/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #if defined(OPENSSL_SYS_VMS) # include # include "internal/cryptlib.h" # include # include "internal/rand_int.h" # include "rand_lcl.h" # include # include # include # include # include # ifdef __DECC # pragma message disable DOLLARID # endif # ifndef OPENSSL_RAND_SEED_OS # error "Unsupported seeding method configured; must be os" # endif /* * Use 32-bit pointers almost everywhere. Define the type to which to cast a * pointer passed to an external function. */ # if __INITIAL_POINTER_SIZE == 64 # define PTR_T __void_ptr64 # pragma pointer_size save # pragma pointer_size 32 # else # define PTR_T void * # endif static struct items_data_st { short length, code; /* length is number of bytes */ } items_data[] = { {4, JPI$_BUFIO}, {4, JPI$_CPUTIM}, {4, JPI$_DIRIO}, {4, JPI$_IMAGECOUNT}, {8, JPI$_LAST_LOGIN_I}, {8, JPI$_LOGINTIM}, {4, JPI$_PAGEFLTS}, {4, JPI$_PID}, {4, JPI$_PPGCNT}, {4, JPI$_WSPEAK}, {4, JPI$_FINALEXC}, {0, 0} }; /* * We assume there we get about 4 bits of entropy per byte from the items * above, with a bit of scrambling added rand_pool_acquire_entropy() */ #define ENTROPY_BITS_PER_BYTE 4 size_t rand_pool_acquire_entropy(RAND_POOL *pool) { /* determine the number of items in the JPI array */ struct items_data_st item_entry; size_t item_entry_count = OSSL_NELEM(items_data); /* Create the 32-bit JPI itemlist array to hold item_data content */ struct { uint16_t length, code; uint32_t *buffer; uint32_t *retlen; } item[item_entry_count], *pitem; struct items_data_st *pitems_data; /* 8 bytes (two longs) per entry max */ uint32_t data_buffer[(item_entry_count * 2) + 4]; uint32_t iosb[2]; uint32_t sys_time[2]; uint32_t *ptr; size_t i, j ; size_t tmp_length = 0; size_t total_length = 0; size_t bytes_needed = rand_pool_bytes_needed(pool, ENTROPY_BITS_PER_BYTE); size_t bytes_remaining = rand_pool_bytes_remaining(pool); /* Setup itemlist for GETJPI */ pitems_data = items_data; for (pitem = item; pitems_data->length != 0; pitem++) { pitem->length = pitems_data->length; pitem->code = pitems_data->code; pitem->buffer = &data_buffer[total_length]; pitem->retlen = 0; /* total_length is in longwords */ total_length += pitems_data->length / 4; pitems_data++; } pitem->length = pitem->code = 0; /* Fill data_buffer with various info bits from this process */ if (sys$getjpiw(EFN$C_ENF, NULL, NULL, item, &iosb, 0, 0) != SS$_NORMAL) return 0; /* Now twist that data to seed the SSL random number init */ for (i = 0; i < total_length; i++) { sys$gettim((struct _generic_64 *)&sys_time[0]); srand(sys_time[0] * data_buffer[0] * data_buffer[1] + i); if (i == (total_length - 1)) { /* for JPI$_FINALEXC */ ptr = &data_buffer[i]; for (j = 0; j < 4; j++) { data_buffer[i + j] = ptr[j]; /* OK to use rand() just to scramble the seed */ data_buffer[i + j] ^= (sys_time[0] ^ rand()); tmp_length++; } } else { /* OK to use rand() just to scramble the seed */ data_buffer[i] ^= (sys_time[0] ^ rand()); } } total_length += (tmp_length - 1); /* Change the total length to number of bytes */ total_length *= 4; /* * If we can't feed the requirements from the caller, we're in deep trouble. */ if (!ossl_assert(total_length >= bytes_needed)) { char neededstr[20]; char availablestr[20]; BIO_snprintf(neededstr, sizeof(neededstr), "%zu", bytes_needed); BIO_snprintf(availablestr, sizeof(availablestr), "%zu", total_length); RANDerr(RAND_F_RAND_POOL_ACQUIRE_ENTROPY, RAND_R_RANDOM_POOL_UNDERFLOW); ERR_add_error_data(4, "Needed: ", neededstr, ", Available: ", availablestr); return 0; } /* * Try not to overfeed the pool */ if (total_length > bytes_remaining) total_length = bytes_remaining; rand_pool_add(pool, (PTR_T)data_buffer, total_length, total_length * ENTROPY_BITS_PER_BYTE); return rand_pool_entropy_available(pool); } int rand_pool_add_nonce_data(RAND_POOL *pool) { struct { pid_t pid; CRYPTO_THREAD_ID tid; uint64_t time; } data = { 0 }; /* * Add process id, thread id, and a high resolution timestamp to * ensure that the nonce is unique whith high probability for * different process instances. */ data.pid = getpid(); data.tid = CRYPTO_THREAD_get_current_id(); sys$gettim_prec((struct _generic_64 *)&data.time); return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); } int rand_pool_add_additional_data(RAND_POOL *pool) { struct { CRYPTO_THREAD_ID tid; uint64_t time; } data = { 0 }; /* * Add some noise from the thread id and a high resolution timer. * The thread id adds a little randomness if the drbg is accessed * concurrently (which is the case for the drbg). */ data.tid = CRYPTO_THREAD_get_current_id(); sys$gettim_prec((struct _generic_64 *)&data.time); return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); } #endif