/* * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "modes_lcl.h" #ifndef OPENSSL_NO_OCB /* * Calculate the number of binary trailing zero's in any given number */ static u32 ocb_ntz(u64 n) { u32 cnt = 0; /* * We do a right-to-left simple sequential search. This is surprisingly * efficient as the distribution of trailing zeros is not uniform, * e.g. the number of possible inputs with no trailing zeros is equal to * the number with 1 or more; the number with exactly 1 is equal to the * number with 2 or more, etc. Checking the last two bits covers 75% of * all numbers. Checking the last three covers 87.5% */ while (!(n & 1)) { n >>= 1; cnt++; } return cnt; } /* * Shift a block of 16 bytes left by shift bits */ static void ocb_block_lshift(const unsigned char *in, size_t shift, unsigned char *out) { int i; unsigned char carry = 0, carry_next; for (i = 15; i >= 0; i--) { carry_next = in[i] >> (8 - shift); out[i] = (in[i] << shift) | carry; carry = carry_next; } } /* * Perform a "double" operation as per OCB spec */ static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) { unsigned char mask; /* * Calculate the mask based on the most significant bit. There are more * efficient ways to do this - but this way is constant time */ mask = in->c[0] & 0x80; mask >>= 7; mask = (0 - mask) & 0x87; ocb_block_lshift(in->c, 1, out->c); out->c[15] ^= mask; } /* * Perform an xor on in1 and in2 - each of len bytes. Store result in out */ static void ocb_block_xor(const unsigned char *in1, const unsigned char *in2, size_t len, unsigned char *out) { size_t i; for (i = 0; i < len; i++) { out[i] = in1[i] ^ in2[i]; } } /* * Lookup L_index in our lookup table. If we haven't already got it we need to * calculate it */ static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) { size_t l_index = ctx->l_index; if (idx <= l_index) { return ctx->l + idx; } /* We don't have it - so calculate it */ if (idx >= ctx->max_l_index) { void *tmp_ptr; /* * Each additional entry allows to process almost double as * much data, so that in linear world the table will need to * be expanded with smaller and smaller increments. Originally * it was doubling in size, which was a waste. Growing it * linearly is not formally optimal, but is simpler to implement. * We grow table by minimally required 4*n that would accommodate * the index. */ ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */ return NULL; ctx->l = tmp_ptr; } while (l_index < idx) { ocb_double(ctx->l + l_index, ctx->l + l_index + 1); l_index++; } ctx->l_index = l_index; return ctx->l + idx; } /* * Create a new OCB128_CONTEXT */ OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, block128_f encrypt, block128_f decrypt, ocb128_f stream) { OCB128_CONTEXT *octx; int ret; if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt, stream); if (ret) return octx; OPENSSL_free(octx); } return NULL; } /* * Initialise an existing OCB128_CONTEXT */ int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, block128_f encrypt, block128_f decrypt, ocb128_f stream) { memset(ctx, 0, sizeof(*ctx)); ctx->l_index = 0; ctx->max_l_index = 5; if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_INIT, ERR_R_MALLOC_FAILURE); return 0; } /* * We set both the encryption and decryption key schedules - decryption * needs both. Don't really need decryption schedule if only doing * encryption - but it simplifies things to take it anyway */ ctx->encrypt = encrypt; ctx->decrypt = decrypt; ctx->stream = stream; ctx->keyenc = keyenc; ctx->keydec = keydec; /* L_* = ENCIPHER(K, zeros(128)) */ ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc); /* L_$ = double(L_*) */ ocb_double(&ctx->l_star, &ctx->l_dollar); /* L_0 = double(L_$) */ ocb_double(&ctx->l_dollar, ctx->l); /* L_{i} = double(L_{i-1}) */ ocb_double(ctx->l, ctx->l+1); ocb_double(ctx->l+1, ctx->l+2); ocb_double(ctx->l+2, ctx->l+3); ocb_double(ctx->l+3, ctx->l+4); ctx->l_index = 4; /* enough to process up to 496 bytes */ return 1; } /* * Copy an OCB128_CONTEXT object */ int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, void *keyenc, void *keydec) { memcpy(dest, src, sizeof(OCB128_CONTEXT)); if (keyenc) dest->keyenc = keyenc; if (keydec) dest->keydec = keydec; if (src->l) { if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_COPY_CTX, ERR_R_MALLOC_FAILURE); return 0; } memcpy(dest->l, src->l, (src->l_index + 1) * 16); } return 1; } /* * Set the IV to be used for this operation. Must be 1 - 15 bytes. */ int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, size_t len, size_t taglen) { unsigned char ktop[16], tmp[16], mask; unsigned char stretch[24], nonce[16]; size_t bottom, shift; /* * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. * We don't support this at this stage */ if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { return -1; } /* Reset nonce-dependent variables */ memset(&ctx->sess, 0, sizeof(ctx->sess)); /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ nonce[0] = ((taglen * 8) % 128) << 1; memset(nonce + 1, 0, 15); memcpy(nonce + 16 - len, iv, len); nonce[15 - len] |= 1; /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ memcpy(tmp, nonce, 16); tmp[15] &= 0xc0; ctx->encrypt(tmp, ktop, ctx->keyenc); /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ memcpy(stretch, ktop, 16); ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); /* bottom = str2num(Nonce[123..128]) */ bottom = nonce[15] & 0x3f; /* Offset_0 = Stretch[1+bottom..128+bottom] */ shift = bottom % 8; ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c); mask = 0xff; mask <<= 8 - shift; ctx->sess.offset.c[15] |= (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); return 1; } /* * Provide any AAD. This can be called multiple times. Only the final time can * have a partial block */ int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, size_t len) { u64 i, all_num_blocks; size_t num_blocks, last_len; OCB_BLOCK tmp; /* Calculate the number of blocks of AAD provided now, and so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->sess.blocks_hashed; /* Loop through all full blocks of AAD */ for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) { OCB_BLOCK *lookup; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (lookup == NULL) return 0; ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad); memcpy(tmp.c, aad, 16); aad += 16; /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star, &ctx->sess.offset_aad); /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ memset(tmp.c, 0, 16); memcpy(tmp.c, aad, last_len); tmp.c[last_len] = 0x80; ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); } ctx->sess.blocks_hashed = all_num_blocks; return 1; } /* * Provide any data to be encrypted. This can be called multiple times. Only * the final time can have a partial block */ int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { u64 i, all_num_blocks; size_t num_blocks, last_len; /* * Calculate the number of blocks of data to be encrypted provided now, and * so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->sess.blocks_processed; if (num_blocks && all_num_blocks == (size_t)all_num_blocks && ctx->stream != NULL) { size_t max_idx = 0, top = (size_t)all_num_blocks; /* * See how many L_{i} entries we need to process data at hand * and pre-compute missing entries in the table [if any]... */ while (top >>= 1) max_idx++; if (ocb_lookup_l(ctx, max_idx) == NULL) return 0; ctx->stream(in, out, num_blocks, ctx->keyenc, (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); } else { /* Loop through all full blocks to be encrypted */ for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { OCB_BLOCK *lookup; OCB_BLOCK tmp; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (lookup == NULL) return 0; ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); memcpy(tmp.c, in, 16); in += 16; /* Checksum_i = Checksum_{i-1} xor P_i */ ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); memcpy(out, tmp.c, 16); out += 16; } } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { OCB_BLOCK pad; /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); /* Pad = ENCIPHER(K, Offset_*) */ ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); /* C_* = P_* xor Pad[1..bitlen(P_*)] */ ocb_block_xor(in, pad.c, last_len, out); /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ memset(pad.c, 0, 16); /* borrow pad */ memcpy(pad.c, in, last_len); pad.c[last_len] = 0x80; ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); } ctx->sess.blocks_processed = all_num_blocks; return 1; } /* * Provide any data to be decrypted. This can be called multiple times. Only * the final time can have a partial block */ int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { u64 i, all_num_blocks; size_t num_blocks, last_len; /* * Calculate the number of blocks of data to be decrypted provided now, and * so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->sess.blocks_processed; if (num_blocks && all_num_blocks == (size_t)all_num_blocks && ctx->stream != NULL) { size_t max_idx = 0, top = (size_t)all_num_blocks; /* * See how many L_{i} entries we need to process data at hand * and pre-compute missing entries in the table [if any]... */ while (top >>= 1) max_idx++; if (ocb_lookup_l(ctx, max_idx) == NULL) return 0; ctx->stream(in, out, num_blocks, ctx->keydec, (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); } else { OCB_BLOCK tmp; /* Loop through all full blocks to be decrypted */ for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (lookup == NULL) return 0; ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); memcpy(tmp.c, in, 16); in += 16; /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); ctx->decrypt(tmp.c, tmp.c, ctx->keydec); ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); /* Checksum_i = Checksum_{i-1} xor P_i */ ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); memcpy(out, tmp.c, 16); out += 16; } } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { OCB_BLOCK pad; /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); /* Pad = ENCIPHER(K, Offset_*) */ ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); /* P_* = C_* xor Pad[1..bitlen(C_*)] */ ocb_block_xor(in, pad.c, last_len, out); /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ memset(pad.c, 0, 16); /* borrow pad */ memcpy(pad.c, out, last_len); pad.c[last_len] = 0x80; ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); } ctx->sess.blocks_processed = all_num_blocks; return 1; } static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len, int write) { OCB_BLOCK tmp; if (len > 16 || len < 1) { return -1; } /* * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) */ ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp); ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp); ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp); if (write) { memcpy(tag, &tmp, len); return 1; } else { return CRYPTO_memcmp(&tmp, tag, len); } } /* * Calculate the tag and verify it against the supplied tag */ int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, size_t len) { return ocb_finish(ctx, (unsigned char*)tag, len, 0); } /* * Retrieve the calculated tag */ int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) { return ocb_finish(ctx, tag, len, 1); } /* * Release all resources */ void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) { if (ctx) { OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); OPENSSL_cleanse(ctx, sizeof(*ctx)); } } #endif /* OPENSSL_NO_OCB */