123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549 |
- // Copyright (C) 2002-2012 Nikolaus Gebhardt
- // This file is part of the "Irrlicht Engine".
- // For conditions of distribution and use, see copyright notice in irrlicht.h
- #pragma once
- #include "irrMath.h"
- #include <functional>
- namespace irr
- {
- namespace core
- {
- //! 3d vector template class with lots of operators and methods.
- /** The vector3d class is used in Irrlicht for three main purposes:
- 1) As a direction vector (most of the methods assume this).
- 2) As a position in 3d space (which is synonymous with a direction vector from the origin to this position).
- 3) To hold three Euler rotations, where X is pitch, Y is yaw and Z is roll.
- */
- template <class T>
- class vector3d
- {
- public:
- //! Default constructor (null vector).
- constexpr vector3d() :
- X(0), Y(0), Z(0) {}
- //! Constructor with three different values
- constexpr vector3d(T nx, T ny, T nz) :
- X(nx), Y(ny), Z(nz) {}
- //! Constructor with the same value for all elements
- explicit constexpr vector3d(T n) :
- X(n), Y(n), Z(n) {}
- // operators
- vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
- vector3d<T> operator+(const vector3d<T> &other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
- vector3d<T> &operator+=(const vector3d<T> &other)
- {
- X += other.X;
- Y += other.Y;
- Z += other.Z;
- return *this;
- }
- vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
- vector3d<T> &operator+=(const T val)
- {
- X += val;
- Y += val;
- Z += val;
- return *this;
- }
- vector3d<T> operator-(const vector3d<T> &other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
- vector3d<T> &operator-=(const vector3d<T> &other)
- {
- X -= other.X;
- Y -= other.Y;
- Z -= other.Z;
- return *this;
- }
- vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
- vector3d<T> &operator-=(const T val)
- {
- X -= val;
- Y -= val;
- Z -= val;
- return *this;
- }
- vector3d<T> operator*(const vector3d<T> &other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
- vector3d<T> &operator*=(const vector3d<T> &other)
- {
- X *= other.X;
- Y *= other.Y;
- Z *= other.Z;
- return *this;
- }
- vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
- vector3d<T> &operator*=(const T v)
- {
- X *= v;
- Y *= v;
- Z *= v;
- return *this;
- }
- vector3d<T> operator/(const vector3d<T> &other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
- vector3d<T> &operator/=(const vector3d<T> &other)
- {
- X /= other.X;
- Y /= other.Y;
- Z /= other.Z;
- return *this;
- }
- vector3d<T> operator/(const T v) const { return vector3d<T>(X / v, Y / v, Z / v); }
- vector3d<T> &operator/=(const T v)
- {
- X /= v;
- Y /= v;
- Z /= v;
- return *this;
- }
- T &operator[](u32 index)
- {
- _IRR_DEBUG_BREAK_IF(index > 2) // access violation
- return *(&X + index);
- }
- const T &operator[](u32 index) const
- {
- _IRR_DEBUG_BREAK_IF(index > 2) // access violation
- return *(&X + index);
- }
- //! sort in order X, Y, Z.
- constexpr bool operator<=(const vector3d<T> &other) const
- {
- return !(*this > other);
- }
- //! sort in order X, Y, Z.
- constexpr bool operator>=(const vector3d<T> &other) const
- {
- return !(*this < other);
- }
- //! sort in order X, Y, Z.
- constexpr bool operator<(const vector3d<T> &other) const
- {
- return X < other.X || (X == other.X && Y < other.Y) ||
- (X == other.X && Y == other.Y && Z < other.Z);
- }
- //! sort in order X, Y, Z.
- constexpr bool operator>(const vector3d<T> &other) const
- {
- return X > other.X || (X == other.X && Y > other.Y) ||
- (X == other.X && Y == other.Y && Z > other.Z);
- }
- constexpr bool operator==(const vector3d<T> &other) const
- {
- return X == other.X && Y == other.Y && Z == other.Z;
- }
- constexpr bool operator!=(const vector3d<T> &other) const
- {
- return !(*this == other);
- }
- // functions
- //! Checks if this vector equals the other one.
- /** Takes floating point rounding errors into account.
- \param other Vector to compare with.
- \return True if the two vector are (almost) equal, else false. */
- bool equals(const vector3d<T> &other) const
- {
- return core::equals(X, other.X) && core::equals(Y, other.Y) && core::equals(Z, other.Z);
- }
- vector3d<T> &set(const T nx, const T ny, const T nz)
- {
- X = nx;
- Y = ny;
- Z = nz;
- return *this;
- }
- vector3d<T> &set(const vector3d<T> &p)
- {
- X = p.X;
- Y = p.Y;
- Z = p.Z;
- return *this;
- }
- //! Get length of the vector.
- T getLength() const { return core::squareroot(X * X + Y * Y + Z * Z); }
- //! Get squared length of the vector.
- /** This is useful because it is much faster than getLength().
- \return Squared length of the vector. */
- T getLengthSQ() const { return X * X + Y * Y + Z * Z; }
- //! Get the dot product with another vector.
- T dotProduct(const vector3d<T> &other) const
- {
- return X * other.X + Y * other.Y + Z * other.Z;
- }
- //! Get distance from another point.
- /** Here, the vector is interpreted as point in 3 dimensional space. */
- T getDistanceFrom(const vector3d<T> &other) const
- {
- return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
- }
- //! Returns squared distance from another point.
- /** Here, the vector is interpreted as point in 3 dimensional space. */
- T getDistanceFromSQ(const vector3d<T> &other) const
- {
- return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
- }
- //! Calculates the cross product with another vector.
- /** \param p Vector to multiply with.
- \return Cross product of this vector with p. */
- vector3d<T> crossProduct(const vector3d<T> &p) const
- {
- return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
- }
- //! Returns if this vector interpreted as a point is on a line between two other points.
- /** It is assumed that the point is on the line.
- \param begin Beginning vector to compare between.
- \param end Ending vector to compare between.
- \return True if this vector is between begin and end, false if not. */
- bool isBetweenPoints(const vector3d<T> &begin, const vector3d<T> &end) const
- {
- const T f = (end - begin).getLengthSQ();
- return getDistanceFromSQ(begin) <= f &&
- getDistanceFromSQ(end) <= f;
- }
- //! Normalizes the vector.
- /** In case of the 0 vector the result is still 0, otherwise
- the length of the vector will be 1.
- \return Reference to this vector after normalization. */
- vector3d<T> &normalize()
- {
- f64 length = X * X + Y * Y + Z * Z;
- if (length == 0) // this check isn't an optimization but prevents getting NAN in the sqrt.
- return *this;
- length = core::reciprocal_squareroot(length);
- X = (T)(X * length);
- Y = (T)(Y * length);
- Z = (T)(Z * length);
- return *this;
- }
- //! Sets the length of the vector to a new value
- vector3d<T> &setLength(T newlength)
- {
- normalize();
- return (*this *= newlength);
- }
- //! Inverts the vector.
- vector3d<T> &invert()
- {
- X *= -1;
- Y *= -1;
- Z *= -1;
- return *this;
- }
- //! Rotates the vector by a specified number of degrees around the Y axis and the specified center.
- /** CAREFUL: For historical reasons rotateXZBy uses a right-handed rotation
- (maybe to make it more similar to the 2D vector rotations which are counterclockwise).
- To have this work the same way as rest of Irrlicht (nodes, matrices, other rotateBy functions) pass -1*degrees in here.
- \param degrees Number of degrees to rotate around the Y axis.
- \param center The center of the rotation. */
- void rotateXZBy(f64 degrees, const vector3d<T> ¢er = vector3d<T>())
- {
- degrees *= DEGTORAD64;
- f64 cs = cos(degrees);
- f64 sn = sin(degrees);
- X -= center.X;
- Z -= center.Z;
- set((T)(X * cs - Z * sn), Y, (T)(X * sn + Z * cs));
- X += center.X;
- Z += center.Z;
- }
- //! Rotates the vector by a specified number of degrees around the Z axis and the specified center.
- /** \param degrees: Number of degrees to rotate around the Z axis.
- \param center: The center of the rotation. */
- void rotateXYBy(f64 degrees, const vector3d<T> ¢er = vector3d<T>())
- {
- degrees *= DEGTORAD64;
- f64 cs = cos(degrees);
- f64 sn = sin(degrees);
- X -= center.X;
- Y -= center.Y;
- set((T)(X * cs - Y * sn), (T)(X * sn + Y * cs), Z);
- X += center.X;
- Y += center.Y;
- }
- //! Rotates the vector by a specified number of degrees around the X axis and the specified center.
- /** \param degrees: Number of degrees to rotate around the X axis.
- \param center: The center of the rotation. */
- void rotateYZBy(f64 degrees, const vector3d<T> ¢er = vector3d<T>())
- {
- degrees *= DEGTORAD64;
- f64 cs = cos(degrees);
- f64 sn = sin(degrees);
- Z -= center.Z;
- Y -= center.Y;
- set(X, (T)(Y * cs - Z * sn), (T)(Y * sn + Z * cs));
- Z += center.Z;
- Y += center.Y;
- }
- //! Creates an interpolated vector between this vector and another vector.
- /** \param other The other vector to interpolate with.
- \param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
- Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
- \return An interpolated vector. This vector is not modified. */
- vector3d<T> getInterpolated(const vector3d<T> &other, f64 d) const
- {
- const f64 inv = 1.0 - d;
- return vector3d<T>((T)(other.X * inv + X * d), (T)(other.Y * inv + Y * d), (T)(other.Z * inv + Z * d));
- }
- //! Creates a quadratically interpolated vector between this and two other vectors.
- /** \param v2 Second vector to interpolate with.
- \param v3 Third vector to interpolate with (maximum at 1.0f)
- \param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
- Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
- \return An interpolated vector. This vector is not modified. */
- vector3d<T> getInterpolated_quadratic(const vector3d<T> &v2, const vector3d<T> &v3, f64 d) const
- {
- // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
- const f64 inv = (T)1.0 - d;
- const f64 mul0 = inv * inv;
- const f64 mul1 = (T)2.0 * d * inv;
- const f64 mul2 = d * d;
- return vector3d<T>((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
- (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
- (T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
- }
- //! Sets this vector to the linearly interpolated vector between a and b.
- /** \param a first vector to interpolate with, maximum at 1.0f
- \param b second vector to interpolate with, maximum at 0.0f
- \param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
- Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
- */
- vector3d<T> &interpolate(const vector3d<T> &a, const vector3d<T> &b, f64 d)
- {
- X = (T)((f64)b.X + ((a.X - b.X) * d));
- Y = (T)((f64)b.Y + ((a.Y - b.Y) * d));
- Z = (T)((f64)b.Z + ((a.Z - b.Z) * d));
- return *this;
- }
- //! Get the rotations that would make a (0,0,1) direction vector point in the same direction as this direction vector.
- /** Thanks to Arras on the Irrlicht forums for this method. This utility method is very useful for
- orienting scene nodes towards specific targets. For example, if this vector represents the difference
- between two scene nodes, then applying the result of getHorizontalAngle() to one scene node will point
- it at the other one.
- Example code:
- // Where target and seeker are of type ISceneNode*
- const vector3df toTarget(target->getAbsolutePosition() - seeker->getAbsolutePosition());
- const vector3df requiredRotation = toTarget.getHorizontalAngle();
- seeker->setRotation(requiredRotation);
- \return A rotation vector containing the X (pitch) and Y (raw) rotations (in degrees) that when applied to a
- +Z (e.g. 0, 0, 1) direction vector would make it point in the same direction as this vector. The Z (roll) rotation
- is always 0, since two Euler rotations are sufficient to point in any given direction. */
- vector3d<T> getHorizontalAngle() const
- {
- vector3d<T> angle;
- // tmp avoids some precision troubles on some compilers when working with T=s32
- f64 tmp = (atan2((f64)X, (f64)Z) * RADTODEG64);
- angle.Y = (T)tmp;
- if (angle.Y < 0)
- angle.Y += 360;
- if (angle.Y >= 360)
- angle.Y -= 360;
- const f64 z1 = core::squareroot(X * X + Z * Z);
- tmp = (atan2((f64)z1, (f64)Y) * RADTODEG64 - 90.0);
- angle.X = (T)tmp;
- if (angle.X < 0)
- angle.X += 360;
- if (angle.X >= 360)
- angle.X -= 360;
- return angle;
- }
- //! Get the spherical coordinate angles
- /** This returns Euler degrees for the point represented by
- this vector. The calculation assumes the pole at (0,1,0) and
- returns the angles in X and Y.
- */
- vector3d<T> getSphericalCoordinateAngles() const
- {
- vector3d<T> angle;
- const f64 length = X * X + Y * Y + Z * Z;
- if (length) {
- if (X != 0) {
- angle.Y = (T)(atan2((f64)Z, (f64)X) * RADTODEG64);
- } else if (Z < 0)
- angle.Y = 180;
- angle.X = (T)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64);
- }
- return angle;
- }
- //! Builds a direction vector from (this) rotation vector.
- /** This vector is assumed to be a rotation vector composed of 3 Euler angle rotations, in degrees.
- The implementation performs the same calculations as using a matrix to do the rotation.
- \param[in] forwards The direction representing "forwards" which will be rotated by this vector.
- If you do not provide a direction, then the +Z axis (0, 0, 1) will be assumed to be forwards.
- \return A direction vector calculated by rotating the forwards direction by the 3 Euler angles
- (in degrees) represented by this vector. */
- vector3d<T> rotationToDirection(const vector3d<T> &forwards = vector3d<T>(0, 0, 1)) const
- {
- const f64 cr = cos(core::DEGTORAD64 * X);
- const f64 sr = sin(core::DEGTORAD64 * X);
- const f64 cp = cos(core::DEGTORAD64 * Y);
- const f64 sp = sin(core::DEGTORAD64 * Y);
- const f64 cy = cos(core::DEGTORAD64 * Z);
- const f64 sy = sin(core::DEGTORAD64 * Z);
- const f64 srsp = sr * sp;
- const f64 crsp = cr * sp;
- const f64 pseudoMatrix[] = {
- (cp * cy), (cp * sy), (-sp),
- (srsp * cy - cr * sy), (srsp * sy + cr * cy), (sr * cp),
- (crsp * cy + sr * sy), (crsp * sy - sr * cy), (cr * cp)};
- return vector3d<T>(
- (T)(forwards.X * pseudoMatrix[0] +
- forwards.Y * pseudoMatrix[3] +
- forwards.Z * pseudoMatrix[6]),
- (T)(forwards.X * pseudoMatrix[1] +
- forwards.Y * pseudoMatrix[4] +
- forwards.Z * pseudoMatrix[7]),
- (T)(forwards.X * pseudoMatrix[2] +
- forwards.Y * pseudoMatrix[5] +
- forwards.Z * pseudoMatrix[8]));
- }
- //! Fills an array of 4 values with the vector data (usually floats).
- /** Useful for setting in shader constants for example. The fourth value
- will always be 0. */
- void getAs4Values(T *array) const
- {
- array[0] = X;
- array[1] = Y;
- array[2] = Z;
- array[3] = 0;
- }
- //! Fills an array of 3 values with the vector data (usually floats).
- /** Useful for setting in shader constants for example.*/
- void getAs3Values(T *array) const
- {
- array[0] = X;
- array[1] = Y;
- array[2] = Z;
- }
- //! X coordinate of the vector
- T X;
- //! Y coordinate of the vector
- T Y;
- //! Z coordinate of the vector
- T Z;
- };
- //! partial specialization for integer vectors
- // Implementer note: inline keyword needed due to template specialization for s32. Otherwise put specialization into a .cpp
- template <>
- inline vector3d<s32> vector3d<s32>::operator/(s32 val) const
- {
- return core::vector3d<s32>(X / val, Y / val, Z / val);
- }
- template <>
- inline vector3d<s32> &vector3d<s32>::operator/=(s32 val)
- {
- X /= val;
- Y /= val;
- Z /= val;
- return *this;
- }
- template <>
- inline vector3d<s32> vector3d<s32>::getSphericalCoordinateAngles() const
- {
- vector3d<s32> angle;
- const f64 length = X * X + Y * Y + Z * Z;
- if (length) {
- if (X != 0) {
- angle.Y = round32((f32)(atan2((f64)Z, (f64)X) * RADTODEG64));
- } else if (Z < 0)
- angle.Y = 180;
- angle.X = round32((f32)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64));
- }
- return angle;
- }
- //! Typedef for a f32 3d vector.
- typedef vector3d<f32> vector3df;
- //! Typedef for an integer 3d vector.
- typedef vector3d<s32> vector3di;
- //! Function multiplying a scalar and a vector component-wise.
- template <class S, class T>
- vector3d<T> operator*(const S scalar, const vector3d<T> &vector)
- {
- return vector * scalar;
- }
- } // end namespace core
- } // end namespace irr
- namespace std
- {
- template <class T>
- struct hash<irr::core::vector3d<T>>
- {
- size_t operator()(const irr::core::vector3d<T> &vec) const
- {
- size_t h1 = hash<T>()(vec.X);
- size_t h2 = hash<T>()(vec.Y);
- size_t h3 = hash<T>()(vec.Z);
- return (h1 << (5 * sizeof(h1)) | h1 >> (3 * sizeof(h1))) ^ (h2 << (2 * sizeof(h2)) | h2 >> (6 * sizeof(h2))) ^ h3;
- }
- };
- }
|