Browse Source

Add EVP demo for X25519 key exchange

This offers both a known answer test with fixed keys and also
demonstrates a more realistic usage with random keys.

Fixes #14118.

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/17799)
Hugo Landau 2 years ago
parent
commit
2cc7c9b698
1 changed files with 278 additions and 0 deletions
  1. 278 0
      demos/keyexch/x25519.c

+ 278 - 0
demos/keyexch/x25519.c

@@ -0,0 +1,278 @@
+/*
+ * Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License").  You may not use
+ * this file except in compliance with the License.  You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <stdio.h>
+#include <string.h>
+#include <openssl/core_names.h>
+#include <openssl/evp.h>
+
+/*
+ * This is a demonstration of key exchange using X25519.
+ *
+ * The variables beginning `peer1_` / `peer2_` are data which would normally be
+ * accessible to that peer.
+ *
+ * Ordinarily you would use random keys, which are demonstrated
+ * below when use_kat=0. A known answer test is demonstrated
+ * when use_kat=1.
+ */
+
+/* A property query used for selecting the X25519 implementation. */
+static const char *propq = NULL;
+
+static const unsigned char peer1_privk_data[32] = {
+    0x80, 0x5b, 0x30, 0x20, 0x25, 0x4a, 0x70, 0x2c,
+    0xad, 0xa9, 0x8d, 0x7d, 0x47, 0xf8, 0x1b, 0x20,
+    0x89, 0xd2, 0xf9, 0x14, 0xac, 0x92, 0x27, 0xf2,
+    0x10, 0x7e, 0xdb, 0x21, 0xbd, 0x73, 0x73, 0x5d
+};
+
+static const unsigned char peer2_privk_data[32] = {
+    0xf8, 0x84, 0x19, 0x69, 0x79, 0x13, 0x0d, 0xbd,
+    0xb1, 0x76, 0xd7, 0x0e, 0x7e, 0x0f, 0xb6, 0xf4,
+    0x8c, 0x4a, 0x8c, 0x5f, 0xd8, 0x15, 0x09, 0x0a,
+    0x71, 0x78, 0x74, 0x92, 0x0f, 0x85, 0xc8, 0x43
+};
+
+static const unsigned char expected_result[32] = {
+    0x19, 0x71, 0x26, 0x12, 0x74, 0xb5, 0xb1, 0xce,
+    0x77, 0xd0, 0x79, 0x24, 0xb6, 0x0a, 0x5c, 0x72,
+    0x0c, 0xa6, 0x56, 0xc0, 0x11, 0xeb, 0x43, 0x11,
+    0x94, 0x3b, 0x01, 0x45, 0xca, 0x19, 0xfe, 0x09
+};
+
+typedef struct peer_data_st {
+    const char *name;               /* name of peer */
+    EVP_PKEY *privk;                /* privk generated for peer */
+    unsigned char pubk_data[32];    /* generated pubk to send to other peer */
+
+    unsigned char *secret;          /* allocated shared secret buffer */
+    size_t secret_len;
+} PEER_DATA;
+
+/*
+ * Prepare for X25519 key exchange. The public key to be sent to the remote peer
+ * is put in pubk_data, which should be a 32-byte buffer. Returns 1 on success.
+ */
+static int keyexch_x25519_before(
+    OSSL_LIB_CTX *libctx,
+    const unsigned char *kat_privk_data,
+    PEER_DATA *local_peer)
+{
+    int rv = 0;
+    size_t pubk_data_len = 0;
+
+    /* Generate or load X25519 key for the peer */
+    if (kat_privk_data != NULL)
+        local_peer->privk =
+            EVP_PKEY_new_raw_private_key_ex(libctx, "X25519", propq,
+                                            kat_privk_data,
+                                            sizeof(peer1_privk_data));
+    else
+        local_peer->privk = EVP_PKEY_Q_keygen(libctx, propq, "X25519");
+
+    if (local_peer->privk == NULL) {
+        fprintf(stderr, "Could not load or generate private key\n");
+        goto end;
+    }
+
+    /* Get public key corresponding to the private key */
+    if (EVP_PKEY_get_octet_string_param(local_peer->privk,
+                                        OSSL_PKEY_PARAM_PUB_KEY,
+                                        local_peer->pubk_data,
+                                        sizeof(local_peer->pubk_data),
+                                        &pubk_data_len) == 0) {
+        fprintf(stderr, "EVP_PKEY_get_octet_string_param() failed\n");
+        goto end;
+    }
+
+    /* X25519 public keys are always 32 bytes */
+    if (pubk_data_len != 32) {
+        fprintf(stderr, "EVP_PKEY_get_octet_string_param() "
+                "yielded wrong length\n");
+        goto end;
+    }
+
+    rv = 1;
+end:
+    if (rv == 0) {
+        EVP_PKEY_free(local_peer->privk);
+        local_peer->privk = NULL;
+    }
+
+    return rv;
+}
+
+/*
+ * Complete X25519 key exchange. remote_peer_pubk_data should be the 32 byte
+ * public key value received from the remote peer. On success, returns 1 and the
+ * secret is pointed to by *secret. The caller must free it.
+ */
+static int keyexch_x25519_after(
+    OSSL_LIB_CTX *libctx,
+    int use_kat,
+    PEER_DATA *local_peer,
+    const unsigned char *remote_peer_pubk_data)
+{
+    int rv = 0;
+    EVP_PKEY *remote_peer_pubk = NULL;
+    EVP_PKEY_CTX *ctx = NULL;
+
+    local_peer->secret = NULL;
+
+    /* Load public key for remote peer. */
+    remote_peer_pubk =
+        EVP_PKEY_new_raw_public_key_ex(libctx, "X25519", propq,
+                                       remote_peer_pubk_data, 32);
+    if (remote_peer_pubk == NULL) {
+        fprintf(stderr, "EVP_PKEY_new_raw_public_key_ex() failed\n");
+        goto end;
+    }
+
+    /* Create key exchange context. */
+    ctx = EVP_PKEY_CTX_new_from_pkey(libctx, local_peer->privk, propq);
+    if (ctx == NULL) {
+        fprintf(stderr, "EVP_PKEY_CTX_new_from_pkey() failed\n");
+        goto end;
+    }
+
+    /* Initialize derivation process. */
+    if (EVP_PKEY_derive_init(ctx) == 0) {
+        fprintf(stderr, "EVP_PKEY_derive_init() failed\n");
+        goto end;
+    }
+
+    /* Configure each peer with the other peer's public key. */
+    if (EVP_PKEY_derive_set_peer(ctx, remote_peer_pubk) == 0) {
+        fprintf(stderr, "EVP_PKEY_derive_set_peer() failed\n");
+        goto end;
+    }
+
+    /* Determine the secret length. */
+    if (EVP_PKEY_derive(ctx, NULL, &local_peer->secret_len) == 0) {
+        fprintf(stderr, "EVP_PKEY_derive() failed\n");
+        goto end;
+    }
+
+    /*
+     * We are using X25519, so the secret generated will always be 32 bytes.
+     * However for exposition, the code below demonstrates a generic
+     * implementation for arbitrary lengths.
+     */
+    if (local_peer->secret_len != 32) { /* unreachable */
+        fprintf(stderr, "Secret is always 32 bytes for X25519\n");
+        goto end;
+    }
+
+    /* Allocate memory for shared secrets. */
+    local_peer->secret = OPENSSL_malloc(local_peer->secret_len);
+    if (local_peer->secret == NULL) {
+        fprintf(stderr, "Could not allocate memory for secret\n");
+        goto end;
+    }
+
+    /* Derive the shared secret. */
+    if (EVP_PKEY_derive(ctx, local_peer->secret,
+                        &local_peer->secret_len) == 0) {
+        fprintf(stderr, "EVP_PKEY_derive() failed\n");
+        goto end;
+    }
+
+    printf("Shared secret (%s):\n", local_peer->name);
+    BIO_dump_indent_fp(stdout, local_peer->secret, local_peer->secret_len, 2);
+    putchar('\n');
+
+    rv = 1;
+end:
+    EVP_PKEY_CTX_free(ctx);
+    EVP_PKEY_free(remote_peer_pubk);
+    if (rv == 0) {
+        OPENSSL_clear_free(local_peer->secret, local_peer->secret_len);
+        local_peer->secret = NULL;
+    }
+
+    return rv;
+}
+
+static int keyexch_x25519(int use_kat)
+{
+    int rv = 0;
+    OSSL_LIB_CTX *libctx = NULL;
+    PEER_DATA peer1 = {"peer 1"}, peer2 = {"peer 2"};
+
+    /*
+     * Each peer generates its private key and sends its public key
+     * to the other peer. The private key is stored locally for
+     * later use.
+     */
+    if (keyexch_x25519_before(libctx, use_kat ? peer1_privk_data : NULL,
+                              &peer1) == 0)
+        return 0;
+
+    if (keyexch_x25519_before(libctx, use_kat ? peer2_privk_data : NULL,
+                              &peer2) == 0)
+        return 0;
+
+    /*
+     * Each peer uses the other peer's public key to perform key exchange.
+     * After this succeeds, each peer has the same secret in its
+     * PEER_DATA.
+     */
+    if (keyexch_x25519_after(libctx, use_kat, &peer1, peer2.pubk_data) == 0)
+        return 0;
+
+    if (keyexch_x25519_after(libctx, use_kat, &peer2, peer1.pubk_data) == 0)
+        return 0;
+
+    /*
+     * Here we demonstrate the secrets are equal for exposition purposes.
+     *
+     * Although in practice you will generally not need to compare secrets
+     * produced through key exchange, if you do compare cryptographic secrets,
+     * always do so using a constant-time function such as CRYPTO_memcmp, never
+     * using memcmp(3).
+     */
+    if (CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secret_len) != 0) {
+        fprintf(stderr, "Negotiated secrets do not match\n");
+        goto end;
+    }
+
+    /* If we are doing the KAT, the secret should equal our reference result. */
+    if (use_kat && CRYPTO_memcmp(peer1.secret, expected_result,
+                                 peer1.secret_len) != 0) {
+        fprintf(stderr, "Did not get expected result\n");
+        goto end;
+    }
+
+    rv = 1;
+end:
+    /* The secrets are sensitive, so ensure they are erased before freeing. */
+    OPENSSL_clear_free(peer1.secret, peer1.secret_len);
+    OPENSSL_clear_free(peer2.secret, peer2.secret_len);
+
+    EVP_PKEY_free(peer1.privk);
+    EVP_PKEY_free(peer2.privk);
+    OSSL_LIB_CTX_free(libctx);
+    return rv;
+}
+
+int main(int argc, char **argv)
+{
+    /* Test X25519 key exchange with known result. */
+    printf("Key exchange using known answer (deterministic):\n");
+    if (keyexch_x25519(1) == 0)
+        return 1;
+
+    /* Test X25519 key exchange with random keys. */
+    printf("Key exchange using random keys:\n");
+    if (keyexch_x25519(0) == 0)
+        return 1;
+
+    return 0;
+}