#!/usr/bin/env perl ################################################################### ### AES-128 [originally in CTR mode] ### ### bitsliced implementation for Intel Core 2 processors ### ### requires support of SSE extensions up to SSSE3 ### ### Author: Emilia Käsper and Peter Schwabe ### ### Date: 2009-03-19 ### ### Public domain ### ### ### ### See http://homes.esat.kuleuven.be/~ekasper/#software for ### ### further information. ### ################################################################### # # September 2011. # # Started as transliteration to "perlasm" the original code has # undergone following changes: # # - code was made position-independent; # - rounds were folded into a loop resulting in >5x size reduction # from 12.5KB to 2.2KB; # - above was possibile thanks to mixcolumns() modification that # allowed to feed its output back to aesenc[last], this was # achieved at cost of two additional inter-registers moves; # - some instruction reordering and interleaving; # - this module doesn't implement key setup subroutine, instead it # relies on conversion of "conventional" key schedule as returned # by AES_set_encrypt_key (see discussion below); # - first and last round keys are treated differently, which allowed # to skip one shiftrows(), reduce bit-sliced key schedule and # speed-up conversion by 22%; # - support for 192- and 256-bit keys was added; # # Resulting performance in CPU cycles spent to encrypt one byte out # of 4096-byte buffer with 128-bit key is: # # Emilia's this(*) difference # # Core 2 9.30 8.69 +7% # Nehalem(**) 7.63 6.98 +9% # Atom 17.1 17.4 -2%(***) # # (*) Comparison is not completely fair, because "this" is ECB, # i.e. no extra processing such as counter values calculation # and xor-ing input as in Emilia's CTR implementation is # performed. However, the CTR calculations stand for not more # than 1% of total time, so comparison is *rather* fair. # # (**) Results were collected on Westmere, which is considered to # be equivalent to Nehalem for this code. # # (***) Slowdown on Atom is rather strange per se, because original # implementation has a number of 9+-bytes instructions, which # are bad for Atom front-end, and which I eliminated completely. # In attempt to address deterioration sbox() was tested in FP # SIMD "domain" (movaps instead of movdqa, xorps instead of # pxor, etc.). While it resulted in nominal 4% improvement on # Atom, it hurted Westmere by more than 2x factor. # # As for key schedule conversion subroutine. Interface to OpenSSL # relies on per-invocation on-the-fly conversion. This naturally # has impact on performance, especially for short inputs. Conversion # time in CPU cycles and its ratio to CPU cycles spent in 8x block # function is: # # conversion conversion/8x block # Core 2 410 0.37 # Nehalem 310 0.35 # Atom 570 0.26 # # The ratio values mean that 128-byte blocks will be processed # 21-27% slower, 256-byte blocks - 12-16%, 382-byte blocks - 8-11%, # etc. Then keep in mind that input sizes not divisible by 128 are # *effectively* slower, especially shortest ones, e.g. consecutive # 144-byte blocks are processed 44% slower than one would expect, # 272 - 29%, 400 - 22%, etc. Yet, despite all these "shortcomings" # it's still faster than ["hyper-threading-safe" code path in] # aes-x86_64.pl on all lengths above 64 bytes... # # $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open STDOUT,"| $^X $xlate $flavour $output"; my ($inp,$out,$len,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx"); my @XMM=map("%xmm$_",(15,0..14)); # best on Atom, +10% over (0..15) { my ($key,$rounds,$const)=("%rax","%r10d","%r11"); sub sbox { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b0, b1, b4, b6, b3, b7, b2, b5] < msb my @b=@_[0..7]; my @t=@_[8..11]; my @s=@_[12..15]; &InBasisChange (@b); &Inv_GF256 (@b[6,5,0,3,7,1,4,2],@t,@s); &OutBasisChange (@b[7,1,4,2,6,5,0,3]); } sub InBasisChange { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b6, b5, b0, b3, b7, b1, b4, b2] < msb my @b=@_[0..7]; $code.=<<___; pxor @b[6], @b[5] pxor @b[1], @b[2] pxor @b[0], @b[5] pxor @b[2], @b[6] pxor @b[0], @b[3] pxor @b[3], @b[6] pxor @b[7], @b[3] pxor @b[5], @b[7] pxor @b[4], @b[3] pxor @b[5], @b[4] pxor @b[1], @b[3] pxor @b[7], @b[2] pxor @b[5], @b[1] ___ } sub OutBasisChange { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b6, b1, b2, b4, b7, b0, b3, b5] < msb my @b=@_[0..7]; $code.=<<___; pxor @b[6], @b[0] pxor @b[4], @b[1] pxor @b[0], @b[2] pxor @b[6], @b[4] pxor @b[1], @b[6] pxor @b[5], @b[1] pxor @b[3], @b[5] pxor @b[7], @b[3] pxor @b[5], @b[7] pxor @b[5], @b[2] pxor @b[7], @b[4] ___ } sub Mul_GF4 { #;************************************************************* #;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) * #;************************************************************* my ($x0,$x1,$y0,$y1,$t0)=@_; $code.=<<___; movdqa $y0, $t0 pxor $y1, $t0 pand $x0, $t0 pxor $x1, $x0 pand $y0, $x1 pand $y1, $x0 pxor $x1, $x0 pxor $t0, $x1 ___ } sub Mul_GF4_N { # not used, see next subroutine # multiply and scale by N my ($x0,$x1,$y0,$y1,$t0)=@_; $code.=<<___; movdqa $y0, $t0 pxor $y1, $t0 pand $x0, $t0 pxor $x1, $x0 pand $y0, $x1 pand $y1, $x0 pxor $x0, $x1 pxor $t0, $x0 ___ } sub Mul_GF4_N_GF4 { # interleaved Mul_GF4_N and Mul_GF4 my ($x0,$x1,$y0,$y1,$t0, $x2,$x3,$y2,$y3,$t1)=@_; $code.=<<___; movdqa $y0, $t0 movdqa $y2, $t1 pxor $y1, $t0 pxor $y3, $t1 pand $x0, $t0 pand $x2, $t1 pxor $x1, $x0 pxor $x3, $x2 pand $y0, $x1 pand $y2, $x3 pand $y1, $x0 pand $y3, $x2 pxor $x0, $x1 pxor $x3, $x2 pxor $t0, $x0 pxor $t1, $x3 ___ } sub Mul_GF16_2 { my @x=@_[0..7]; my @y=@_[8..11]; my @t=@_[12..15]; $code.=<<___; movdqa @x[0], @t[0] movdqa @x[1], @t[1] ___ &Mul_GF4 (@x[0], @x[1], @y[0], @y[1], @t[2]); $code.=<<___; pxor @x[2], @t[0] pxor @x[3], @t[1] pxor @y[2], @y[0] pxor @y[3], @y[1] ___ Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3], @x[2], @x[3], @y[2], @y[3], @t[2]); $code.=<<___; pxor @t[0], @x[0] pxor @t[0], @x[2] pxor @t[1], @x[1] pxor @t[1], @x[3] movdqa @x[4], @t[0] movdqa @x[5], @t[1] pxor @x[6], @t[0] pxor @x[7], @t[1] ___ &Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3], @x[6], @x[7], @y[2], @y[3], @t[2]); $code.=<<___; pxor @y[2], @y[0] pxor @y[3], @y[1] ___ &Mul_GF4 (@x[4], @x[5], @y[0], @y[1], @t[3]); $code.=<<___; pxor @t[0], @x[4] pxor @t[0], @x[6] pxor @t[1], @x[5] pxor @t[1], @x[7] ___ } sub Inv_GF256 { #;******************************************************************** #;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s3 (144) * #;******************************************************************** my @x=@_[0..7]; my @t=@_[8..11]; my @s=@_[12..15]; # direct optimizations from hardware $code.=<<___; movdqa @x[4], @t[3] movdqa @x[5], @t[2] movdqa @x[1], @t[1] movdqa @x[7], @s[1] movdqa @x[0], @s[0] pxor @x[6], @t[3] pxor @x[7], @t[2] pxor @x[3], @t[1] movdqa @t[3], @s[2] pxor @x[6], @s[1] movdqa @t[2], @t[0] pxor @x[2], @s[0] movdqa @t[3], @s[3] por @t[1], @t[2] por @s[0], @t[3] pxor @t[0], @s[3] pand @s[0], @s[2] pxor @t[1], @s[0] pand @t[1], @t[0] pand @s[0], @s[3] movdqa @x[3], @s[0] pxor @x[2], @s[0] pand @s[0], @s[1] pxor @s[1], @t[3] pxor @s[1], @t[2] movdqa @x[4], @s[1] movdqa @x[1], @s[0] pxor @x[5], @s[1] pxor @x[0], @s[0] movdqa @s[1], @t[1] pand @s[0], @s[1] por @s[0], @t[1] pxor @s[1], @t[0] pxor @s[3], @t[3] pxor @s[2], @t[2] pxor @s[3], @t[1] movdqa @x[7], @s[0] pxor @s[2], @t[0] movdqa @x[6], @s[1] pxor @s[2], @t[1] movdqa @x[5], @s[2] pand @x[3], @s[0] movdqa @x[4], @s[3] pand @x[2], @s[1] pand @x[1], @s[2] por @x[0], @s[3] pxor @s[0], @t[3] pxor @s[1], @t[2] pxor @s[2], @t[1] pxor @s[3], @t[0] #Inv_GF16 \t0, \t1, \t2, \t3, \s0, \s1, \s2, \s3 # new smaller inversion movdqa @t[3], @s[0] pand @t[1], @t[3] pxor @t[2], @s[0] movdqa @t[0], @s[2] movdqa @s[0], @s[3] pxor @t[3], @s[2] pand @s[2], @s[3] movdqa @t[1], @s[1] pxor @t[2], @s[3] pxor @t[0], @s[1] pxor @t[2], @t[3] pand @t[3], @s[1] movdqa @s[2], @t[2] pxor @t[0], @s[1] pxor @s[1], @t[2] pxor @s[1], @t[1] pand @t[0], @t[2] pxor @t[2], @s[2] pxor @t[2], @t[1] pand @s[3], @s[2] pxor @s[0], @s[2] ___ # output in s3, s2, s1, t1 # Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \t2, \t3, \t0, \t1, \s0, \s1, \s2, \s3 # Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \s3, \s2, \s1, \t1, \s0, \t0, \t2, \t3 &Mul_GF16_2(@x,@s[3,2,1],@t[1],@s[0],@t[0,2,3]); ### output msb > [x3,x2,x1,x0,x7,x6,x5,x4] < lsb } # AES linear components sub shiftrows { my @x=@_[0..7]; my $mask=pop; $code.=<<___; pxor 0x00($key),@x[0] pxor 0x10($key),@x[1] pshufb $mask,@x[0] pxor 0x20($key),@x[2] pshufb $mask,@x[1] pxor 0x30($key),@x[3] pshufb $mask,@x[2] pxor 0x40($key),@x[4] pshufb $mask,@x[3] pxor 0x50($key),@x[5] pshufb $mask,@x[4] pxor 0x60($key),@x[6] pshufb $mask,@x[5] pxor 0x70($key),@x[7] pshufb $mask,@x[6] lea 0x80($key),$key pshufb $mask,@x[7] ___ } sub mixcolumns { # modified to emit output in order suitable for feeding back to aesenc[last] my @x=@_[0..7]; my @t=@_[8..15]; $code.=<<___; pshufd \$0x93, @x[0], @t[0] # x0 <<< 32 pshufd \$0x93, @x[1], @t[1] pxor @t[0], @x[0] # x0 ^ (x0 <<< 32) pshufd \$0x93, @x[2], @t[2] pxor @t[1], @x[1] pshufd \$0x93, @x[3], @t[3] pxor @t[2], @x[2] pshufd \$0x93, @x[4], @t[4] pxor @t[3], @x[3] pshufd \$0x93, @x[5], @t[5] pxor @t[4], @x[4] pshufd \$0x93, @x[6], @t[6] pxor @t[5], @x[5] pshufd \$0x93, @x[7], @t[7] pxor @t[6], @x[6] pxor @t[7], @x[7] pxor @x[0], @t[1] pxor @x[7], @t[0] pxor @x[7], @t[1] pshufd \$0x4E, @x[0], @x[0] # (x0 ^ (x0 <<< 32)) <<< 64) pxor @x[1], @t[2] pshufd \$0x4E, @x[1], @x[1] pxor @x[4], @t[5] pxor @t[0], @x[0] pxor @x[5], @t[6] pxor @t[1], @x[1] pxor @x[3], @t[4] pshufd \$0x4E, @x[4], @t[0] pxor @x[6], @t[7] pshufd \$0x4E, @x[5], @t[1] pxor @x[2], @t[3] pshufd \$0x4E, @x[3], @x[4] pxor @x[7], @t[3] pshufd \$0x4E, @x[7], @x[5] pxor @x[7], @t[4] pshufd \$0x4E, @x[6], @x[3] pxor @t[4], @t[0] pshufd \$0x4E, @x[2], @x[6] pxor @t[5], @t[1] pxor @t[3], @x[4] pxor @t[7], @x[5] pxor @t[6], @x[3] movdqa @t[0], @x[2] pxor @t[2], @x[6] movdqa @t[1], @x[7] ___ } sub aesenc { # not used my @b=@_[0..7]; my @t=@_[8..15]; $code.=<<___; movdqa 0x30($const),@t[0] # .LSR ___ &shiftrows (@b,@t[0]); &sbox (@b,@t); &mixcolumns (@b[0,1,4,6,3,7,2,5],@t); } sub aesenclast { # not used my @b=@_[0..7]; my @t=@_[8..15]; $code.=<<___; movdqa 0x40($const),@t[0] # .LSRM0 ___ &shiftrows (@b,@t[0]); &sbox (@b,@t); $code.=<<___ pxor 0x00($key),@b[0] pxor 0x10($key),@b[1] pxor 0x20($key),@b[4] pxor 0x30($key),@b[6] pxor 0x40($key),@b[3] pxor 0x50($key),@b[7] pxor 0x60($key),@b[2] pxor 0x70($key),@b[5] ___ } sub swapmove { my ($a,$b,$n,$mask,$t)=@_; $code.=<<___; movdqa $b,$t psrlq \$$n,$b pxor $a,$b pand $mask,$b pxor $b,$a psllq \$$n,$b pxor $t,$b ___ } sub swapmove2x { my ($a0,$b0,$a1,$b1,$n,$mask,$t0,$t1)=@_; $code.=<<___; movdqa $b0,$t0 psrlq \$$n,$b0 movdqa $b1,$t1 psrlq \$$n,$b1 pxor $a0,$b0 pxor $a1,$b1 pand $mask,$b0 pand $mask,$b1 pxor $b0,$a0 psllq \$$n,$b0 pxor $b1,$a1 psllq \$$n,$b1 pxor $t0,$b0 pxor $t1,$b1 ___ } sub bitslice { my @x=reverse(@_[0..7]); my ($t0,$t1,$t2,$t3)=@_[8..11]; $code.=<<___; movdqa 0x00($const),$t0 # .LBS0 movdqa 0x10($const),$t1 # .LBS1 ___ &swapmove2x(@x[0,1,2,3],1,$t0,$t2,$t3); &swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3); $code.=<<___; movdqa 0x20($const),$t0 # .LBS2 ___ &swapmove2x(@x[0,2,1,3],2,$t1,$t2,$t3); &swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3); &swapmove2x(@x[0,4,1,5],4,$t0,$t2,$t3); &swapmove2x(@x[2,6,3,7],4,$t0,$t2,$t3); } $code.=<<___; .text .extern AES_encrypt .type _bsaes_encrypt8,\@abi-omnipotent .align 64 _bsaes_encrypt8: lea .LBS0(%rip), $const # constants table movdqa ($key), @XMM[9] # round 0 key lea 0x10($key), $key movdqa 0x60($const), @XMM[8] # .LM0SR pxor @XMM[9], @XMM[0] # xor with round0 key pxor @XMM[9], @XMM[1] pshufb @XMM[8], @XMM[0] pxor @XMM[9], @XMM[2] pshufb @XMM[8], @XMM[1] pxor @XMM[9], @XMM[3] pshufb @XMM[8], @XMM[2] pxor @XMM[9], @XMM[4] pshufb @XMM[8], @XMM[3] pxor @XMM[9], @XMM[5] pshufb @XMM[8], @XMM[4] pxor @XMM[9], @XMM[6] pshufb @XMM[8], @XMM[5] pxor @XMM[9], @XMM[7] pshufb @XMM[8], @XMM[6] pshufb @XMM[8], @XMM[7] _bsaes_encrypt8_bitslice: ___ &bitslice (@XMM[0..7, 8..11]); $code.=<<___; dec $rounds jmp .Lenc_sbox .align 16 .Lenc_loop: ___ &shiftrows (@XMM[0..7, 8]); $code.=".Lenc_sbox:\n"; &sbox (@XMM[0..7, 8..15]); $code.=<<___; dec $rounds jl .Lenc_done ___ &mixcolumns (@XMM[0,1,4,6,3,7,2,5, 8..15]); $code.=<<___; movdqa 0x30($const), @XMM[8] # .LSR jnz .Lenc_loop movdqa 0x40($const), @XMM[8] # .LSRM0 jmp .Lenc_loop .align 16 .Lenc_done: ___ # output in lsb > [t0, t1, t4, t6, t3, t7, t2, t5] < msb &bitslice (@XMM[0,1,4,6,3,7,2,5, 8..11]); $code.=<<___; movdqa ($key), @XMM[8] # last round key pxor @XMM[8], @XMM[0] pxor @XMM[8], @XMM[1] pxor @XMM[8], @XMM[4] pxor @XMM[8], @XMM[6] pxor @XMM[8], @XMM[3] pxor @XMM[8], @XMM[7] pxor @XMM[8], @XMM[2] pxor @XMM[8], @XMM[5] ret .size _bsaes_encrypt8,.-_bsaes_encrypt8 ___ } { my ($out,$inp,$rounds,$const)=("%rax","%rcx","%r10d","%r11"); sub bitslice_key { my @x=reverse(@_[0..7]); my ($bs0,$bs1,$bs2,$t2,$t3)=@_[8..12]; &swapmove (@x[0,1],1,$bs0,$t2,$t3); $code.=<<___; #&swapmove(@x[2,3],1,$t0,$t2,$t3); movdqa @x[0], @x[2] movdqa @x[1], @x[3] ___ #&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3); &swapmove2x (@x[0,2,1,3],2,$bs1,$t2,$t3); $code.=<<___; #&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3); movdqa @x[0], @x[4] movdqa @x[2], @x[6] movdqa @x[1], @x[5] movdqa @x[3], @x[7] ___ &swapmove2x (@x[0,4,1,5],4,$bs2,$t2,$t3); &swapmove2x (@x[2,6,3,7],4,$bs2,$t2,$t3); } $code.=<<___; .type _bsaes_enc_key_convert,\@abi-omnipotent .align 16 _bsaes_enc_key_convert: lea .LBS1(%rip), $const movdqu ($inp), %xmm7 # load round 0 key movdqa -0x10($const), %xmm8 # .LBS0 movdqa 0x00($const), %xmm9 # .LBS1 movdqa 0x10($const), %xmm10 # .LBS2 movdqa 0x40($const), %xmm13 # .LM0 movdqa 0x60($const),%xmm14 # .LNOT movdqu 0x10($inp), %xmm6 # load round 1 key lea 0x10($inp), $inp movdqa %xmm7, ($out) # save round 0 key lea 0x10($out), $out dec $rounds jmp .Lkey_loop .align 16 .Lkey_loop: pshufb %xmm13, %xmm6 movdqa %xmm6, %xmm7 ___ &bitslice_key (map("%xmm$_",(0..7, 8..12))); $code.=<<___; pxor %xmm14, %xmm5 # "pnot" pxor %xmm14, %xmm6 pxor %xmm14, %xmm0 pxor %xmm14, %xmm1 lea 0x10($inp), $inp movdqa %xmm0, 0x00($out) # write bit-sliced round key movdqa %xmm1, 0x10($out) movdqa %xmm2, 0x20($out) movdqa %xmm3, 0x30($out) movdqa %xmm4, 0x40($out) movdqa %xmm5, 0x50($out) movdqa %xmm6, 0x60($out) movdqa %xmm7, 0x70($out) lea 0x80($out),$out movdqu ($inp), %xmm6 # load next round key dec $rounds jnz .Lkey_loop pxor 0x70($const), %xmm6 # .L63 movdqa %xmm6, ($out) # save last round key ret .size _bsaes_enc_key_convert,.-_bsaes_enc_key_convert ___ } if (1 && !$win64) { # following two functions are unsupported interface # used for benchmarking... $code.=<<___; .globl bsaes_enc_key_convert .type bsaes_enc_key_convert,\@function,2 .align 16 bsaes_enc_key_convert: mov 240($inp),%r10d # pass rounds mov $inp,%rcx # pass key mov $out,%rax # pass key schedule call _bsaes_enc_key_convert ret .size bsaes_enc_key_convert,.-bsaes_enc_key_convert .globl bsaes_encrypt_128 .type bsaes_encrypt_128,\@function,4 .align 16 bsaes_encrypt_128: .Lenc128_loop: movdqu 0x00($inp), @XMM[0] # load input movdqu 0x10($inp), @XMM[1] movdqu 0x20($inp), @XMM[2] movdqu 0x30($inp), @XMM[3] movdqu 0x40($inp), @XMM[4] movdqu 0x50($inp), @XMM[5] movdqu 0x60($inp), @XMM[6] movdqu 0x70($inp), @XMM[7] mov $key, %rax # pass the $key lea 0x80($inp), $inp mov \$10,%r10d call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[2], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out sub \$0x80,$len ja .Lenc128_loop ret .size bsaes_encrypt_128,.-bsaes_encrypt_128 ___ } { ###################################################################### # # OpenSSL interface # my ($arg1,$arg2,$arg3,$arg4,$arg5) = $win64 ? ("%rcx","%rdx","%r8","%r9","%r10") : ("%rdi","%rsi","%rdx","%rcx","%r8"); my ($inp,$out,$len,$key)=("%r12","%r13","%r14","%r15"); $code.=<<___; .globl bsaes_ecb_encrypt_blocks .type bsaes_ecb_encrypt_blocks,\@abi-omnipotent .align 16 bsaes_ecb_encrypt_blocks: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 lea -0x48(%rsp),%rsp ___ $code.=<<___ if ($win64); lea -0xa0(%rsp), %rsp movaps %xmm6, 0x40(%rsp) movaps %xmm7, 0x50(%rsp) movaps %xmm8, 0x60(%rsp) movaps %xmm9, 0x70(%rsp) movaps %xmm10, 0x80(%rsp) movaps %xmm11, 0x90(%rsp) movaps %xmm12, 0xa0(%rsp) movaps %xmm13, 0xb0(%rsp) movaps %xmm14, 0xc0(%rsp) movaps %xmm15, 0xd0(%rsp) .Lecb_enc_body: ___ $code.=<<___; mov %rsp,%rbp # backup %rsp mov 240($arg4),%eax # rounds mov $arg1,$inp # backup arguments mov $arg2,$out mov $arg3,$len mov $arg4,$key cmp \$8,$arg3 jb .Lecb_enc_short mov %eax,%ebx # backup rounds shl \$7,%rax # 128 bytes per inner round key sub \$`128-32`,%rax # size of bit-sliced key schedule sub %rax,%rsp mov %rsp,%rax # pass key schedule mov $key,%rcx # pass key mov %ebx,%r10d # pass rounds call _bsaes_enc_key_convert sub \$8,$len .Lecb_enc_loop: movdqu 0x00($inp), @XMM[0] # load input movdqu 0x10($inp), @XMM[1] movdqu 0x20($inp), @XMM[2] movdqu 0x30($inp), @XMM[3] movdqu 0x40($inp), @XMM[4] movdqu 0x50($inp), @XMM[5] mov %rsp, %rax # pass key schedule movdqu 0x60($inp), @XMM[6] mov %ebx,%r10d # pass rounds movdqu 0x70($inp), @XMM[7] lea 0x80($inp), $inp call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[2], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out sub \$8,$len jnc .Lecb_enc_loop add \$8,$len jz .Lecb_enc_done movdqu 0x00($inp), @XMM[0] # load input mov %rsp, %rax # pass key schedule mov %ebx,%r10d # pass rounds cmp \$2,$len jb .Lecb_enc_one movdqu 0x10($inp), @XMM[1] je .Lecb_enc_two movdqu 0x20($inp), @XMM[2] cmp \$4,$len jb .Lecb_enc_three movdqu 0x30($inp), @XMM[3] je .Lecb_enc_four movdqu 0x40($inp), @XMM[4] cmp \$6,$len jb .Lecb_enc_five movdqu 0x50($inp), @XMM[5] je .Lecb_enc_six movdqu 0x60($inp), @XMM[6] call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[2], 0x60($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_six: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_five: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_four: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_three: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_two: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_one: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output jmp .Lecb_enc_done .align 16 .Lecb_enc_short: lea ($inp), $arg1 lea ($out), $arg2 lea ($key), $arg3 call AES_encrypt lea 16($inp), $inp lea 16($out), $out dec $len jnz .Lecb_enc_short .Lecb_enc_done: lea (%rsp),%rax pxor %xmm0, %xmm0 .Lecb_enc_bzero: # wipe key schedule [if any] movdqa %xmm0, 0x00(%rax) movdqa %xmm0, 0x10(%rax) lea 0x20(%rax), %rax cmp %rax, %rbp jb .Lecb_enc_bzero lea (%rbp),%rsp # restore %rsp ___ $code.=<<___ if ($win64); movaps 0x40(%rbp), %xmm6 movaps 0x50(%rbp), %xmm7 movaps 0x60(%rbp), %xmm8 movaps 0x70(%rbp), %xmm9 movaps 0x80(%rbp), %xmm10 movaps 0x90(%rbp), %xmm11 movaps 0xa0(%rbp), %xmm12 movaps 0xb0(%rbp), %xmm13 movaps 0xc0(%rbp), %xmm14 movaps 0xd0(%rbp), %xmm15 lea 0xa0(%rbp), %rsp ___ $code.=<<___; mov 0x48(%rsp), %r15 mov 0x50(%rsp), %r14 mov 0x58(%rsp), %r13 mov 0x60(%rsp), %r12 mov 0x68(%rsp), %rbx mov 0x70(%rsp), %rbp lea 0x78(%rsp), %rsp .Lecb_enc_epilogue: ret .size bsaes_ecb_encrypt_blocks,.-bsaes_ecb_encrypt_blocks .globl bsaes_ctr32_encrypt_blocks .type bsaes_ctr32_encrypt_blocks,\@abi-omnipotent .align 16 bsaes_ctr32_encrypt_blocks: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 lea -0x48(%rsp), %rsp ___ $code.=<<___ if ($win64); mov 0xa0(%rsp),$arg5 # pull ivp lea -0xa0(%rsp), %rsp movaps %xmm6, 0x40(%rsp) movaps %xmm7, 0x50(%rsp) movaps %xmm8, 0x60(%rsp) movaps %xmm9, 0x70(%rsp) movaps %xmm10, 0x80(%rsp) movaps %xmm11, 0x90(%rsp) movaps %xmm12, 0xa0(%rsp) movaps %xmm13, 0xb0(%rsp) movaps %xmm14, 0xc0(%rsp) movaps %xmm15, 0xd0(%rsp) .Lctr_enc_body: ___ $code.=<<___; mov %rsp, %rbp # backup %rsp movdqu ($arg5), %xmm0 # load counter mov 240($arg4), %eax # rounds mov $arg1, $inp # backup arguments mov $arg2, $out mov $arg3, $len mov $arg4, $key movdqa %xmm0, 0x20(%rbp) # copy counter cmp \$8, $arg3 jb .Lctr_enc_short mov %eax, %ebx # rounds shl \$7, %rax # 128 bytes per inner round key sub \$`128-32`, %rax # size of bit-sliced key schedule sub %rax, %rsp mov %rsp, %rax # pass key schedule mov $key, %rcx # pass key mov %ebx, %r10d # pass rounds call _bsaes_enc_key_convert movdqa (%rsp), @XMM[9] # load round0 key lea .LADD1(%rip), %r11 movdqa 0x20(%rbp), @XMM[0] # counter copy movdqa -0x20(%r11), @XMM[8] # .LSWPUP pshufb @XMM[8], @XMM[9] # byte swap upper part pshufb @XMM[8], @XMM[0] movdqa @XMM[9], (%rsp) # save adjusted round0 key jmp .Lctr_enc_loop .align 16 .Lctr_enc_loop: movdqa @XMM[0], 0x20(%rbp) # save counter movdqa @XMM[0], @XMM[1] # prepare 8 counter values movdqa @XMM[0], @XMM[2] paddd 0x00(%r11), @XMM[1] # .LADD1 movdqa @XMM[0], @XMM[3] paddd 0x10(%r11), @XMM[2] # .LADD2 movdqa @XMM[0], @XMM[4] paddd 0x20(%r11), @XMM[3] # .LADD3 movdqa @XMM[0], @XMM[5] paddd 0x30(%r11), @XMM[4] # .LADD4 movdqa @XMM[0], @XMM[6] paddd 0x40(%r11), @XMM[5] # .LADD5 movdqa @XMM[0], @XMM[7] paddd 0x50(%r11), @XMM[6] # .LADD6 paddd 0x60(%r11), @XMM[7] # .LADD7 # Borrow prologue from _bsaes_encrypt8 to use the opportunity # to flip byte order in 32-bit counter movdqa (%rsp), @XMM[9] # round 0 key lea 0x10(%rsp), %rax # pass key schedule movdqa -0x10(%r11), @XMM[8] # .LSWPUPM0SR pxor @XMM[9], @XMM[0] # xor with round0 key pxor @XMM[9], @XMM[1] pshufb @XMM[8], @XMM[0] pxor @XMM[9], @XMM[2] pshufb @XMM[8], @XMM[1] pxor @XMM[9], @XMM[3] pshufb @XMM[8], @XMM[2] pxor @XMM[9], @XMM[4] pshufb @XMM[8], @XMM[3] pxor @XMM[9], @XMM[5] pshufb @XMM[8], @XMM[4] pxor @XMM[9], @XMM[6] pshufb @XMM[8], @XMM[5] pxor @XMM[9], @XMM[7] pshufb @XMM[8], @XMM[6] lea .LBS0(%rip), %r11 # constants table pshufb @XMM[8], @XMM[7] mov %ebx,%r10d # pass rounds call _bsaes_encrypt8_bitslice sub \$8,$len jc .Lctr_enc_loop_done movdqu 0x00($inp), @XMM[8] # load input movdqu 0x10($inp), @XMM[9] movdqu 0x20($inp), @XMM[10] movdqu 0x30($inp), @XMM[11] movdqu 0x40($inp), @XMM[12] movdqu 0x50($inp), @XMM[13] movdqu 0x60($inp), @XMM[14] movdqu 0x70($inp), @XMM[15] lea 0x80($inp),$inp pxor @XMM[0], @XMM[8] movdqa 0x20(%rbp), @XMM[0] # load counter pxor @XMM[9], @XMM[1] movdqu @XMM[8], 0x00($out) # write output pxor @XMM[10], @XMM[4] movdqu @XMM[1], 0x10($out) pxor @XMM[11], @XMM[6] movdqu @XMM[4], 0x20($out) pxor @XMM[12], @XMM[3] movdqu @XMM[6], 0x30($out) pxor @XMM[13], @XMM[7] movdqu @XMM[3], 0x40($out) pxor @XMM[14], @XMM[2] movdqu @XMM[7], 0x50($out) pxor @XMM[15], @XMM[5] movdqu @XMM[2], 0x60($out) lea .LADD1(%rip), %r11 movdqu @XMM[5], 0x70($out) lea 0x80($out), $out paddd 0x70(%r11), @XMM[0] # .LADD8 jnz .Lctr_enc_loop jmp .Lctr_enc_done .align 16 .Lctr_enc_loop_done: movdqu 0x00($inp), @XMM[8] # load input pxor @XMM[8], @XMM[0] movdqu @XMM[0], 0x00($out) # write output cmp \$2,$len jb .Lctr_enc_done movdqu 0x10($inp), @XMM[9] pxor @XMM[9], @XMM[1] movdqu @XMM[1], 0x10($out) je .Lctr_enc_done movdqu 0x20($inp), @XMM[10] pxor @XMM[10], @XMM[4] movdqu @XMM[4], 0x20($out) cmp \$4,$len jb .Lctr_enc_done movdqu 0x30($inp), @XMM[11] pxor @XMM[11], @XMM[6] movdqu @XMM[6], 0x30($out) je .Lctr_enc_done movdqu 0x40($inp), @XMM[12] pxor @XMM[12], @XMM[3] movdqu @XMM[3], 0x40($out) cmp \$6,$len jb .Lctr_enc_done movdqu 0x50($inp), @XMM[13] pxor @XMM[13], @XMM[7] movdqu @XMM[7], 0x50($out) je .Lctr_enc_done movdqu 0x60($inp), @XMM[14] pxor @XMM[14], @XMM[2] movdqu @XMM[2], 0x60($out) jmp .Lctr_enc_done .align 16 .Lctr_enc_short: lea 0x20(%rbp), $arg1 lea 0x30(%rbp), $arg2 lea ($key), $arg3 call AES_encrypt movdqu ($inp), @XMM[1] lea 16($inp), $inp mov 0x2c(%rbp), %eax # load 32-bit counter bswap %eax pxor 0x30(%rbp), @XMM[1] inc %eax # increment movdqu @XMM[1], ($out) bswap %eax lea 16($out), $out mov %eax, 0x2c(%rsp) # save 32-bit counter dec $len jnz .Lctr_enc_short .Lctr_enc_done: lea (%rsp), %rax pxor %xmm0, %xmm0 .Lctr_enc_bzero: # wipe key schedule [if any] movdqa %xmm0, 0x00(%rax) movdqa %xmm0, 0x10(%rax) lea 0x20(%rax), %rax cmp %rax, %rbp ja .Lctr_enc_bzero lea (%rbp),%rsp # restore %rsp ___ $code.=<<___ if ($win64); movaps 0x40(%rbp), %xmm6 movaps 0x50(%rbp), %xmm7 movaps 0x60(%rbp), %xmm8 movaps 0x70(%rbp), %xmm9 movaps 0x80(%rbp), %xmm10 movaps 0x90(%rbp), %xmm11 movaps 0xa0(%rbp), %xmm12 movaps 0xb0(%rbp), %xmm13 movaps 0xc0(%rbp), %xmm14 movaps 0xd0(%rbp), %xmm15 lea 0xa0(%rbp), %rsp ___ $code.=<<___; mov 0x48(%rsp), %r15 mov 0x50(%rsp), %r14 mov 0x58(%rsp), %r13 mov 0x60(%rsp), %r12 mov 0x68(%rsp), %rbx mov 0x70(%rsp), %rbp lea 0x78(%rsp), %rsp .Lctr_enc_epilogue: ret .size bsaes_ctr32_encrypt_blocks,.-bsaes_ctr32_encrypt_blocks ___ } $code.=<<___; .align 64 .LBS0: .quad 0x5555555555555555, 0x5555555555555555 .LBS1: .quad 0x3333333333333333, 0x3333333333333333 .LBS2: .quad 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f .LSR: .quad 0x0504070600030201, 0x0f0e0d0c0a09080b .LSRM0: .quad 0x0304090e00050a0f, 0x01060b0c0207080d .LM0: .quad 0x02060a0e03070b0f, 0x0004080c0105090d .LM0SR: .quad 0x0a0e02060f03070b, 0x0004080c05090d01 .LNOT: .quad 0xffffffffffffffff, 0xffffffffffffffff .L63: .quad 0x6363636363636363, 0x6363636363636363 .LSWPUP: .quad 0x0706050403020100, 0x0c0d0e0f0b0a0908 .LSWPUPM0SR: .quad 0x0a0d02060c03070b, 0x0004080f05090e01 .LADD1: .quad 0x0000000000000000, 0x0000000100000000 .LADD2: .quad 0x0000000000000000, 0x0000000200000000 .LADD3: .quad 0x0000000000000000, 0x0000000300000000 .LADD4: .quad 0x0000000000000000, 0x0000000400000000 .LADD5: .quad 0x0000000000000000, 0x0000000500000000 .LADD6: .quad 0x0000000000000000, 0x0000000600000000 .LADD7: .quad 0x0000000000000000, 0x0000000700000000 .LADD8: .quad 0x0000000000000000, 0x0000000800000000 .asciz "Bit-sliced AES for x86_64/SSSE3, Emilia Käsper and Peter Schwabe" .align 64 ___ $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT;