * zNear / widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2 * zNear / heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 1;
- M[12] = 0;
- M[13] = 0;
- // M[14] = (T)(zNear*zFar/(zNear-zFar));
- M[15] = 0;
- if (zClipFromZero) { // DirectX version
- M[10] = (T)(zFar / (zFar - zNear));
- M[14] = (T)(zNear * zFar / (zNear - zFar));
- } else // OpenGL version
- {
- M[10] = (T)((zFar + zNear) / (zFar - zNear));
- M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
- }
- return *this;
- }
- // Builds a matrix that flattens geometry into a plane.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildShadowMatrix(const core::vector3df &light, core::plane3df plane, f32 point)
- {
- plane.Normal.normalize();
- const f32 d = plane.Normal.dotProduct(light);
- M[0] = (T)(-plane.Normal.X * light.X + d);
- M[1] = (T)(-plane.Normal.X * light.Y);
- M[2] = (T)(-plane.Normal.X * light.Z);
- M[3] = (T)(-plane.Normal.X * point);
- M[4] = (T)(-plane.Normal.Y * light.X);
- M[5] = (T)(-plane.Normal.Y * light.Y + d);
- M[6] = (T)(-plane.Normal.Y * light.Z);
- M[7] = (T)(-plane.Normal.Y * point);
- M[8] = (T)(-plane.Normal.Z * light.X);
- M[9] = (T)(-plane.Normal.Z * light.Y);
- M[10] = (T)(-plane.Normal.Z * light.Z + d);
- M[11] = (T)(-plane.Normal.Z * point);
- M[12] = (T)(-plane.D * light.X);
- M[13] = (T)(-plane.D * light.Y);
- M[14] = (T)(-plane.D * light.Z);
- M[15] = (T)(-plane.D * point + d);
- return *this;
- }
- // Builds a left-handed look-at matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildCameraLookAtMatrixLH(
- const vector3df &position,
- const vector3df &target,
- const vector3df &upVector)
- {
- vector3df zaxis = target - position;
- zaxis.normalize();
- vector3df xaxis = upVector.crossProduct(zaxis);
- xaxis.normalize();
- vector3df yaxis = zaxis.crossProduct(xaxis);
- M[0] = (T)xaxis.X;
- M[1] = (T)yaxis.X;
- M[2] = (T)zaxis.X;
- M[3] = 0;
- M[4] = (T)xaxis.Y;
- M[5] = (T)yaxis.Y;
- M[6] = (T)zaxis.Y;
- M[7] = 0;
- M[8] = (T)xaxis.Z;
- M[9] = (T)yaxis.Z;
- M[10] = (T)zaxis.Z;
- M[11] = 0;
- M[12] = (T)-xaxis.dotProduct(position);
- M[13] = (T)-yaxis.dotProduct(position);
- M[14] = (T)-zaxis.dotProduct(position);
- M[15] = 1;
- return *this;
- }
- // Builds a right-handed look-at matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildCameraLookAtMatrixRH(
- const vector3df &position,
- const vector3df &target,
- const vector3df &upVector)
- {
- vector3df zaxis = position - target;
- zaxis.normalize();
- vector3df xaxis = upVector.crossProduct(zaxis);
- xaxis.normalize();
- vector3df yaxis = zaxis.crossProduct(xaxis);
- M[0] = (T)xaxis.X;
- M[1] = (T)yaxis.X;
- M[2] = (T)zaxis.X;
- M[3] = 0;
- M[4] = (T)xaxis.Y;
- M[5] = (T)yaxis.Y;
- M[6] = (T)zaxis.Y;
- M[7] = 0;
- M[8] = (T)xaxis.Z;
- M[9] = (T)yaxis.Z;
- M[10] = (T)zaxis.Z;
- M[11] = 0;
- M[12] = (T)-xaxis.dotProduct(position);
- M[13] = (T)-yaxis.dotProduct(position);
- M[14] = (T)-zaxis.dotProduct(position);
- M[15] = 1;
- return *this;
- }
- // creates a new matrix as interpolated matrix from this and the passed one.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::interpolate(const core::CMatrix4<T> &b, f32 time) const
- {
- CMatrix4<T> mat(EM4CONST_NOTHING);
- for (u32 i = 0; i < 16; i += 4) {
- mat.M[i + 0] = (T)(M[i + 0] + (b.M[i + 0] - M[i + 0]) * time);
- mat.M[i + 1] = (T)(M[i + 1] + (b.M[i + 1] - M[i + 1]) * time);
- mat.M[i + 2] = (T)(M[i + 2] + (b.M[i + 2] - M[i + 2]) * time);
- mat.M[i + 3] = (T)(M[i + 3] + (b.M[i + 3] - M[i + 3]) * time);
- }
- return mat;
- }
- // returns transposed matrix
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::getTransposed() const
- {
- CMatrix4<T> t(EM4CONST_NOTHING);
- getTransposed(t);
- return t;
- }
- // returns transposed matrix
- template <class T>
- inline void CMatrix4<T>::getTransposed(CMatrix4<T> &o) const
- {
- o[0] = M[0];
- o[1] = M[4];
- o[2] = M[8];
- o[3] = M[12];
- o[4] = M[1];
- o[5] = M[5];
- o[6] = M[9];
- o[7] = M[13];
- o[8] = M[2];
- o[9] = M[6];
- o[10] = M[10];
- o[11] = M[14];
- o[12] = M[3];
- o[13] = M[7];
- o[14] = M[11];
- o[15] = M[15];
- }
- // used to scale <-1,-1><1,1> to viewport
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildNDCToDCMatrix(const core::rect<s32> &viewport, f32 zScale)
- {
- const f32 scaleX = (viewport.getWidth() - 0.75f) * 0.5f;
- const f32 scaleY = -(viewport.getHeight() - 0.75f) * 0.5f;
- const f32 dx = -0.5f + ((viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X) * 0.5f);
- const f32 dy = -0.5f + ((viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y) * 0.5f);
- makeIdentity();
- M[12] = (T)dx;
- M[13] = (T)dy;
- return setScale(core::vector3d<T>((T)scaleX, (T)scaleY, (T)zScale));
- }
- //! Builds a matrix that rotates from one vector to another
- /** \param from: vector to rotate from
- \param to: vector to rotate to
- http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm
- */
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildRotateFromTo(const core::vector3df &from, const core::vector3df &to)
- {
- // unit vectors
- core::vector3df f(from);
- core::vector3df t(to);
- f.normalize();
- t.normalize();
- // axis multiplication by sin
- core::vector3df vs(t.crossProduct(f));
- // axis of rotation
- core::vector3df v(vs);
- v.normalize();
- // cosine angle
- T ca = f.dotProduct(t);
- core::vector3df vt(v * (1 - ca));
- M[0] = vt.X * v.X + ca;
- M[5] = vt.Y * v.Y + ca;
- M[10] = vt.Z * v.Z + ca;
- vt.X *= v.Y;
- vt.Z *= v.X;
- vt.Y *= v.Z;
- M[1] = vt.X - vs.Z;
- M[2] = vt.Z + vs.Y;
- M[3] = 0;
- M[4] = vt.X + vs.Z;
- M[6] = vt.Y - vs.X;
- M[7] = 0;
- M[8] = vt.Z - vs.Y;
- M[9] = vt.Y + vs.X;
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- M[14] = 0;
- M[15] = 1;
- return *this;
- }
- //! Builds a matrix which rotates a source vector to a look vector over an arbitrary axis
- /** \param camPos: viewer position in world coord
- \param center: object position in world-coord, rotation pivot
- \param translation: object final translation from center
- \param axis: axis to rotate about
- \param from: source vector to rotate from
- */
- template <class T>
- inline void CMatrix4<T>::buildAxisAlignedBillboard(
- const core::vector3df &camPos,
- const core::vector3df ¢er,
- const core::vector3df &translation,
- const core::vector3df &axis,
- const core::vector3df &from)
- {
- // axis of rotation
- core::vector3df up = axis;
- up.normalize();
- const core::vector3df forward = (camPos - center).normalize();
- const core::vector3df right = up.crossProduct(forward).normalize();
- // correct look vector
- const core::vector3df look = right.crossProduct(up);
- // rotate from to
- // axis multiplication by sin
- const core::vector3df vs = look.crossProduct(from);
- // cosine angle
- const f32 ca = from.dotProduct(look);
- core::vector3df vt(up * (1.f - ca));
- M[0] = static_cast<T>(vt.X * up.X + ca);
- M[5] = static_cast<T>(vt.Y * up.Y + ca);
- M[10] = static_cast<T>(vt.Z * up.Z + ca);
- vt.X *= up.Y;
- vt.Z *= up.X;
- vt.Y *= up.Z;
- M[1] = static_cast<T>(vt.X - vs.Z);
- M[2] = static_cast<T>(vt.Z + vs.Y);
- M[3] = 0;
- M[4] = static_cast<T>(vt.X + vs.Z);
- M[6] = static_cast<T>(vt.Y - vs.X);
- M[7] = 0;
- M[8] = static_cast<T>(vt.Z - vs.Y);
- M[9] = static_cast<T>(vt.Y + vs.X);
- M[11] = 0;
- setRotationCenter(center, translation);
- }
- //! Builds a combined matrix which translate to a center before rotation and translate afterward
- template <class T>
- inline void CMatrix4<T>::setRotationCenter(const core::vector3df ¢er, const core::vector3df &translation)
- {
- M[12] = -M[0] * center.X - M[4] * center.Y - M[8] * center.Z + (center.X - translation.X);
- M[13] = -M[1] * center.X - M[5] * center.Y - M[9] * center.Z + (center.Y - translation.Y);
- M[14] = -M[2] * center.X - M[6] * center.Y - M[10] * center.Z + (center.Z - translation.Z);
- M[15] = (T)1.0;
- }
- /*!
- Generate texture coordinates as linear functions so that:
- u = Ux*x + Uy*y + Uz*z + Uw
- v = Vx*x + Vy*y + Vz*z + Vw
- The matrix M for this case is:
- Ux Vx 0 0
- Uy Vy 0 0
- Uz Vz 0 0
- Uw Vw 0 0
- */
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildTextureTransform(f32 rotateRad,
- const core::vector2df &rotatecenter,
- const core::vector2df &translate,
- const core::vector2df &scale)
- {
- const f32 c = cosf(rotateRad);
- const f32 s = sinf(rotateRad);
- M[0] = (T)(c * scale.X);
- M[1] = (T)(s * scale.Y);
- M[2] = 0;
- M[3] = 0;
- M[4] = (T)(-s * scale.X);
- M[5] = (T)(c * scale.Y);
- M[6] = 0;
- M[7] = 0;
- M[8] = (T)(c * scale.X * rotatecenter.X + -s * rotatecenter.Y + translate.X);
- M[9] = (T)(s * scale.Y * rotatecenter.X + c * rotatecenter.Y + translate.Y);
- M[10] = 1;
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- M[14] = 0;
- M[15] = 1;
- return *this;
- }
- // rotate about z axis, center ( 0.5, 0.5 )
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureRotationCenter(f32 rotateRad)
- {
- const f32 c = cosf(rotateRad);
- const f32 s = sinf(rotateRad);
- M[0] = (T)c;
- M[1] = (T)s;
- M[4] = (T)-s;
- M[5] = (T)c;
- M[8] = (T)(0.5f * (s - c) + 0.5f);
- M[9] = (T)(-0.5f * (s + c) + 0.5f);
- return *this;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureTranslate(f32 x, f32 y)
- {
- M[8] = (T)x;
- M[9] = (T)y;
- return *this;
- }
- template <class T>
- inline void CMatrix4<T>::getTextureTranslate(f32 &x, f32 &y) const
- {
- x = (f32)M[8];
- y = (f32)M[9];
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureTranslateTransposed(f32 x, f32 y)
- {
- M[2] = (T)x;
- M[6] = (T)y;
- return *this;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureScale(f32 sx, f32 sy)
- {
- M[0] = (T)sx;
- M[5] = (T)sy;
- return *this;
- }
- template <class T>
- inline void CMatrix4<T>::getTextureScale(f32 &sx, f32 &sy) const
- {
- sx = (f32)M[0];
- sy = (f32)M[5];
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureScaleCenter(f32 sx, f32 sy)
- {
- M[0] = (T)sx;
- M[5] = (T)sy;
- M[8] = (T)(0.5f - 0.5f * sx);
- M[9] = (T)(0.5f - 0.5f * sy);
- return *this;
- }
- // sets all matrix data members at once
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setM(const T *data)
- {
- memcpy(M, data, 16 * sizeof(T));
- return *this;
- }
- //! Compare two matrices using the equal method
- template <class T>
- inline bool CMatrix4<T>::equals(const core::CMatrix4<T> &other, const T tolerance) const
- {
- for (s32 i = 0; i < 16; ++i)
- if (!core::equals(M[i], other.M[i], tolerance))
- return false;
- return true;
- }
- // Multiply by scalar.
- template <class T>
- inline CMatrix4<T> operator*(const T scalar, const CMatrix4<T> &mat)
- {
- return mat * scalar;
- }
- //! Typedef for f32 matrix
- typedef CMatrix4<f32> matrix4;
- //! global const identity matrix
- IRRLICHT_API extern const matrix4 IdentityMatrix;
- } // end namespace core
- } // end namespace irr
|