/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* We need to use some deprecated APIs */ #define OPENSSL_SUPPRESS_DEPRECATED #include #include #include #include #include #include #include #include #include #include #include #include "apps.h" #include "app_params.h" #include "progs.h" #include "opt.h" #include "names.h" static int verbose = 0; static const char *select_name = NULL; /* Checks to see if algorithms are fetchable */ #define IS_FETCHABLE(type, TYPE) \ static int is_ ## type ## _fetchable(const TYPE *alg) \ { \ TYPE *impl; \ const char *propq = app_get0_propq(); \ const char *name = TYPE ## _get0_name(alg); \ \ ERR_set_mark(); \ impl = TYPE ## _fetch(NULL, name, propq); \ ERR_pop_to_mark(); \ if (impl == NULL) \ return 0; \ TYPE ## _free(impl); \ return 1; \ } IS_FETCHABLE(cipher, EVP_CIPHER) IS_FETCHABLE(digest, EVP_MD) IS_FETCHABLE(mac, EVP_MAC) IS_FETCHABLE(kdf, EVP_KDF) IS_FETCHABLE(rand, EVP_RAND) IS_FETCHABLE(keymgmt, EVP_KEYMGMT) IS_FETCHABLE(signature, EVP_SIGNATURE) IS_FETCHABLE(kem, EVP_KEM) IS_FETCHABLE(asym_cipher, EVP_ASYM_CIPHER) IS_FETCHABLE(keyexch, EVP_KEYEXCH) IS_FETCHABLE(decoder, OSSL_DECODER) IS_FETCHABLE(encoder, OSSL_ENCODER) #ifndef OPENSSL_NO_DEPRECATED_3_0 static int include_legacy(void) { return app_get0_propq() == NULL; } static void legacy_cipher_fn(const EVP_CIPHER *c, const char *from, const char *to, void *arg) { if (select_name != NULL && (c == NULL || strcasecmp(select_name, EVP_CIPHER_get0_name(c)) != 0)) return; if (c != NULL) { BIO_printf(arg, " %s\n", EVP_CIPHER_get0_name(c)); } else { if (from == NULL) from = ""; if (to == NULL) to = ""; BIO_printf(arg, " %s => %s\n", from, to); } } #endif DEFINE_STACK_OF(EVP_CIPHER) static int cipher_cmp(const EVP_CIPHER * const *a, const EVP_CIPHER * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_CIPHER_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_CIPHER_get0_provider(*b))); } static void collect_ciphers(EVP_CIPHER *cipher, void *stack) { STACK_OF(EVP_CIPHER) *cipher_stack = stack; if (is_cipher_fetchable(cipher) && sk_EVP_CIPHER_push(cipher_stack, cipher) > 0) EVP_CIPHER_up_ref(cipher); } static void list_ciphers(void) { STACK_OF(EVP_CIPHER) *ciphers = sk_EVP_CIPHER_new(cipher_cmp); int i; if (ciphers == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } #ifndef OPENSSL_NO_DEPRECATED_3_0 if (include_legacy()) { BIO_printf(bio_out, "Legacy:\n"); EVP_CIPHER_do_all_sorted(legacy_cipher_fn, bio_out); } #endif BIO_printf(bio_out, "Provided:\n"); EVP_CIPHER_do_all_provided(NULL, collect_ciphers, ciphers); sk_EVP_CIPHER_sort(ciphers); for (i = 0; i < sk_EVP_CIPHER_num(ciphers); i++) { const EVP_CIPHER *c = sk_EVP_CIPHER_value(ciphers, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_CIPHER_is_a(c, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_CIPHER_names_do_all(c, collect_names, names)) { BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_CIPHER_get0_provider(c))); if (verbose) { const char *desc = EVP_CIPHER_get0_description(c); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("retrievable algorithm parameters", EVP_CIPHER_gettable_params(c), 4); print_param_types("retrievable operation parameters", EVP_CIPHER_gettable_ctx_params(c), 4); print_param_types("settable operation parameters", EVP_CIPHER_settable_ctx_params(c), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_CIPHER_pop_free(ciphers, EVP_CIPHER_free); } #ifndef OPENSSL_NO_DEPRECATED_3_0 static void legacy_md_fn(const EVP_MD *m, const char *from, const char *to, void *arg) { if (m != NULL) { BIO_printf(arg, " %s\n", EVP_MD_get0_name(m)); } else { if (from == NULL) from = ""; if (to == NULL) to = ""; BIO_printf((BIO *)arg, " %s => %s\n", from, to); } } #endif DEFINE_STACK_OF(EVP_MD) static int md_cmp(const EVP_MD * const *a, const EVP_MD * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_MD_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_MD_get0_provider(*b))); } static void collect_digests(EVP_MD *digest, void *stack) { STACK_OF(EVP_MD) *digest_stack = stack; if (is_digest_fetchable(digest) && sk_EVP_MD_push(digest_stack, digest) > 0) EVP_MD_up_ref(digest); } static void list_digests(void) { STACK_OF(EVP_MD) *digests = sk_EVP_MD_new(md_cmp); int i; if (digests == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } #ifndef OPENSSL_NO_DEPRECATED_3_0 if (include_legacy()) { BIO_printf(bio_out, "Legacy:\n"); EVP_MD_do_all_sorted(legacy_md_fn, bio_out); } #endif BIO_printf(bio_out, "Provided:\n"); EVP_MD_do_all_provided(NULL, collect_digests, digests); sk_EVP_MD_sort(digests); for (i = 0; i < sk_EVP_MD_num(digests); i++) { const EVP_MD *m = sk_EVP_MD_value(digests, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_MD_is_a(m, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_MD_names_do_all(m, collect_names, names)) { BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_MD_get0_provider(m))); if (verbose) { const char *desc = EVP_MD_get0_description(m); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("retrievable algorithm parameters", EVP_MD_gettable_params(m), 4); print_param_types("retrievable operation parameters", EVP_MD_gettable_ctx_params(m), 4); print_param_types("settable operation parameters", EVP_MD_settable_ctx_params(m), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_MD_pop_free(digests, EVP_MD_free); } DEFINE_STACK_OF(EVP_MAC) static int mac_cmp(const EVP_MAC * const *a, const EVP_MAC * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_MAC_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_MAC_get0_provider(*b))); } static void collect_macs(EVP_MAC *mac, void *stack) { STACK_OF(EVP_MAC) *mac_stack = stack; if (is_mac_fetchable(mac) && sk_EVP_MAC_push(mac_stack, mac) > 0) EVP_MAC_up_ref(mac); } static void list_macs(void) { STACK_OF(EVP_MAC) *macs = sk_EVP_MAC_new(mac_cmp); int i; if (macs == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided MACs:\n"); EVP_MAC_do_all_provided(NULL, collect_macs, macs); sk_EVP_MAC_sort(macs); for (i = 0; i < sk_EVP_MAC_num(macs); i++) { const EVP_MAC *m = sk_EVP_MAC_value(macs, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_MAC_is_a(m, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_MAC_names_do_all(m, collect_names, names)) { BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_MAC_get0_provider(m))); if (verbose) { const char *desc = EVP_MAC_get0_description(m); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("retrievable algorithm parameters", EVP_MAC_gettable_params(m), 4); print_param_types("retrievable operation parameters", EVP_MAC_gettable_ctx_params(m), 4); print_param_types("settable operation parameters", EVP_MAC_settable_ctx_params(m), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_MAC_pop_free(macs, EVP_MAC_free); } /* * KDFs and PRFs */ DEFINE_STACK_OF(EVP_KDF) static int kdf_cmp(const EVP_KDF * const *a, const EVP_KDF * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_KDF_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_KDF_get0_provider(*b))); } static void collect_kdfs(EVP_KDF *kdf, void *stack) { STACK_OF(EVP_KDF) *kdf_stack = stack; if (is_kdf_fetchable(kdf) && sk_EVP_KDF_push(kdf_stack, kdf) > 0) EVP_KDF_up_ref(kdf); } static void list_kdfs(void) { STACK_OF(EVP_KDF) *kdfs = sk_EVP_KDF_new(kdf_cmp); int i; if (kdfs == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided KDFs and PDFs:\n"); EVP_KDF_do_all_provided(NULL, collect_kdfs, kdfs); sk_EVP_KDF_sort(kdfs); for (i = 0; i < sk_EVP_KDF_num(kdfs); i++) { const EVP_KDF *k = sk_EVP_KDF_value(kdfs, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_KDF_is_a(k, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_KDF_names_do_all(k, collect_names, names)) { BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_KDF_get0_provider(k))); if (verbose) { const char *desc = EVP_KDF_get0_description(k); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("retrievable algorithm parameters", EVP_KDF_gettable_params(k), 4); print_param_types("retrievable operation parameters", EVP_KDF_gettable_ctx_params(k), 4); print_param_types("settable operation parameters", EVP_KDF_settable_ctx_params(k), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_KDF_pop_free(kdfs, EVP_KDF_free); } /* * RANDs */ DEFINE_STACK_OF(EVP_RAND) static int rand_cmp(const EVP_RAND * const *a, const EVP_RAND * const *b) { int ret = strcasecmp(EVP_RAND_get0_name(*a), EVP_RAND_get0_name(*b)); if (ret == 0) ret = strcmp(OSSL_PROVIDER_get0_name(EVP_RAND_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_RAND_get0_provider(*b))); return ret; } static void collect_rands(EVP_RAND *rand, void *stack) { STACK_OF(EVP_RAND) *rand_stack = stack; if (is_rand_fetchable(rand) && sk_EVP_RAND_push(rand_stack, rand) > 0) EVP_RAND_up_ref(rand); } static void list_random_generators(void) { STACK_OF(EVP_RAND) *rands = sk_EVP_RAND_new(rand_cmp); int i; if (rands == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided RNGs and seed sources:\n"); EVP_RAND_do_all_provided(NULL, collect_rands, rands); sk_EVP_RAND_sort(rands); for (i = 0; i < sk_EVP_RAND_num(rands); i++) { const EVP_RAND *m = sk_EVP_RAND_value(rands, i); if (select_name != NULL && strcasecmp(EVP_RAND_get0_name(m), select_name) != 0) continue; BIO_printf(bio_out, " %s", EVP_RAND_get0_name(m)); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_RAND_get0_provider(m))); if (verbose) { const char *desc = EVP_RAND_get0_description(m); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("retrievable algorithm parameters", EVP_RAND_gettable_params(m), 4); print_param_types("retrievable operation parameters", EVP_RAND_gettable_ctx_params(m), 4); print_param_types("settable operation parameters", EVP_RAND_settable_ctx_params(m), 4); } } sk_EVP_RAND_pop_free(rands, EVP_RAND_free); } static void display_random(const char *name, EVP_RAND_CTX *drbg) { EVP_RAND *rand; uint64_t u; const char *p; const OSSL_PARAM *gettables; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; unsigned char buf[1000]; BIO_printf(bio_out, "%s:\n", name); if (drbg != NULL) { rand = EVP_RAND_CTX_get0_rand(drbg); BIO_printf(bio_out, " %s", EVP_RAND_get0_name(rand)); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_RAND_get0_provider(rand))); switch (EVP_RAND_get_state(drbg)) { case EVP_RAND_STATE_UNINITIALISED: p = "uninitialised"; break; case EVP_RAND_STATE_READY: p = "ready"; break; case EVP_RAND_STATE_ERROR: p = "error"; break; default: p = "unknown"; break; } BIO_printf(bio_out, " state = %s\n", p); gettables = EVP_RAND_gettable_ctx_params(rand); if (gettables != NULL) for (; gettables->key != NULL; gettables++) { /* State has been dealt with already, so ignore */ if (strcasecmp(gettables->key, OSSL_RAND_PARAM_STATE) == 0) continue; /* Outside of verbose mode, we skip non-string values */ if (gettables->data_type != OSSL_PARAM_UTF8_STRING && gettables->data_type != OSSL_PARAM_UTF8_PTR && !verbose) continue; params->key = gettables->key; params->data_type = gettables->data_type; if (gettables->data_type == OSSL_PARAM_UNSIGNED_INTEGER || gettables->data_type == OSSL_PARAM_INTEGER) { params->data = &u; params->data_size = sizeof(u); } else { params->data = buf; params->data_size = sizeof(buf); } params->return_size = 0; if (EVP_RAND_CTX_get_params(drbg, params)) print_param_value(params, 2); } } } static void list_random_instances(void) { display_random("primary", RAND_get0_primary(NULL)); display_random("public", RAND_get0_public(NULL)); display_random("private", RAND_get0_private(NULL)); } /* * Encoders */ DEFINE_STACK_OF(OSSL_ENCODER) static int encoder_cmp(const OSSL_ENCODER * const *a, const OSSL_ENCODER * const *b) { return strcmp(OSSL_PROVIDER_get0_name(OSSL_ENCODER_get0_provider(*a)), OSSL_PROVIDER_get0_name(OSSL_ENCODER_get0_provider(*b))); } static void collect_encoders(OSSL_ENCODER *encoder, void *stack) { STACK_OF(OSSL_ENCODER) *encoder_stack = stack; if (is_encoder_fetchable(encoder) && sk_OSSL_ENCODER_push(encoder_stack, encoder) > 0) OSSL_ENCODER_up_ref(encoder); } static void list_encoders(void) { STACK_OF(OSSL_ENCODER) *encoders; int i; encoders = sk_OSSL_ENCODER_new(encoder_cmp); if (encoders == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided ENCODERs:\n"); OSSL_ENCODER_do_all_provided(NULL, collect_encoders, encoders); sk_OSSL_ENCODER_sort(encoders); for (i = 0; i < sk_OSSL_ENCODER_num(encoders); i++) { OSSL_ENCODER *k = sk_OSSL_ENCODER_value(encoders, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !OSSL_ENCODER_is_a(k, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && OSSL_ENCODER_names_do_all(k, collect_names, names)) { BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s (%s)\n", OSSL_PROVIDER_get0_name(OSSL_ENCODER_get0_provider(k)), OSSL_ENCODER_get0_properties(k)); if (verbose) { const char *desc = OSSL_ENCODER_get0_description(k); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("settable operation parameters", OSSL_ENCODER_settable_ctx_params(k), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_OSSL_ENCODER_pop_free(encoders, OSSL_ENCODER_free); } /* * Decoders */ DEFINE_STACK_OF(OSSL_DECODER) static int decoder_cmp(const OSSL_DECODER * const *a, const OSSL_DECODER * const *b) { return strcmp(OSSL_PROVIDER_get0_name(OSSL_DECODER_get0_provider(*a)), OSSL_PROVIDER_get0_name(OSSL_DECODER_get0_provider(*b))); } static void collect_decoders(OSSL_DECODER *decoder, void *stack) { STACK_OF(OSSL_DECODER) *decoder_stack = stack; if (is_decoder_fetchable(decoder) && sk_OSSL_DECODER_push(decoder_stack, decoder) > 0) OSSL_DECODER_up_ref(decoder); } static void list_decoders(void) { STACK_OF(OSSL_DECODER) *decoders; int i; decoders = sk_OSSL_DECODER_new(decoder_cmp); if (decoders == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided DECODERs:\n"); OSSL_DECODER_do_all_provided(NULL, collect_decoders, decoders); sk_OSSL_DECODER_sort(decoders); for (i = 0; i < sk_OSSL_DECODER_num(decoders); i++) { OSSL_DECODER *k = sk_OSSL_DECODER_value(decoders, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !OSSL_DECODER_is_a(k, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && OSSL_DECODER_names_do_all(k, collect_names, names)) { BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s (%s)\n", OSSL_PROVIDER_get0_name(OSSL_DECODER_get0_provider(k)), OSSL_DECODER_get0_properties(k)); if (verbose) { const char *desc = OSSL_DECODER_get0_description(k); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("settable operation parameters", OSSL_DECODER_settable_ctx_params(k), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_OSSL_DECODER_pop_free(decoders, OSSL_DECODER_free); } DEFINE_STACK_OF(EVP_KEYMGMT) static int keymanager_cmp(const EVP_KEYMGMT * const *a, const EVP_KEYMGMT * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_KEYMGMT_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_KEYMGMT_get0_provider(*b))); } static void collect_keymanagers(EVP_KEYMGMT *km, void *stack) { STACK_OF(EVP_KEYMGMT) *km_stack = stack; if (is_keymgmt_fetchable(km) && sk_EVP_KEYMGMT_push(km_stack, km) > 0) EVP_KEYMGMT_up_ref(km); } static void list_keymanagers(void) { int i; STACK_OF(EVP_KEYMGMT) *km_stack = sk_EVP_KEYMGMT_new(keymanager_cmp); EVP_KEYMGMT_do_all_provided(NULL, collect_keymanagers, km_stack); sk_EVP_KEYMGMT_sort(km_stack); for (i = 0; i < sk_EVP_KEYMGMT_num(km_stack); i++) { EVP_KEYMGMT *k = sk_EVP_KEYMGMT_value(km_stack, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_KEYMGMT_is_a(k, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_KEYMGMT_names_do_all(k, collect_names, names)) { const char *desc = EVP_KEYMGMT_get0_description(k); BIO_printf(bio_out, " Name: "); if (desc != NULL) BIO_printf(bio_out, "%s", desc); else BIO_printf(bio_out, "%s", sk_OPENSSL_CSTRING_value(names, 0)); BIO_printf(bio_out, "\n"); BIO_printf(bio_out, " Type: Provider Algorithm\n"); BIO_printf(bio_out, " IDs: "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_KEYMGMT_get0_provider(k))); if (verbose) { print_param_types("settable key generation parameters", EVP_KEYMGMT_gen_settable_params(k), 4); print_param_types("settable operation parameters", EVP_KEYMGMT_settable_params(k), 4); print_param_types("retrievable operation parameters", EVP_KEYMGMT_gettable_params(k), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_KEYMGMT_pop_free(km_stack, EVP_KEYMGMT_free); } DEFINE_STACK_OF(EVP_SIGNATURE) static int signature_cmp(const EVP_SIGNATURE * const *a, const EVP_SIGNATURE * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(*b))); } static void collect_signatures(EVP_SIGNATURE *sig, void *stack) { STACK_OF(EVP_SIGNATURE) *sig_stack = stack; if (is_signature_fetchable(sig) && sk_EVP_SIGNATURE_push(sig_stack, sig) > 0) EVP_SIGNATURE_up_ref(sig); } static void list_signatures(void) { int i, count = 0; STACK_OF(EVP_SIGNATURE) *sig_stack = sk_EVP_SIGNATURE_new(signature_cmp); EVP_SIGNATURE_do_all_provided(NULL, collect_signatures, sig_stack); sk_EVP_SIGNATURE_sort(sig_stack); for (i = 0; i < sk_EVP_SIGNATURE_num(sig_stack); i++) { EVP_SIGNATURE *k = sk_EVP_SIGNATURE_value(sig_stack, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_SIGNATURE_is_a(k, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_SIGNATURE_names_do_all(k, collect_names, names)) { count++; BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(k))); if (verbose) { const char *desc = EVP_SIGNATURE_get0_description(k); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("settable operation parameters", EVP_SIGNATURE_settable_ctx_params(k), 4); print_param_types("retrievable operation parameters", EVP_SIGNATURE_gettable_ctx_params(k), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free); if (count == 0) BIO_printf(bio_out, " -\n"); } DEFINE_STACK_OF(EVP_KEM) static int kem_cmp(const EVP_KEM * const *a, const EVP_KEM * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(*b))); } static void collect_kem(EVP_KEM *kem, void *stack) { STACK_OF(EVP_KEM) *kem_stack = stack; if (is_kem_fetchable(kem) && sk_EVP_KEM_push(kem_stack, kem) > 0) EVP_KEM_up_ref(kem); } static void list_kems(void) { int i, count = 0; STACK_OF(EVP_KEM) *kem_stack = sk_EVP_KEM_new(kem_cmp); EVP_KEM_do_all_provided(NULL, collect_kem, kem_stack); sk_EVP_KEM_sort(kem_stack); for (i = 0; i < sk_EVP_KEM_num(kem_stack); i++) { EVP_KEM *k = sk_EVP_KEM_value(kem_stack, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_KEM_is_a(k, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_KEM_names_do_all(k, collect_names, names)) { count++; BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(k))); if (verbose) { const char *desc = EVP_KEM_get0_description(k); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("settable operation parameters", EVP_KEM_settable_ctx_params(k), 4); print_param_types("retrievable operation parameters", EVP_KEM_gettable_ctx_params(k), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free); if (count == 0) BIO_printf(bio_out, " -\n"); } DEFINE_STACK_OF(EVP_ASYM_CIPHER) static int asymcipher_cmp(const EVP_ASYM_CIPHER * const *a, const EVP_ASYM_CIPHER * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_ASYM_CIPHER_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_ASYM_CIPHER_get0_provider(*b))); } static void collect_asymciph(EVP_ASYM_CIPHER *asym_cipher, void *stack) { STACK_OF(EVP_ASYM_CIPHER) *asym_cipher_stack = stack; if (is_asym_cipher_fetchable(asym_cipher) && sk_EVP_ASYM_CIPHER_push(asym_cipher_stack, asym_cipher) > 0) EVP_ASYM_CIPHER_up_ref(asym_cipher); } static void list_asymciphers(void) { int i, count = 0; STACK_OF(EVP_ASYM_CIPHER) *asymciph_stack = sk_EVP_ASYM_CIPHER_new(asymcipher_cmp); EVP_ASYM_CIPHER_do_all_provided(NULL, collect_asymciph, asymciph_stack); sk_EVP_ASYM_CIPHER_sort(asymciph_stack); for (i = 0; i < sk_EVP_ASYM_CIPHER_num(asymciph_stack); i++) { EVP_ASYM_CIPHER *k = sk_EVP_ASYM_CIPHER_value(asymciph_stack, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_ASYM_CIPHER_is_a(k, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_ASYM_CIPHER_names_do_all(k, collect_names, names)) { count++; BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_ASYM_CIPHER_get0_provider(k))); if (verbose) { const char *desc = EVP_ASYM_CIPHER_get0_description(k); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("settable operation parameters", EVP_ASYM_CIPHER_settable_ctx_params(k), 4); print_param_types("retrievable operation parameters", EVP_ASYM_CIPHER_gettable_ctx_params(k), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_ASYM_CIPHER_pop_free(asymciph_stack, EVP_ASYM_CIPHER_free); if (count == 0) BIO_printf(bio_out, " -\n"); } DEFINE_STACK_OF(EVP_KEYEXCH) static int kex_cmp(const EVP_KEYEXCH * const *a, const EVP_KEYEXCH * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_KEYEXCH_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_KEYEXCH_get0_provider(*b))); } static void collect_kex(EVP_KEYEXCH *kex, void *stack) { STACK_OF(EVP_KEYEXCH) *kex_stack = stack; if (is_keyexch_fetchable(kex) && sk_EVP_KEYEXCH_push(kex_stack, kex) > 0) EVP_KEYEXCH_up_ref(kex); } static void list_keyexchanges(void) { int i, count = 0; STACK_OF(EVP_KEYEXCH) *kex_stack = sk_EVP_KEYEXCH_new(kex_cmp); EVP_KEYEXCH_do_all_provided(NULL, collect_kex, kex_stack); sk_EVP_KEYEXCH_sort(kex_stack); for (i = 0; i < sk_EVP_KEYEXCH_num(kex_stack); i++) { EVP_KEYEXCH *k = sk_EVP_KEYEXCH_value(kex_stack, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !EVP_KEYEXCH_is_a(k, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && EVP_KEYEXCH_names_do_all(k, collect_names, names)) { count++; BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(EVP_KEYEXCH_get0_provider(k))); if (verbose) { const char *desc = EVP_KEYEXCH_get0_description(k); if (desc != NULL) BIO_printf(bio_out, " description: %s\n", desc); print_param_types("settable operation parameters", EVP_KEYEXCH_settable_ctx_params(k), 4); print_param_types("retrievable operation parameters", EVP_KEYEXCH_gettable_ctx_params(k), 4); } } sk_OPENSSL_CSTRING_free(names); } sk_EVP_KEYEXCH_pop_free(kex_stack, EVP_KEYEXCH_free); if (count == 0) BIO_printf(bio_out, " -\n"); } static void list_objects(void) { int max_nid = OBJ_new_nid(0); int i; char *oid_buf = NULL; int oid_size = 0; /* Skip 0, since that's NID_undef */ for (i = 1; i < max_nid; i++) { const ASN1_OBJECT *obj = OBJ_nid2obj(i); const char *sn = OBJ_nid2sn(i); const char *ln = OBJ_nid2ln(i); int n = 0; /* * If one of the retrieved objects somehow generated an error, * we ignore it. The check for NID_undef below will detect the * error and simply skip to the next NID. */ ERR_clear_error(); if (OBJ_obj2nid(obj) == NID_undef) continue; if ((n = OBJ_obj2txt(NULL, 0, obj, 1)) == 0) { BIO_printf(bio_out, "# None-OID object: %s, %s\n", sn, ln); continue; } if (n < 0) break; /* Error */ if (n > oid_size) { oid_buf = OPENSSL_realloc(oid_buf, n + 1); if (oid_buf == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); break; /* Error */ } oid_size = n + 1; } if (OBJ_obj2txt(oid_buf, oid_size, obj, 1) < 0) break; /* Error */ if (ln == NULL || strcmp(sn, ln) == 0) BIO_printf(bio_out, "%s = %s\n", sn, oid_buf); else BIO_printf(bio_out, "%s = %s, %s\n", sn, ln, oid_buf); } OPENSSL_free(oid_buf); } static void list_options_for_command(const char *command) { const FUNCTION *fp; const OPTIONS *o; for (fp = functions; fp->name != NULL; fp++) if (strcmp(fp->name, command) == 0) break; if (fp->name == NULL) { BIO_printf(bio_err, "Invalid command '%s'; type \"help\" for a list.\n", command); return; } if ((o = fp->help) == NULL) return; for ( ; o->name != NULL; o++) { char c = o->valtype; if (o->name == OPT_PARAM_STR) break; if (o->name == OPT_HELP_STR || o->name == OPT_MORE_STR || o->name == OPT_SECTION_STR || o->name[0] == '\0') continue; BIO_printf(bio_out, "%s %c\n", o->name, c == '\0' ? '-' : c); } /* Always output the -- marker since it is sometimes documented. */ BIO_printf(bio_out, "- -\n"); } static int is_md_available(const char *name) { EVP_MD *md; const char *propq = app_get0_propq(); /* Look through providers' digests */ ERR_set_mark(); md = EVP_MD_fetch(NULL, name, propq); ERR_pop_to_mark(); if (md != NULL) { EVP_MD_free(md); return 1; } return propq != NULL || get_digest_from_engine(name) == NULL ? 0 : 1; } static int is_cipher_available(const char *name) { EVP_CIPHER *cipher; const char *propq = app_get0_propq(); /* Look through providers' ciphers */ ERR_set_mark(); cipher = EVP_CIPHER_fetch(NULL, name, propq); ERR_pop_to_mark(); if (cipher != NULL) { EVP_CIPHER_free(cipher); return 1; } return propq != NULL || get_cipher_from_engine(name) == NULL ? 0 : 1; } static void list_type(FUNC_TYPE ft, int one) { FUNCTION *fp; int i = 0; DISPLAY_COLUMNS dc; memset(&dc, 0, sizeof(dc)); if (!one) calculate_columns(functions, &dc); for (fp = functions; fp->name != NULL; fp++) { if (fp->type != ft) continue; switch (ft) { case FT_cipher: if (!is_cipher_available(fp->name)) continue; break; case FT_md: if (!is_md_available(fp->name)) continue; break; default: break; } if (one) { BIO_printf(bio_out, "%s\n", fp->name); } else { if (i % dc.columns == 0 && i > 0) BIO_printf(bio_out, "\n"); BIO_printf(bio_out, "%-*s", dc.width, fp->name); i++; } } if (!one) BIO_printf(bio_out, "\n\n"); } static void list_pkey(void) { #ifndef OPENSSL_NO_DEPRECATED_3_0 int i; if (select_name == NULL && include_legacy()) { BIO_printf(bio_out, "Legacy:\n"); for (i = 0; i < EVP_PKEY_asn1_get_count(); i++) { const EVP_PKEY_ASN1_METHOD *ameth; int pkey_id, pkey_base_id, pkey_flags; const char *pinfo, *pem_str; ameth = EVP_PKEY_asn1_get0(i); EVP_PKEY_asn1_get0_info(&pkey_id, &pkey_base_id, &pkey_flags, &pinfo, &pem_str, ameth); if (pkey_flags & ASN1_PKEY_ALIAS) { BIO_printf(bio_out, " Name: %s\n", OBJ_nid2ln(pkey_id)); BIO_printf(bio_out, "\tAlias for: %s\n", OBJ_nid2ln(pkey_base_id)); } else { BIO_printf(bio_out, " Name: %s\n", pinfo); BIO_printf(bio_out, "\tType: %s Algorithm\n", pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin"); BIO_printf(bio_out, "\tOID: %s\n", OBJ_nid2ln(pkey_id)); if (pem_str == NULL) pem_str = "(none)"; BIO_printf(bio_out, "\tPEM string: %s\n", pem_str); } } } #endif BIO_printf(bio_out, "Provided:\n"); BIO_printf(bio_out, " Key Managers:\n"); list_keymanagers(); } static void list_pkey_meth(void) { #ifndef OPENSSL_NO_DEPRECATED_3_0 size_t i; size_t meth_count = EVP_PKEY_meth_get_count(); if (select_name == NULL && include_legacy()) { BIO_printf(bio_out, "Legacy:\n"); for (i = 0; i < meth_count; i++) { const EVP_PKEY_METHOD *pmeth = EVP_PKEY_meth_get0(i); int pkey_id, pkey_flags; EVP_PKEY_meth_get0_info(&pkey_id, &pkey_flags, pmeth); BIO_printf(bio_out, " %s\n", OBJ_nid2ln(pkey_id)); BIO_printf(bio_out, "\tType: %s Algorithm\n", pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin"); } } #endif BIO_printf(bio_out, "Provided:\n"); BIO_printf(bio_out, " Encryption:\n"); list_asymciphers(); BIO_printf(bio_out, " Key Exchange:\n"); list_keyexchanges(); BIO_printf(bio_out, " Signatures:\n"); list_signatures(); BIO_printf(bio_out, " Key encapsulation:\n"); list_kems(); } DEFINE_STACK_OF(OSSL_STORE_LOADER) static int store_cmp(const OSSL_STORE_LOADER * const *a, const OSSL_STORE_LOADER * const *b) { return strcmp(OSSL_PROVIDER_get0_name(OSSL_STORE_LOADER_get0_provider(*a)), OSSL_PROVIDER_get0_name(OSSL_STORE_LOADER_get0_provider(*b))); } static void collect_store_loaders(OSSL_STORE_LOADER *store, void *stack) { STACK_OF(OSSL_STORE_LOADER) *store_stack = stack; if (sk_OSSL_STORE_LOADER_push(store_stack, store) > 0) OSSL_STORE_LOADER_up_ref(store); } static void list_store_loaders(void) { STACK_OF(OSSL_STORE_LOADER) *stores = sk_OSSL_STORE_LOADER_new(store_cmp); int i; if (stores == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided STORE LOADERs:\n"); OSSL_STORE_LOADER_do_all_provided(NULL, collect_store_loaders, stores); sk_OSSL_STORE_LOADER_sort(stores); for (i = 0; i < sk_OSSL_STORE_LOADER_num(stores); i++) { const OSSL_STORE_LOADER *m = sk_OSSL_STORE_LOADER_value(stores, i); STACK_OF(OPENSSL_CSTRING) *names = NULL; if (select_name != NULL && !OSSL_STORE_LOADER_is_a(m, select_name)) continue; names = sk_OPENSSL_CSTRING_new(name_cmp); if (names != NULL && OSSL_STORE_LOADER_names_do_all(m, collect_names, names)) { BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_get0_name(OSSL_STORE_LOADER_get0_provider(m))); } sk_OPENSSL_CSTRING_free(names); } sk_OSSL_STORE_LOADER_pop_free(stores, OSSL_STORE_LOADER_free); } DEFINE_STACK_OF(OSSL_PROVIDER) static int provider_cmp(const OSSL_PROVIDER * const *a, const OSSL_PROVIDER * const *b) { return strcmp(OSSL_PROVIDER_get0_name(*a), OSSL_PROVIDER_get0_name(*b)); } static int collect_providers(OSSL_PROVIDER *provider, void *stack) { STACK_OF(OSSL_PROVIDER) *provider_stack = stack; sk_OSSL_PROVIDER_push(provider_stack, provider); return 1; } static void list_provider_info(void) { STACK_OF(OSSL_PROVIDER) *providers = sk_OSSL_PROVIDER_new(provider_cmp); OSSL_PARAM params[5]; char *name, *version, *buildinfo; int status; int i; if (providers == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Providers:\n"); OSSL_PROVIDER_do_all(NULL, &collect_providers, providers); sk_OSSL_PROVIDER_sort(providers); for (i = 0; i < sk_OSSL_PROVIDER_num(providers); i++) { const OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(providers, i); /* Query the "known" information parameters, the order matches below */ params[0] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_NAME, &name, 0); params[1] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_VERSION, &version, 0); params[2] = OSSL_PARAM_construct_int(OSSL_PROV_PARAM_STATUS, &status); params[3] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_BUILDINFO, &buildinfo, 0); params[4] = OSSL_PARAM_construct_end(); OSSL_PARAM_set_all_unmodified(params); if (!OSSL_PROVIDER_get_params(prov, params)) { BIO_printf(bio_err, "ERROR: Unable to query provider parameters\n"); return; } /* Print out the provider information, the params order matches above */ BIO_printf(bio_out, " %s\n", OSSL_PROVIDER_get0_name(prov)); if (OSSL_PARAM_modified(params)) BIO_printf(bio_out, " name: %s\n", name); if (OSSL_PARAM_modified(params + 1)) BIO_printf(bio_out, " version: %s\n", version); if (OSSL_PARAM_modified(params + 2)) BIO_printf(bio_out, " status: %sactive\n", status ? "" : "in"); if (verbose) { if (OSSL_PARAM_modified(params + 3)) BIO_printf(bio_out, " build info: %s\n", buildinfo); print_param_types("gettable provider parameters", OSSL_PROVIDER_gettable_params(prov), 4); } } sk_OSSL_PROVIDER_free(providers); } #ifndef OPENSSL_NO_DEPRECATED_3_0 static void list_engines(void) { # ifndef OPENSSL_NO_ENGINE ENGINE *e; BIO_puts(bio_out, "Engines:\n"); e = ENGINE_get_first(); while (e) { BIO_printf(bio_out, "%s\n", ENGINE_get_id(e)); e = ENGINE_get_next(e); } # else BIO_puts(bio_out, "Engine support is disabled.\n"); # endif } #endif static void list_disabled(void) { BIO_puts(bio_out, "Disabled algorithms:\n"); #ifdef OPENSSL_NO_ARIA BIO_puts(bio_out, "ARIA\n"); #endif #ifdef OPENSSL_NO_BF BIO_puts(bio_out, "BF\n"); #endif #ifdef OPENSSL_NO_BLAKE2 BIO_puts(bio_out, "BLAKE2\n"); #endif #ifdef OPENSSL_NO_CAMELLIA BIO_puts(bio_out, "CAMELLIA\n"); #endif #ifdef OPENSSL_NO_CAST BIO_puts(bio_out, "CAST\n"); #endif #ifdef OPENSSL_NO_CMAC BIO_puts(bio_out, "CMAC\n"); #endif #ifdef OPENSSL_NO_CMS BIO_puts(bio_out, "CMS\n"); #endif #ifdef OPENSSL_NO_COMP BIO_puts(bio_out, "COMP\n"); #endif #ifdef OPENSSL_NO_DES BIO_puts(bio_out, "DES\n"); #endif #ifdef OPENSSL_NO_DGRAM BIO_puts(bio_out, "DGRAM\n"); #endif #ifdef OPENSSL_NO_DH BIO_puts(bio_out, "DH\n"); #endif #ifdef OPENSSL_NO_DSA BIO_puts(bio_out, "DSA\n"); #endif #if defined(OPENSSL_NO_DTLS) BIO_puts(bio_out, "DTLS\n"); #endif #if defined(OPENSSL_NO_DTLS1) BIO_puts(bio_out, "DTLS1\n"); #endif #if defined(OPENSSL_NO_DTLS1_2) BIO_puts(bio_out, "DTLS1_2\n"); #endif #ifdef OPENSSL_NO_EC BIO_puts(bio_out, "EC\n"); #endif #ifdef OPENSSL_NO_EC2M BIO_puts(bio_out, "EC2M\n"); #endif #if defined(OPENSSL_NO_ENGINE) && !defined(OPENSSL_NO_DEPRECATED_3_0) BIO_puts(bio_out, "ENGINE\n"); #endif #ifdef OPENSSL_NO_GOST BIO_puts(bio_out, "GOST\n"); #endif #ifdef OPENSSL_NO_IDEA BIO_puts(bio_out, "IDEA\n"); #endif #ifdef OPENSSL_NO_MD2 BIO_puts(bio_out, "MD2\n"); #endif #ifdef OPENSSL_NO_MD4 BIO_puts(bio_out, "MD4\n"); #endif #ifdef OPENSSL_NO_MD5 BIO_puts(bio_out, "MD5\n"); #endif #ifdef OPENSSL_NO_MDC2 BIO_puts(bio_out, "MDC2\n"); #endif #ifdef OPENSSL_NO_OCB BIO_puts(bio_out, "OCB\n"); #endif #ifdef OPENSSL_NO_OCSP BIO_puts(bio_out, "OCSP\n"); #endif #ifdef OPENSSL_NO_PSK BIO_puts(bio_out, "PSK\n"); #endif #ifdef OPENSSL_NO_RC2 BIO_puts(bio_out, "RC2\n"); #endif #ifdef OPENSSL_NO_RC4 BIO_puts(bio_out, "RC4\n"); #endif #ifdef OPENSSL_NO_RC5 BIO_puts(bio_out, "RC5\n"); #endif #ifdef OPENSSL_NO_RMD160 BIO_puts(bio_out, "RMD160\n"); #endif #ifdef OPENSSL_NO_SCRYPT BIO_puts(bio_out, "SCRYPT\n"); #endif #ifdef OPENSSL_NO_SCTP BIO_puts(bio_out, "SCTP\n"); #endif #ifdef OPENSSL_NO_SEED BIO_puts(bio_out, "SEED\n"); #endif #ifdef OPENSSL_NO_SM2 BIO_puts(bio_out, "SM2\n"); #endif #ifdef OPENSSL_NO_SM3 BIO_puts(bio_out, "SM3\n"); #endif #ifdef OPENSSL_NO_SM4 BIO_puts(bio_out, "SM4\n"); #endif #ifdef OPENSSL_NO_SOCK BIO_puts(bio_out, "SOCK\n"); #endif #ifdef OPENSSL_NO_SRP BIO_puts(bio_out, "SRP\n"); #endif #ifdef OPENSSL_NO_SRTP BIO_puts(bio_out, "SRTP\n"); #endif #ifdef OPENSSL_NO_SSL3 BIO_puts(bio_out, "SSL3\n"); #endif #ifdef OPENSSL_NO_TLS1 BIO_puts(bio_out, "TLS1\n"); #endif #ifdef OPENSSL_NO_TLS1_1 BIO_puts(bio_out, "TLS1_1\n"); #endif #ifdef OPENSSL_NO_TLS1_2 BIO_puts(bio_out, "TLS1_2\n"); #endif #ifdef OPENSSL_NO_WHIRLPOOL BIO_puts(bio_out, "WHIRLPOOL\n"); #endif #ifndef ZLIB BIO_puts(bio_out, "ZLIB\n"); #endif } /* Unified enum for help and list commands. */ typedef enum HELPLIST_CHOICE { OPT_COMMON, OPT_ONE, OPT_VERBOSE, OPT_COMMANDS, OPT_DIGEST_COMMANDS, OPT_MAC_ALGORITHMS, OPT_OPTIONS, OPT_DIGEST_ALGORITHMS, OPT_CIPHER_COMMANDS, OPT_CIPHER_ALGORITHMS, OPT_PK_ALGORITHMS, OPT_PK_METHOD, OPT_DISABLED, OPT_KDF_ALGORITHMS, OPT_RANDOM_INSTANCES, OPT_RANDOM_GENERATORS, OPT_ENCODERS, OPT_DECODERS, OPT_KEYMANAGERS, OPT_KEYEXCHANGE_ALGORITHMS, OPT_KEM_ALGORITHMS, OPT_SIGNATURE_ALGORITHMS, OPT_ASYM_CIPHER_ALGORITHMS, OPT_STORE_LOADERS, OPT_PROVIDER_INFO, OPT_OBJECTS, OPT_SELECT_NAME, #ifndef OPENSSL_NO_DEPRECATED_3_0 OPT_ENGINES, #endif OPT_PROV_ENUM } HELPLIST_CHOICE; const OPTIONS list_options[] = { OPT_SECTION("General"), {"help", OPT_HELP, '-', "Display this summary"}, OPT_SECTION("Output"), {"1", OPT_ONE, '-', "List in one column"}, {"verbose", OPT_VERBOSE, '-', "Verbose listing"}, {"select", OPT_SELECT_NAME, 's', "Select a single algorithm"}, {"commands", OPT_COMMANDS, '-', "List of standard commands"}, {"standard-commands", OPT_COMMANDS, '-', "List of standard commands"}, #ifndef OPENSSL_NO_DEPRECATED_3_0 {"digest-commands", OPT_DIGEST_COMMANDS, '-', "List of message digest commands (deprecated)"}, #endif {"digest-algorithms", OPT_DIGEST_ALGORITHMS, '-', "List of message digest algorithms"}, {"kdf-algorithms", OPT_KDF_ALGORITHMS, '-', "List of key derivation and pseudo random function algorithms"}, {"random-instances", OPT_RANDOM_INSTANCES, '-', "List the primary, public and private random number generator details"}, {"random-generators", OPT_RANDOM_GENERATORS, '-', "List of random number generators"}, {"mac-algorithms", OPT_MAC_ALGORITHMS, '-', "List of message authentication code algorithms"}, #ifndef OPENSSL_NO_DEPRECATED_3_0 {"cipher-commands", OPT_CIPHER_COMMANDS, '-', "List of cipher commands (deprecated)"}, #endif {"cipher-algorithms", OPT_CIPHER_ALGORITHMS, '-', "List of cipher algorithms"}, {"encoders", OPT_ENCODERS, '-', "List of encoding methods" }, {"decoders", OPT_DECODERS, '-', "List of decoding methods" }, {"key-managers", OPT_KEYMANAGERS, '-', "List of key managers" }, {"key-exchange-algorithms", OPT_KEYEXCHANGE_ALGORITHMS, '-', "List of key exchange algorithms" }, {"kem-algorithms", OPT_KEM_ALGORITHMS, '-', "List of key encapsulation mechanism algorithms" }, {"signature-algorithms", OPT_SIGNATURE_ALGORITHMS, '-', "List of signature algorithms" }, {"asymcipher-algorithms", OPT_ASYM_CIPHER_ALGORITHMS, '-', "List of asymmetric cipher algorithms" }, {"public-key-algorithms", OPT_PK_ALGORITHMS, '-', "List of public key algorithms"}, {"public-key-methods", OPT_PK_METHOD, '-', "List of public key methods"}, {"store-loaders", OPT_STORE_LOADERS, '-', "List of store loaders"}, {"providers", OPT_PROVIDER_INFO, '-', "List of provider information"}, #ifndef OPENSSL_NO_DEPRECATED_3_0 {"engines", OPT_ENGINES, '-', "List of loaded engines"}, #endif {"disabled", OPT_DISABLED, '-', "List of disabled features"}, {"options", OPT_OPTIONS, 's', "List options for specified command"}, {"objects", OPT_OBJECTS, '-', "List built in objects (OID<->name mappings)"}, OPT_PROV_OPTIONS, {NULL} }; int list_main(int argc, char **argv) { char *prog; HELPLIST_CHOICE o; int one = 0, done = 0; struct { unsigned int commands:1; unsigned int random_instances:1; unsigned int random_generators:1; unsigned int digest_commands:1; unsigned int digest_algorithms:1; unsigned int kdf_algorithms:1; unsigned int mac_algorithms:1; unsigned int cipher_commands:1; unsigned int cipher_algorithms:1; unsigned int encoder_algorithms:1; unsigned int decoder_algorithms:1; unsigned int keymanager_algorithms:1; unsigned int signature_algorithms:1; unsigned int keyexchange_algorithms:1; unsigned int kem_algorithms:1; unsigned int asym_cipher_algorithms:1; unsigned int pk_algorithms:1; unsigned int pk_method:1; unsigned int store_loaders:1; unsigned int provider_info:1; #ifndef OPENSSL_NO_DEPRECATED_3_0 unsigned int engines:1; #endif unsigned int disabled:1; unsigned int objects:1; unsigned int options:1; } todo = { 0, }; verbose = 0; /* Clear a possible previous call */ prog = opt_init(argc, argv, list_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: /* Never hit, but suppresses warning */ case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); return 1; case OPT_HELP: opt_help(list_options); return 0; case OPT_ONE: one = 1; break; case OPT_COMMANDS: todo.commands = 1; break; case OPT_DIGEST_COMMANDS: todo.digest_commands = 1; break; case OPT_DIGEST_ALGORITHMS: todo.digest_algorithms = 1; break; case OPT_KDF_ALGORITHMS: todo.kdf_algorithms = 1; break; case OPT_RANDOM_INSTANCES: todo.random_instances = 1; break; case OPT_RANDOM_GENERATORS: todo.random_generators = 1; break; case OPT_MAC_ALGORITHMS: todo.mac_algorithms = 1; break; case OPT_CIPHER_COMMANDS: todo.cipher_commands = 1; break; case OPT_CIPHER_ALGORITHMS: todo.cipher_algorithms = 1; break; case OPT_ENCODERS: todo.encoder_algorithms = 1; break; case OPT_DECODERS: todo.decoder_algorithms = 1; break; case OPT_KEYMANAGERS: todo.keymanager_algorithms = 1; break; case OPT_SIGNATURE_ALGORITHMS: todo.signature_algorithms = 1; break; case OPT_KEYEXCHANGE_ALGORITHMS: todo.keyexchange_algorithms = 1; break; case OPT_KEM_ALGORITHMS: todo.kem_algorithms = 1; break; case OPT_ASYM_CIPHER_ALGORITHMS: todo.asym_cipher_algorithms = 1; break; case OPT_PK_ALGORITHMS: todo.pk_algorithms = 1; break; case OPT_PK_METHOD: todo.pk_method = 1; break; case OPT_STORE_LOADERS: todo.store_loaders = 1; break; case OPT_PROVIDER_INFO: todo.provider_info = 1; break; #ifndef OPENSSL_NO_DEPRECATED_3_0 case OPT_ENGINES: todo.engines = 1; break; #endif case OPT_DISABLED: todo.disabled = 1; break; case OPT_OBJECTS: todo.objects = 1; break; case OPT_OPTIONS: list_options_for_command(opt_arg()); break; case OPT_VERBOSE: verbose = 1; break; case OPT_SELECT_NAME: select_name = opt_arg(); break; case OPT_PROV_CASES: if (!opt_provider(o)) return 1; break; } done = 1; } /* No extra arguments. */ if (opt_num_rest() != 0) goto opthelp; if (todo.commands) list_type(FT_general, one); if (todo.random_instances) list_random_instances(); if (todo.random_generators) list_random_generators(); if (todo.digest_commands) list_type(FT_md, one); if (todo.digest_algorithms) list_digests(); if (todo.kdf_algorithms) list_kdfs(); if (todo.mac_algorithms) list_macs(); if (todo.cipher_commands) list_type(FT_cipher, one); if (todo.cipher_algorithms) list_ciphers(); if (todo.encoder_algorithms) list_encoders(); if (todo.decoder_algorithms) list_decoders(); if (todo.keymanager_algorithms) list_keymanagers(); if (todo.signature_algorithms) list_signatures(); if (todo.asym_cipher_algorithms) list_asymciphers(); if (todo.keyexchange_algorithms) list_keyexchanges(); if (todo.kem_algorithms) list_kems(); if (todo.pk_algorithms) list_pkey(); if (todo.pk_method) list_pkey_meth(); if (todo.store_loaders) list_store_loaders(); if (todo.provider_info) list_provider_info(); #ifndef OPENSSL_NO_DEPRECATED_3_0 if (todo.engines) list_engines(); #endif if (todo.disabled) list_disabled(); if (todo.objects) list_objects(); if (!done) goto opthelp; return 0; }