Browse Source

Docs: add general document on how pass phrases are handled

Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6179)
Richard Levitte 6 years ago
parent
commit
491c35324c
1 changed files with 182 additions and 0 deletions
  1. 182 0
      doc/man7/passphrase-encoding.pod

+ 182 - 0
doc/man7/passphrase-encoding.pod

@@ -0,0 +1,182 @@
+=pod
+
+=encoding utf8
+
+=head1 NAME
+
+password encoding
+- How diverse parts of OpenSSL treat pass phrases character encoding
+
+=head1 DESCRIPTION
+
+In a modern world with all sorts of character encodings, the treatment of pass
+phrases has become increasingly complex.
+This manual page attempts to give an overview over how this problem is
+currently addressed in different parts of the OpenSSL library.
+
+=head2 The general case
+
+The OpenSSL library doesn't treat pass phrases in any special way as a general
+rule, and trusts the application or user to choose a suitable character set
+and stick to that throughout the lifetime of affected objects.
+This means that for an object that was encrypted using a pass phrase encoded in
+ISO-8859-1, that object needs to be decrypted using a pass phrase encoded in
+ISO-8859-1.
+Using the wrong encoding is expected to cause a decryption failure.
+
+=head2 PKCS#12
+
+PKCS#12 is a bit different regarding pass phrase encoding.
+The standard stipulates that the pass phrase shall be encoded as an ASN.1
+BMPString, which consists of the code points of the basic multilingual plane,
+encoded in big endian (UCS-2 BE).
+
+OpenSSL tries to adapt to this requirements in one of the following manners:
+
+=over 4
+
+=item 1.
+
+Treats the received pass phrase as UTF-8 encoded and tries to re-encode it to
+UTF-16 (which is the same as UCS-2 for characters U+0000 to U+D7FF and U+E000
+to U+FFFF, but becomes an expansion for any other character), or failing that,
+proceeds with step 2.
+
+=item 2.
+
+Assumes that the pass phrase is encoded in ASCII or ISO-8859-1 and
+opportunistically prepends each byte with a zero byte to obtain the UCS-2
+encoding of the characters, which it stores as a BMPString.
+
+Note that since there is no check of your locale, this may produce UCS-2 /
+UTF-16 characters that do not correspond to the original pass phrase characters
+for other character sets, such as any ISO-8859-X encoding other than
+ISO-8859-1 (or for Windows, CP 1252 with exception for the extra "graphical"
+characters in the 0x80-0x9F range).
+
+=back
+
+OpenSSL versions older than 1.1.0 do variant 2 only, and that is the reason why
+OpenSSL still does this, to be able to read files produced with older versions.
+
+It should be noted that this approach isn't entirely fault free.
+
+A passphrase encoded in ISO-8859-2 could very well have a sequence such as
+0xC3 0xAF (which is the two characters "LATIN CAPITAL LETTER A WITH BREVE"
+and "LATIN CAPITAL LETTER Z WITH DOT ABOVE" in ISO-8859-2 encoding), but would
+be misinterpreted as the perfectly valid UTF-8 encoded code point U+00EF (LATIN
+SMALL LETTER I WITH DIARESIS) I<if the passphrase doesn't contain anything that
+would be invalid UTF-8>.
+A pass phrase that contains this kind of byte sequence will give a different
+outcome in OpenSSL 1.1.0 and newer than in OpenSSL older than 1.1.0.
+
+ 0x00 0xC3 0x00 0xAF                    # OpenSSL older than 1.1.0
+ 0x00 0xEF                              # OpenSSL 1.1.0 and newer
+
+On the same accord, anything encoded in UTF-8 that was given to OpenSSL older
+than 1.1.0 was misinterpreted as ISO-8859-1 sequences.
+
+=head2 OSSL_STORE
+
+L<ossl_store(7)> acts as a general interface to access all kinds of objects,
+potentially protected with a pass phrase, a PIN or something else.
+This API currently doesn't stipulate any specific encoding of pass phrases, but
+uses the underlying routines with their behaviours.
+This means that when using the built-in C<file:> scheme loader, the pass phrase
+to unlock a PKCS#12 file will be treated as described for PKCS#12 above, and
+the pass phrase for a PEM files will be treated as the general case described
+above, since that loader uses the same underlying routines.
+I<Note that other loaders will have their own behaviours>.
+
+=head1 RECOMMENDATIONS
+
+This section assumes that you know what pass phrase was used for encryption,
+but that it may have been encoded in a different character encoding than the
+one used by your current input method.
+For example, the pass phrase may have been used at a time when your default
+encoding was ISO-8859-1 (i.e. "naïve" resulting in the byte sequence 0x6E 0x61
+0xEF 0x76 0x65), and you're now in an environment where your default encoding
+is UTF-8 (i.e. "naïve" resulting in the byte sequence 0x6E 0x61 0xC3 0xAF 0x76
+0x65).
+Whenever it's mentioned that you should use a certain character encoding, it
+should be understood that you either change the input method to use the
+mentioned encoding when you type in your pass phrase, or use some suitable tool
+to convert your pass phrase from your default encoding to the target encoding.
+
+Also note that the sub-sections below discuss human readable pass phrases.
+This is particularly relevant for PKCS#12 objects, where human readable pass
+phrases are assumed.
+For other objects, it's as legitimate to use any byte sequence (such as a
+sequence of bytes from `/dev/urandom` that's been saved away), which makes any
+character encoding discussion irrelevant; in such cases, simply use the same
+byte sequence as it is.
+
+=head2 Creating new objects
+
+For creating new pass phrase protected objects, make sure the pass phrase is
+encoded using UTF-8.
+This is default on most modern Unixes, but may involve an effort on other
+platforms.
+Specifically for Windows, setting the environment variable
+C<OPENSSL_WIN32_UTF8> will have anything entered on [Windows] console prompt
+converted to UTF-8 (command line and separately prompted pass phrases alike).
+
+=head2 Opening existing objects
+
+For opening pass phrase protected objects where you know what character
+encoding was used for the encryption pass phrase, make sure to use the same
+encoding again.
+
+For opening pass phrase protected objects where the character encoding that was
+used is unknown, or where the producing application is unknown, try one of the
+following:
+
+=over 4
+
+=item 1.
+
+Try the password that you have as it is in the character encoding of your
+environment.
+It's possible that its byte sequence is exactly right.
+
+=item 2.
+
+Convert the pass phrase to UTF-8 and try with the result.
+Specifically with PKCS#12, this should open up any object that was created
+according to the specification.
+
+=item 3.
+
+Do a naïve (i.e. purely mathematical) ISO-8859-1 to UTF-8 conversion and try
+with the result.
+This differs from the previous attempt because ISO-8859-1 maps directly to
+U+0000 to U+00FF, which other non-UTF-8 character sets do not.
+
+This also takes care of the case when a UTF-8 encoded string was used with
+OpenSSL older than 1.1.0.
+(for example, C<ï>, which is 0xC3 0xAF when encoded in UTF-8, would become 0xC3
+0x83 0xC2 0xAF when re-encoded in the naïve manner.
+The conversion to BMPString would then yield 0x00 0xC3 0x00 0xA4 0x00 0x00, the
+erroneous/non-compliant encoding used by OpenSSL older than 1.1.0)
+
+=back
+
+=head1 SEE ALSO
+
+L<evp(7)>,
+L<ossl_store(7)>,
+L<EVP_BytesToKey(3)>, L<EVP_DecryptInit(3)>,
+L<PEM_do_header(3)>,
+L<PKCS12_parse(3)>, L<PKCS12_newpass(3)>,
+L<d2i_PKCS8PrivateKey_bio(3)>
+
+=head1 COPYRIGHT
+
+Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
+
+Licensed under the OpenSSL license (the "License").  You may not use
+this file except in compliance with the License.  You can obtain a copy
+in the file LICENSE in the source distribution or at
+L<https://www.openssl.org/source/license.html>.
+
+=cut