/** * nmrpflash - Netgear Unbrick Utility * Copyright (C) 2016 Joseph Lehner * * nmrpflash is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * nmrpflash is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with nmrpflash. If not, see . * */ #include #include #include #include #include #include #include #include "nmrpd.h" #if defined(NMRPFLASH_WINDOWS) # include # define NMRPFLASH_PRETTY_FMT "%ls" # ifndef ERROR_NDIS_MEDIA_DISCONNECTED # define ERROR_NDIS_MEDIA_DISCONNECTED 0x8034001f # endif # define WPCAP # include #else # include # include # include # include # include # if defined(NMRPFLASH_LINUX) # define NMRPFLASH_AF_PACKET AF_PACKET # include # include # include # else # define NMRPFLASH_AF_PACKET AF_LINK # include # include # endif #endif #ifdef NMRPFLASH_OSX #include #define NMRPFLASH_PRETTY_FMT "%s" #endif struct ethsock { const char *intf; pcap_t *pcap; #ifndef NMRPFLASH_WINDOWS int fd; #ifdef NMRPFLASH_LINUX bool stp; // managed by NetworkManager bool nm_managed; #endif #else HANDLE handle; DWORD index; #endif unsigned timeout; uint8_t hwaddr[6]; }; struct ethsock_arp_undo { uint32_t ipaddr; uint8_t hwaddr[6]; }; struct ethsock_ip_undo { uint32_t ip[2]; }; static int x_pcap_findalldevs(pcap_if_t **devs) { char errbuf[PCAP_ERRBUF_SIZE]; if (pcap_findalldevs(devs, errbuf) != 0) { fprintf(stderr, "%s.\n", errbuf); return -1; } return 0; } static bool intf_get_pcap_flags(const char *intf, bpf_u_int32 *flags) { pcap_if_t *devs, *dev; if (x_pcap_findalldevs(&devs) == 0) { for (dev = devs; dev; dev = dev->next) { if (!strcmp(intf, dev->name)) { *flags = dev->flags; break; } } pcap_freealldevs(devs); return dev != NULL; } return false; } #ifndef NMRPFLASH_WINDOWS static int systemf(const char *fmt, ...) { char cmd[1024]; int ret; va_list va; va_start(va, fmt); ret = vsnprintf(cmd, sizeof(cmd) - 1, fmt, va); if (ret >= sizeof(cmd) - 1) { return -1; } ret = system(cmd); va_end(va); return ret; } #endif #ifndef NMRPFLASH_WINDOWS static inline bool sockaddr_get_hwaddr(struct sockaddr *sa, uint8_t *hwaddr) { void *src; if (!sa || sa->sa_family != NMRPFLASH_AF_PACKET) { return false; } #ifndef NMRPFLASH_LINUX if (((struct sockaddr_dl*)sa)->sdl_type != IFT_ETHER) { return false; } src = LLADDR((struct sockaddr_dl*)sa); #else src = ((struct sockaddr_ll*)sa)->sll_addr; #endif memcpy(hwaddr, src, 6); return true; } #ifdef NMRPFLASH_LINUX static int intf_sys_open(const char* intf, const char* file) { char name[256]; snprintf(name, sizeof(name), "/sys/class/net/%s/%s", intf, file); return open(name, O_RDWR, 0644); } static bool intf_sys_read(const char* intf, const char* file, bool def) { char c; int fd; fd = intf_sys_open(intf, file); if (fd == -1) { return def; } c = 0; read(fd, &c, 1); close(fd); return c ? (c == '1') : def; } static bool intf_stp_enable(const char *intf, bool enabled) { int fd; ssize_t n; fd = intf_sys_open(intf, "bridge/stp_state"); if (fd == -1) { return false; } n = write(fd, enabled ? "1\n" : "0\n", 2); close(fd); return n == 2; } static struct nl_addr *build_ip(uint32_t ip) { struct nl_addr *na = nl_addr_build(AF_INET, &ip, 4); if (!na) { xperror("nl_addr_build"); } return na; } static struct nl_sock *xnl_socket_route() { int err; struct nl_sock *sk = nl_socket_alloc(); if (sk) { if (!(err = nl_connect(sk, NETLINK_ROUTE))) { return sk; } nl_socket_free(sk); nl_perror(err, "nl_connect"); } else { xperror("nl_socket_alloc"); } return NULL; } static bool intf_add_del_ip(const char *intf, uint32_t ipaddr, uint32_t ipmask, bool add) { struct rtnl_addr *ra = NULL; struct nl_sock *sk = NULL; struct nl_addr *laddr = NULL; struct nl_addr *bcast = NULL; int err = 1; if (!(sk = xnl_socket_route())) { return false; } if (!(laddr = build_ip(ipaddr))) { goto out; } nl_addr_set_prefixlen(laddr, bitcount(ipmask)); if (!(bcast = build_ip((ipaddr & ipmask) | ~ipmask))) { goto out; } if (!(ra = rtnl_addr_alloc())) { xperror("rtnl_addr_alloc"); goto out; } rtnl_addr_set_ifindex(ra, if_nametoindex(intf)); rtnl_addr_set_local(ra, laddr); rtnl_addr_set_broadcast(ra, bcast); if ((err = (add ? rtnl_addr_add(sk, ra, 0) : rtnl_addr_delete(sk, ra, 0))) < 0) { if (add && err == -NLE_EXIST) { err = 0; } else if (add || verbosity > 1) { nl_perror(err, add ? "rtnl_addr_add" : "rtnl_addr_delete"); } } out: rtnl_addr_put(ra); nl_addr_put(laddr); nl_addr_put(bcast); nl_socket_free(sk); return !err; } static bool intf_add_del_arp(const char *intf, uint32_t ipaddr, uint8_t *hwaddr, bool add) { #if 0 struct arpreq arp; memset(&arp, 0, sizeof(arp)); arp.arp_ha.sa_family = ARPHRD_ETHER; memcpy(&arp.arp_ha.sa_data, hwaddr, 6); arp.arp_flags = ATF_PERM | ATF_COM; struct sockaddr_in *in = (struct sockaddr_in*)&req.arp_pa; in->sin_addr.s_addr = htonl(ipaddr); in->sin_family = AF_INET; int fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd < 0) { perror("socket"); return false; } bool ret = true; if (ioctl(fd, add ? SIOCSARP : SIOCDARP, &req) < 0) { perror(add ? "ioctl(SIOCSARP)" : "ioctl(SIOCDARP"); ret = false; } close(fd); return ret; #else struct nl_sock *sk; struct rtnl_neigh *neigh; struct nl_addr *mac, *ip; int err = 1; sk = NULL; neigh = NULL; mac = ip = NULL; if (!(sk = xnl_socket_route())) { goto out; } if (!(neigh = rtnl_neigh_alloc())) { xperror("rtnl_neigh_alloc"); goto out; } if (!(mac = nl_addr_build(AF_PACKET, hwaddr, 6))) { xperror("nl_addr_build"); goto out; } if (!(ip = nl_addr_build(AF_INET, &ipaddr, 4))) { xperror("nl_addr_build"); goto out; } rtnl_neigh_set_ifindex(neigh, if_nametoindex(intf)); rtnl_neigh_set_dst(neigh, ip); err = rtnl_neigh_delete(sk, neigh, 0); if (add) { rtnl_neigh_set_lladdr(neigh, mac); rtnl_neigh_set_state(neigh, NUD_PERMANENT); err = rtnl_neigh_add(sk, neigh, NLM_F_CREATE); } if (err && add) { nl_perror(err, "rtnl_neigh_add"); } out: nl_addr_put(ip); nl_addr_put(mac); rtnl_neigh_put(neigh); nl_socket_free(sk); return !err; #endif } #endif static bool intf_get_hwaddr_and_bridge(const char *intf, uint8_t *hwaddr, bool *bridge) { struct ifaddrs *ifas, *ifa; bool found; if (getifaddrs(&ifas) != 0) { xperror("getifaddrs"); return false; } found = false; if (bridge) { *bridge = false; } for (ifa = ifas; ifa; ifa = ifa->ifa_next) { if (!strcmp(ifa->ifa_name, intf)) { if (sockaddr_get_hwaddr(ifa->ifa_addr, hwaddr)) { #ifdef NMRPFLASH_BSD if (bridge) { *bridge = ((struct if_data*) ifa->ifa_data)->ifi_type == IFT_BRIDGE; } #endif found = true; break; } } } freeifaddrs(ifas); return found; } #else void win_perror2(const char *msg, DWORD err) { char *buf = NULL; FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR)&buf, 0, NULL); if (buf) { /* FormatMessageA terminates buf with CRLF! */ fprintf(stderr, "%s: %s", msg, buf); LocalFree(buf); } else { fprintf(stderr, "%s: error %d\n", msg, (int)err); } } static bool intf_get_if_row(NET_IFINDEX index, MIB_IF_ROW2* row) { DWORD err; memset(row, 0, sizeof(*row)); row->InterfaceIndex = index; err = GetIfEntry2(row); if (err != NO_ERROR) { if (verbosity > 1) { win_perror2("GetIfEntry2", err); } return false; } return true; } static bool intf_get_hwaddr_and_index(const char *intf, uint8_t *hwaddr, DWORD *index) { PIP_ADAPTER_ADDRESSES adapters, adapter; ULONG ret, flags, bufLen; bool found = false; flags = GAA_FLAG_INCLUDE_ALL_INTERFACES; bufLen = 0; ret = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, NULL, &bufLen); if (ret != ERROR_BUFFER_OVERFLOW) { win_perror2("GetAdaptersAddresses", ret); return false; } bufLen *= 2; adapters = malloc(bufLen); if (!adapters) { xperror("malloc"); return false; } ret = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, adapters, &bufLen); if (ret == NO_ERROR) { for (adapter = adapters; adapter; adapter = adapter->Next) { if (verbosity > 2) { printf(" %s: Type=%lu, Name=%ls\n", adapter->AdapterName, adapter->IfType, adapter->FriendlyName); } if (adapter->IfType != IF_TYPE_ETHERNET_CSMACD && adapter->IfType != IF_TYPE_IEEE80211) { continue; } /* Interface names from WinPcap are "\Device\NPF_{GUID}", while * AdapterName from GetAdaptersAddresses is just "{GUID}".*/ if (strstr(intf, adapter->AdapterName)) { if (adapter->PhysicalAddressLength == 6) { memcpy(hwaddr, adapter->PhysicalAddress, 6); if (index) { *index = adapter->IfIndex; } found = true; break; } } } } else { win_perror2("GetAdaptersAddresses", ret); } free(adapters); return found; } static const char *intf_name_to_wpcap(const char *intf) { static char buf[128]; if (intf[0] == '\\') { return intf; } do { NET_IFINDEX index; DWORD err; NET_LUID luid; GUID guid; if (sscanf(intf, "net%lu", &index) != 1) { index = if_nametoindex(intf); if (!index) { break; } } err = ConvertInterfaceIndexToLuid(index, &luid); if (err != NO_ERROR) { if (verbosity) { win_perror2("ConvertInterfaceIndexToLuid", err); } break; } err = ConvertInterfaceLuidToGuid(&luid, &guid); if (err != NO_ERROR) { if (verbosity) { win_perror2("ConvertInterfaceLuidToGuid", err); } break; } snprintf(buf, sizeof(buf), "\\Device\\NPF_{%08lX-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}", guid.Data1, guid.Data2, guid.Data3, guid.Data4[0], guid.Data4[1], guid.Data4[2], guid.Data4[3], guid.Data4[4], guid.Data4[5], guid.Data4[6], guid.Data4[7]); return buf; } while (false); fprintf(stderr, "Invalid interface name.\n"); return NULL; } NET_IFINDEX intf_get_index(const char* intf) { const char* p; GUID guid; NET_LUID luid; DWORD err; NET_IFINDEX ret; int n; p = strstr(intf, "NPF_{"); if (!p) { return 0; } sscanf(p + 5, "%08lX-%04hX-%04hX-%02hhX%02hhX-%02hhX%02hhX%02hhX%02hhX%02hhX%02hhX%n", &guid.Data1, &guid.Data2, &guid.Data3, &guid.Data4[0], &guid.Data4[1], &guid.Data4[2], &guid.Data4[3], &guid.Data4[4], &guid.Data4[5], &guid.Data4[6], &guid.Data4[7], &n); if (n != 36) { return 0; } err = ConvertInterfaceGuidToLuid(&guid, &luid); if (err) { win_perror2("ConvertInterfaceGuidToLuid", err); return 0; } err = ConvertInterfaceLuidToIndex(&luid, &ret); if (err) { win_perror2("ConvertInterfaceLuidToIndex", err); return 0; } return ret; } #endif #ifdef NMRPFLASH_OSX void cf_perror(const char* function) { if (verbosity > 1) { fprintf(stderr, "Warning: %s failed\n", function); } } CFStringRef to_cfstring(const char* str) { CFStringRef ret = CFStringCreateWithFileSystemRepresentation( kCFAllocatorDefault, str); if (!ret) { cf_perror("CFStringCreateWithFileSystemRepresentation"); } return ret; } CFPropertyListRef plist_open(const char* filename) { CFURLRef url = NULL; CFReadStreamRef stream = NULL; CFPropertyListRef plist = NULL; do { url = CFURLCreateFromFileSystemRepresentation( kCFAllocatorDefault, (const UInt8*)filename, strlen(filename), false); if (!url) { cf_perror("CFURLCreateFromFileSystemRepresentation"); break; } stream = CFReadStreamCreateWithFile(kCFAllocatorDefault, url); if (!stream) { cf_perror("CFReadStreamCreateWithFile"); break; } if (!CFReadStreamOpen(stream)) { cf_perror("CFReadStreamOpen"); break; } plist = CFPropertyListCreateWithStream( kCFAllocatorDefault, stream, 0, kCFPropertyListImmutable, NULL, NULL); if (!plist) { cf_perror("CFPropertyListCreateWithStream"); break; } } while (false); if (url) { CFRelease(url); } if (stream) { CFReadStreamClose(stream); CFRelease(stream); } return plist; } bool dict_get_value(CFDictionaryRef dict, const char* key, const void** value) { CFStringRef cfkey = to_cfstring(key); if (!cfkey) { return false; } Boolean status = CFDictionaryGetValueIfPresent(dict, cfkey, value); CFRelease(cfkey); return status; } char* dict_get_string(CFDictionaryRef dict, const char* key) { CFStringRef str; if (!dict_get_value(dict, key, (const void**)&str)) { return NULL; } CFIndex len = CFStringGetLength(str) + 1; char* buf = (char*)malloc(len); if (!buf) { perror("malloc"); return NULL; } Boolean status = CFStringGetFileSystemRepresentation( str, buf, len); if (!status) { cf_perror("CFStringGetFileSystemRepresentation"); free(buf); return NULL; } return buf; } typedef struct { const char* device; char* pretty; } find_pretty_name_ctx; void find_pretty_name(const void* key, const void* value, void* context) { find_pretty_name_ctx* ctx = (find_pretty_name_ctx*)context; if (ctx->pretty) { return; } CFDictionaryRef dict; if (!dict_get_value((CFDictionaryRef)value, "Interface", (const void**)&dict)) { return; } char* device = dict_get_string(dict, "DeviceName"); if (!device) { return; } if (!strcmp(ctx->device, device)) { ctx->pretty = dict_get_string(dict, "UserDefinedName"); } free(device); } char* get_pretty_name(const char* interface) { CFPropertyListRef plist = plist_open("/Library/Preferences/SystemConfiguration/preferences.plist"); if (!plist) { return NULL; } // what we're after is a CFDictionary element with the path // /NetworkServices//Interface. The keys we're interested // in are DeviceName (the network interface name), and UserDefinedName // (the pretty name). Since we don't know the interface's UUID, // we have to loop through all of them. CFDictionaryRef dict; find_pretty_name_ctx ctx = { interface, NULL }; if (dict_get_value((CFDictionaryRef)plist, "NetworkServices", (const void**)&dict)) { CFDictionaryApplyFunction(dict, find_pretty_name, &ctx); } CFRelease(plist); return ctx.pretty; } #endif inline uint8_t *ethsock_get_hwaddr(struct ethsock *sock) { return sock->hwaddr; } bool ethsock_is_wifi(struct ethsock *sock) { #ifdef PCAP_IF_WIRELESS bpf_u_int32 flags; if (!intf_get_pcap_flags(sock->intf, &flags)) { return false; } return flags & PCAP_IF_WIRELESS; #else #warning "libpcap version is < 1.9.0" return false; #endif } bool ethsock_is_unplugged(struct ethsock *sock) { #ifdef PCAP_IF_CONNECTION_STATUS bpf_u_int32 flags; if (!intf_get_pcap_flags(sock->intf, &flags)) { return false; } return (flags & PCAP_IF_CONNECTION_STATUS) == PCAP_IF_CONNECTION_STATUS_DISCONNECTED; #else #warning "libpcap version is < 1.9.0" return false; #endif } struct ethsock *ethsock_create(const char *intf, uint16_t protocol) { char buf[PCAP_ERRBUF_SIZE]; struct bpf_program fp; struct ethsock *sock; bool is_bridge = false; int err; #ifdef NMRPFLASH_WINDOWS intf = intf_name_to_wpcap(intf); if (!intf) { return NULL; } #endif sock = malloc(sizeof(struct ethsock)); if (!sock) { xperror("malloc"); return NULL; } buf[0] = '\0'; sock->intf = intf; sock->pcap = pcap_create(sock->intf, buf); if (!sock->pcap) { fprintf(stderr, "pcap_create: %s\n", buf); } if (*buf) { fprintf(stderr, "Warning: %s.\n", buf); } err = pcap_set_snaplen(sock->pcap, BUFSIZ); if (err) { pcap_perror(sock->pcap, "pcap_set_snaplen"); goto cleanup; } err = pcap_set_promisc(sock->pcap, 1); if (err) { pcap_perror(sock->pcap, "pcap_set_promisc"); goto cleanup; } err = pcap_set_timeout(sock->pcap, 200); if (err) { pcap_perror(sock->pcap, "pcap_set_timeout"); goto cleanup; } err = pcap_set_immediate_mode(sock->pcap, 1); if (err) { pcap_perror(sock->pcap, "pcap_set_immediate_mode"); goto cleanup; } err = pcap_activate(sock->pcap); if (err < 0) { pcap_perror(sock->pcap, "pcap_activate"); goto cleanup; } else if (err > 0) { fprintf(stderr, "Warning: %s.\n", pcap_geterr(sock->pcap)); } if (pcap_datalink(sock->pcap) != DLT_EN10MB) { fprintf(stderr, "%s is not an ethernet interface.\n", intf); goto cleanup; } #ifndef NMRPFLASH_WINDOWS err = !intf_get_hwaddr_and_bridge(intf, sock->hwaddr, &is_bridge); #else err = !intf_get_hwaddr_and_index(intf, sock->hwaddr, &sock->index); #endif if (err) { fprintf(stderr, "Failed to get interface info.\n"); goto cleanup; } #ifdef NMRPFLASH_WINDOWS err = pcap_setmintocopy(sock->pcap, 0); if (err) { pcap_perror(sock->pcap, "pcap_setmintocopy"); goto cleanup; } sock->handle = pcap_getevent(sock->pcap); if (!sock->handle) { pcap_perror(sock->pcap, "pcap_getevent"); goto cleanup; } #else sock->fd = pcap_get_selectable_fd(sock->pcap); if (sock->fd == -1) { pcap_perror(sock->pcap, "pcap_get_selectable_fd"); goto cleanup; } #endif snprintf(buf, sizeof(buf), "ether proto 0x%04x and not ether src %s", protocol, mac_to_str(sock->hwaddr)); err = pcap_compile(sock->pcap, &fp, buf, 0, 0); if (err) { pcap_perror(sock->pcap, "pcap_compile"); goto cleanup; } err = pcap_setfilter(sock->pcap, &fp); pcap_freecode(&fp); if (err) { pcap_perror(sock->pcap, "pcap_setfilter"); goto cleanup; } #ifdef NMRPFLASH_LINUX // nmrpflash does not work on bridge interfaces with STP enabled if ((sock->stp = intf_sys_read(intf, "bridge/stp_state", false))) { if (!intf_stp_enable(intf, false)) { fprintf(stderr, "Warning: failed to disable STP on %s.\n", intf); } } err = system("nmcli -v > /dev/null"); if (!err) { err = systemf("nmcli -f GENERAL.STATE device show %s | grep -q unmanaged", sock->intf); if (!err) { sock->nm_managed = false; } else { sock->nm_managed = true; err = systemf("nmcli device set ifname %s managed no", sock->intf); if (err) { printf("Warning: failed to temporarily disable NetworkManager\n"); } else if (verbosity > 1) { printf("Temporarily disabling NetworkManager on interface.\n"); } } } else { sock->nm_managed = false; } #else if (is_bridge) { fprintf(stderr, "Warning: bridge interfaces are not fully " "supported on this platform.\n"); } #endif return sock; cleanup: ethsock_close(sock); return NULL; } ssize_t ethsock_recv(struct ethsock *sock, void *buf, size_t len) { struct pcap_pkthdr* hdr; const u_char *capbuf; int status; #ifdef NMRPFLASH_WINDOWS DWORD ret; if (sock->timeout) { ret = WaitForSingleObject(sock->handle, sock->timeout); if (ret == WAIT_TIMEOUT) { return 0; } else if (ret != WAIT_OBJECT_0) { win_perror2("WaitForSingleObject", ret); return -1; } } #else if (sock->timeout) { status = select_fd(sock->fd, sock->timeout); if (status < 0) { return -1; } else if (status == 0) { return 0; } } #endif status = pcap_next_ex(sock->pcap, &hdr, &capbuf); switch (status) { case 1: memcpy(buf, capbuf, MIN(len, hdr->caplen)); return hdr->caplen; case 0: return 0; case -1: pcap_perror(sock->pcap, "pcap_next_ex"); return -1; default: fprintf(stderr, "pcap_next_ex: returned %d.\n", status); return -1; } } int ethsock_send(struct ethsock *sock, void *buf, size_t len) { if (pcap_inject(sock->pcap, buf, len) != len) { #ifdef NMRPFLASH_WINDOWS // Npcap's pcap_inject fails in many cases where neither // Linux or macOS report an error. For now, we simply // ignore errors if unplugged (and let all other through // as well, just printing a debug line). if (!ethsock_is_unplugged(sock) && verbosity > 1) { pcap_perror(sock->pcap, "pcap_inject"); } return 0; #endif pcap_perror(sock->pcap, "pcap_inject"); return -1; } return 0; } int ethsock_close(struct ethsock *sock) { if (!sock) { return 0; } #ifdef NMRPFLASH_LINUX if (sock->stp) { intf_stp_enable(sock->intf, true); } if (sock->nm_managed) { systemf("nmcli device set ifname %s managed yes", sock->intf); } #endif if (sock->pcap) { pcap_close(sock->pcap); } free(sock); return 0; } inline int ethsock_set_timeout(struct ethsock *sock, unsigned msec) { sock->timeout = msec; return 0; } unsigned ethsock_get_timeout(struct ethsock *sock) { return sock->timeout; } static int ethsock_arp(struct ethsock *sock, uint8_t *hwaddr, uint32_t ipaddr, struct ethsock_arp_undo **undo) { #if defined(NMRPFLASH_UNIX) && !defined(NMRPFLASH_LINUX) struct in_addr addr = { .s_addr = ipaddr }; #elif defined(NMRPFLASH_WINDOWS) DWORD err; MIB_IPNETROW arp = { .dwIndex = sock->index, .dwPhysAddrLen = 6, .dwAddr = ipaddr, .dwType = MIB_IPNET_TYPE_STATIC }; memcpy(arp.bPhysAddr, hwaddr, 6); #endif if (undo) { #if defined(NMRPFLASH_LINUX) if (!intf_add_del_arp(sock->intf, ipaddr, hwaddr, true)) { return -1; } #elif defined(NMRPFLASH_WINDOWS) err = CreateIpNetEntry(&arp); if (err != NO_ERROR) { win_perror2("CreateIpNetEntry", err); return -1; } #else if (systemf("arp -s %s %s", inet_ntoa(addr), mac_to_str(hwaddr)) != 0) { return -1; } #endif *undo = malloc(sizeof(struct ethsock_arp_undo)); if (!*undo) { xperror("malloc"); return -1; } (*undo)->ipaddr = ipaddr; memcpy((*undo)->hwaddr, hwaddr, 6); } else { #if defined(NMRPFLASH_LINUX) if (!intf_add_del_arp(sock->intf, ipaddr, hwaddr, false)) { return -1; } #elif defined(NMRPFLASH_WINDOWS) return DeleteIpNetEntry(&arp) ? 0 : -1; #else return systemf("arp -d %s &> /dev/null", inet_ntoa(addr)); #endif } return 0; } int ethsock_arp_add(struct ethsock *sock, uint8_t *hwaddr, uint32_t ipaddr, struct ethsock_arp_undo **undo) { // remove any previous ARP entry ethsock_arp(sock, hwaddr, ipaddr, NULL); // add the new ARP entry return undo ? ethsock_arp(sock, hwaddr, ipaddr, undo) : -1; } int ethsock_arp_del(struct ethsock *sock, struct ethsock_arp_undo **undo) { if (!*undo) { return 0; } int ret = ethsock_arp(sock, (*undo)->hwaddr, (*undo)->ipaddr, NULL); free(*undo); *undo = NULL; return ret; } static bool get_hwaddr_from_pcap(const pcap_if_t *dev, uint8_t *hwaddr) { #ifndef NMRPFLASH_WINDOWS pcap_addr_t *addr; int i; for (addr = dev->addresses; addr; addr = addr->next) { if (verbosity > 1) { printf("%s: sa_family=%d, sa_data={ ", dev->name, addr->addr->sa_family); for (i = 0; i != sizeof(addr->addr->sa_data); ++i) { printf("%02x ", addr->addr->sa_data[i] & 0xff); } printf("}\n"); } if (sockaddr_get_hwaddr(addr->addr, hwaddr)) { return true; } } return intf_get_hwaddr_and_bridge(dev->name, hwaddr, NULL); #else return intf_get_hwaddr_and_index(dev->name, hwaddr, NULL); #endif } int ethsock_list_all(void) { pcap_if_t *devs, *dev; pcap_addr_t *addr; uint8_t hwaddr[6]; unsigned dev_num = 0, dev_ok = 0; #if defined(NMRPFLASH_WINDOWS) wchar_t *pretty = NULL; NET_IFINDEX index; MIB_IF_ROW2 row; #elif defined(NMRPFLASH_OSX) char *pretty = NULL; #endif if (x_pcap_findalldevs(&devs) != 0) { return -1; } memset(hwaddr, 0, 6); for (dev = devs; dev; dev = dev->next, ++dev_num) { if (dev->flags & PCAP_IF_LOOPBACK) { if (verbosity) { printf("%-15s (loopback device)\n", dev->name); } continue; } if (!get_hwaddr_from_pcap(dev, hwaddr)) { if (verbosity) { printf("%-15s (not an ethernet device)\n", dev->name); } continue; } #ifndef NMRPFLASH_WINDOWS printf("%-15s", dev->name); # ifdef NMRPFLASH_OSX pretty = get_pretty_name(dev->name); # endif #else index = intf_get_index(dev->name); if (intf_get_if_row(index, &row)) { if (!row.InterfaceAndOperStatusFlags.HardwareInterface) { if (verbosity) { printf("%-15s (virtual interface)\n", dev->name); } continue; } if (row.Alias[0]) { pretty = row.Alias; } } if (!verbosity && index) { printf("net%-2lu", index); } else { printf("%-15s", dev->name); } #endif for (addr = dev->addresses; addr; addr = addr->next) { if (addr->addr->sa_family == AF_INET) { printf(" %-15s", inet_ntoa(((struct sockaddr_in*)addr->addr)->sin_addr)); break; } } if (!addr) { printf(" %-15s", "0.0.0.0"); } printf(" %s", mac_to_str(hwaddr)); #if defined(NMRPFLASH_WINDOWS) || defined(NMRPFLASH_OSX) if (pretty) { printf(" (" NMRPFLASH_PRETTY_FMT ")", pretty); } else if (dev->description) { printf(" (%s)", dev->description); } #endif #ifdef NMRPFLASH_OSX free(pretty); #endif printf("\n"); ++dev_ok; } if (!dev_ok) { printf("No suitable network interfaces found.\n"); } return 0; } int ethsock_for_each_ip(struct ethsock *sock, ethsock_ip_callback_t callback, void *arg) { struct ethsock_ip_callback_args args; pcap_if_t *devs, *dev; pcap_addr_t *addr; int status = 0; if (x_pcap_findalldevs(&devs) != 0) { return -1; } args.arg = arg; for (dev = devs; dev; dev = dev->next) { if (strcmp(sock->intf, dev->name)) { continue; } for (addr = dev->addresses; addr; addr = addr->next) { if (addr->addr->sa_family == AF_INET) { args.ipaddr = &((struct sockaddr_in*)addr->addr)->sin_addr; args.ipmask = &((struct sockaddr_in*)addr->netmask)->sin_addr; status = callback(&args); if (status <= 0) { break; } } } break; } pcap_freealldevs(devs); return status <= 0 ? status : 0; } static inline void set_addr(void *p, uint32_t addr) { struct sockaddr_in* sin = p; sin->sin_family = AF_INET; sin->sin_addr.s_addr = addr; #ifdef NMRPFLASH_BSD ((struct sockaddr*)p)->sa_len = sizeof(struct sockaddr_in); #endif } #if !defined(NMRPFLASH_WINDOWS) && !defined(NMRPFLASH_LINUX) static bool intf_up(int fd, const char *intf, bool up) { struct ifreq ifr; strncpy(ifr.ifr_name, intf, IFNAMSIZ); if (ioctl(fd, SIOCGIFFLAGS, &ifr) != 0) { if (up) { xperror("ioctl(SIOCGIFFLAGS)"); } return false; } if (!up) { ifr.ifr_flags &= ~(IFF_UP | IFF_RUNNING); } else { ifr.ifr_flags |= IFF_UP | IFF_RUNNING; } if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) { if (up) { xperror("ioctl(SIOCSIFFLAGS)"); } return false; } return true; } #endif static int ethsock_ip_add_del(struct ethsock *sock, uint32_t ipaddr, uint32_t ipmask, struct ethsock_ip_undo **undo, bool add) { int ret, fd; if (add && undo) { if (!(*undo = malloc(sizeof(struct ethsock_ip_undo)))) { xperror("malloc"); return -1; } (*undo)->ip[0] = ipaddr; (*undo)->ip[1] = ipmask; } else if (!add && (!undo || !*undo)) { return 0; } ret = -1; fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd < 0) { sock_perror("socket"); goto out; } #ifndef NMRPFLASH_WINDOWS #ifdef NMRPFLASH_LINUX if (!intf_add_del_ip(sock->intf, (*undo)->ip[0], (*undo)->ip[1], add)) { goto out; } #else // NMRPFLASH_OSX (or any other BSD) struct ifaliasreq ifra; memset(&ifra, 0, sizeof(ifra)); strncpy(ifra.ifra_name, sock->intf, IFNAMSIZ); set_addr(&ifra.ifra_addr, ipaddr); set_addr(&ifra.ifra_mask, ipmask); //set_addr(&ifra.ifra_broadaddr, (ipaddr & ipmask) | ~ipmask); if (ioctl(fd, add ? SIOCAIFADDR : SIOCDIFADDR, &ifra) != 0) { if (add) { xperror("ioctl(SIOCAIFADDR"); } goto out; } if (add) { (*undo)->ip[0] = ipaddr; (*undo)->ip[1] = ipmask; intf_up(fd, ifra.ifra_name, true); } #endif #else // NMRPFLASH_WINDOWS MIB_UNICASTIPADDRESS_ROW row; DWORD err; int i; memset(&row, 0, sizeof(row)); row.InterfaceIndex = sock->index; set_addr(&row.Address.Ipv4, ipaddr); row.Address.si_family = AF_INET; if (add) { row.PrefixOrigin = IpPrefixOriginManual; row.SuffixOrigin = IpPrefixOriginManual; row.OnLinkPrefixLength = bitcount(ipmask); row.SkipAsSource = false; row.PreferredLifetime = 0xffffffff; row.ValidLifetime = 0xffffffff; } if (add) { err = CreateUnicastIpAddressEntry(&row); if (err != NO_ERROR && err != ERROR_OBJECT_ALREADY_EXISTS) { win_perror2("CreateUnicastIpAddressEntry", err); goto out; } if (err != ERROR_OBJECT_ALREADY_EXISTS) { /* Wait until the new IP has actually been added */ for (i = 0; i < 20; ++i) { err = GetUnicastIpAddressEntry(&row); if (err != NO_ERROR) { win_perror2("GetUnicastIpAddressEntry", err); goto out; } if (row.DadState == IpDadStateTentative) { Sleep(500); } else { break; } } if (row.DadState == IpDadStateDeprecated) { fprintf(stderr, "Warning: IP address marked as deprecated.\n"); } else if (row.DadState == IpDadStateTentative) { fprintf(stderr, "Warning: IP address marked as tentative.\n"); } else if (row.DadState != IpDadStatePreferred) { fprintf(stderr, "Failed to add IP address (state=%d).\n", row.DadState); goto out; } } } else { err = DeleteUnicastIpAddressEntry(&row); if (err != NO_ERROR) { win_perror2("DeleteUnicastIpAddressEntry", err); goto out; } } #endif ret = 0; out: #ifndef NMRPFLASH_WINDOWS close(fd); #else closesocket(fd); #endif if (ret != 0 && undo) { free(*undo); *undo = NULL; } return ret; } int ethsock_ip_add(struct ethsock *sock, uint32_t ipaddr, uint32_t ipmask, struct ethsock_ip_undo **undo) { return ethsock_ip_add_del(sock, ipaddr, ipmask, undo, true); } int ethsock_ip_del(struct ethsock *sock, struct ethsock_ip_undo **undo) { if (!undo || !*undo) { return 0; } int ret; if ((*undo)->ip[0] != INADDR_NONE) { ret = ethsock_ip_add_del(sock, (*undo)->ip[0], (*undo)->ip[1], undo, false); } else { ret = 0; } free(*undo); *undo = NULL; return ret; }