/* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * DSA low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include #include "internal/cryptlib.h" #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "crypto/x509.h" #include #include #include #include #include "internal/provider.h" #include "internal/sizes.h" struct X509_pubkey_st { X509_ALGOR *algor; ASN1_BIT_STRING *public_key; EVP_PKEY *pkey; /* extra data for the callback, used by d2i_PUBKEY_ex */ OSSL_LIB_CTX *libctx; char *propq; /* Flag to force legacy keys */ unsigned int flag_force_legacy : 1; }; static int x509_pubkey_decode(EVP_PKEY **pk, const X509_PUBKEY *key); static int x509_pubkey_set0_libctx(X509_PUBKEY *x, OSSL_LIB_CTX *libctx, const char *propq) { if (x != NULL) { x->libctx = libctx; OPENSSL_free(x->propq); x->propq = NULL; if (propq != NULL) { x->propq = OPENSSL_strdup(propq); if (x->propq == NULL) return 0; } } return 1; } ASN1_SEQUENCE(X509_PUBKEY_INTERNAL) = { ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) } static_ASN1_SEQUENCE_END_name(X509_PUBKEY, X509_PUBKEY_INTERNAL) X509_PUBKEY *ossl_d2i_X509_PUBKEY_INTERNAL(const unsigned char **pp, long len, OSSL_LIB_CTX *libctx) { X509_PUBKEY *xpub = OPENSSL_zalloc(sizeof(*xpub)); if (xpub == NULL) return NULL; return (X509_PUBKEY *)ASN1_item_d2i_ex((ASN1_VALUE **)&xpub, pp, len, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), libctx, NULL); } void ossl_X509_PUBKEY_INTERNAL_free(X509_PUBKEY *xpub) { ASN1_item_free((ASN1_VALUE *)xpub, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); } static void x509_pubkey_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { X509_PUBKEY *pubkey; if (pval != NULL && (pubkey = (X509_PUBKEY *)*pval) != NULL) { X509_ALGOR_free(pubkey->algor); ASN1_BIT_STRING_free(pubkey->public_key); EVP_PKEY_free(pubkey->pkey); OPENSSL_free(pubkey->propq); OPENSSL_free(pubkey); *pval = NULL; } } static int x509_pubkey_ex_populate(ASN1_VALUE **pval, const ASN1_ITEM *it) { X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; return (pubkey->algor != NULL || (pubkey->algor = X509_ALGOR_new()) != NULL) && (pubkey->public_key != NULL || (pubkey->public_key = ASN1_BIT_STRING_new()) != NULL); } static int x509_pubkey_ex_new_ex(ASN1_VALUE **pval, const ASN1_ITEM *it, OSSL_LIB_CTX *libctx, const char *propq) { X509_PUBKEY *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) return 0; if (!x509_pubkey_ex_populate((ASN1_VALUE **)&ret, NULL) || !x509_pubkey_set0_libctx(ret, libctx, propq)) { x509_pubkey_ex_free((ASN1_VALUE **)&ret, NULL); ret = NULL; ERR_raise(ERR_LIB_ASN1, ERR_R_X509_LIB); } else { *pval = (ASN1_VALUE *)ret; } return ret != NULL; } static int x509_pubkey_ex_d2i_ex(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx, OSSL_LIB_CTX *libctx, const char *propq) { const unsigned char *in_saved = *in; size_t publen; X509_PUBKEY *pubkey; int ret; OSSL_DECODER_CTX *dctx = NULL; unsigned char *tmpbuf = NULL; if (*pval == NULL && !x509_pubkey_ex_new_ex(pval, it, libctx, propq)) return 0; if (!x509_pubkey_ex_populate(pval, NULL)) { ERR_raise(ERR_LIB_ASN1, ERR_R_X509_LIB); return 0; } /* This ensures that |*in| advances properly no matter what */ if ((ret = ASN1_item_ex_d2i(pval, in, len, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), tag, aclass, opt, ctx)) <= 0) return ret; publen = *in - in_saved; if (!ossl_assert(publen > 0)) { ERR_raise(ERR_LIB_ASN1, ERR_R_INTERNAL_ERROR); return 0; } pubkey = (X509_PUBKEY *)*pval; EVP_PKEY_free(pubkey->pkey); pubkey->pkey = NULL; /* * Opportunistically decode the key but remove any non fatal errors * from the queue. Subsequent explicit attempts to decode/use the key * will return an appropriate error. */ ERR_set_mark(); /* * Try to decode with legacy method first. This ensures that engines * aren't overridden by providers. */ if ((ret = x509_pubkey_decode(&pubkey->pkey, pubkey)) == -1) { /* -1 indicates a fatal error, like malloc failure */ ERR_clear_last_mark(); goto end; } /* Try to decode it into an EVP_PKEY with OSSL_DECODER */ if (ret <= 0 && !pubkey->flag_force_legacy) { const unsigned char *p; char txtoidname[OSSL_MAX_NAME_SIZE]; size_t slen = publen; /* * The decoders don't know how to handle anything other than Universal * class so we modify the data accordingly. */ if (aclass != V_ASN1_UNIVERSAL) { tmpbuf = OPENSSL_memdup(in_saved, publen); if (tmpbuf == NULL) return 0; in_saved = tmpbuf; *tmpbuf = V_ASN1_CONSTRUCTED | V_ASN1_SEQUENCE; } p = in_saved; if (OBJ_obj2txt(txtoidname, sizeof(txtoidname), pubkey->algor->algorithm, 0) <= 0) { ERR_clear_last_mark(); goto end; } if ((dctx = OSSL_DECODER_CTX_new_for_pkey(&pubkey->pkey, "DER", "SubjectPublicKeyInfo", txtoidname, EVP_PKEY_PUBLIC_KEY, pubkey->libctx, pubkey->propq)) != NULL) /* * As said higher up, we're being opportunistic. In other words, * we don't care if we fail. */ if (OSSL_DECODER_from_data(dctx, &p, &slen)) { if (slen != 0) { /* * If we successfully decoded then we *must* consume all the * bytes. */ ERR_clear_last_mark(); ERR_raise(ERR_LIB_ASN1, EVP_R_DECODE_ERROR); goto end; } } } ERR_pop_to_mark(); ret = 1; end: OSSL_DECODER_CTX_free(dctx); OPENSSL_free(tmpbuf); return ret; } static int x509_pubkey_ex_i2d(const ASN1_VALUE **pval, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass) { return ASN1_item_ex_i2d(pval, out, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), tag, aclass); } static int x509_pubkey_ex_print(BIO *out, const ASN1_VALUE **pval, int indent, const char *fname, const ASN1_PCTX *pctx) { return ASN1_item_print(out, *pval, indent, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), pctx); } static const ASN1_EXTERN_FUNCS x509_pubkey_ff = { NULL, NULL, x509_pubkey_ex_free, 0, /* Default clear behaviour is OK */ NULL, x509_pubkey_ex_i2d, x509_pubkey_ex_print, x509_pubkey_ex_new_ex, x509_pubkey_ex_d2i_ex, }; IMPLEMENT_EXTERN_ASN1(X509_PUBKEY, V_ASN1_SEQUENCE, x509_pubkey_ff) IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) X509_PUBKEY *X509_PUBKEY_new_ex(OSSL_LIB_CTX *libctx, const char *propq) { X509_PUBKEY *pubkey = NULL; pubkey = (X509_PUBKEY *)ASN1_item_new_ex(X509_PUBKEY_it(), libctx, propq); if (!x509_pubkey_set0_libctx(pubkey, libctx, propq)) { X509_PUBKEY_free(pubkey); pubkey = NULL; } return pubkey; } /* * X509_PUBKEY_dup() must be implemented manually, because there is no * support for it in ASN1_EXTERN_FUNCS. */ X509_PUBKEY *X509_PUBKEY_dup(const X509_PUBKEY *a) { X509_PUBKEY *pubkey = OPENSSL_zalloc(sizeof(*pubkey)); if (pubkey == NULL) return NULL; if (!x509_pubkey_set0_libctx(pubkey, a->libctx, a->propq)) { ERR_raise(ERR_LIB_X509, ERR_R_X509_LIB); x509_pubkey_ex_free((ASN1_VALUE **)&pubkey, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); return NULL; } if ((pubkey->algor = X509_ALGOR_dup(a->algor)) == NULL || (pubkey->public_key = ASN1_BIT_STRING_new()) == NULL || !ASN1_BIT_STRING_set(pubkey->public_key, a->public_key->data, a->public_key->length)) { x509_pubkey_ex_free((ASN1_VALUE **)&pubkey, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); return NULL; } if (a->pkey != NULL) { ERR_set_mark(); pubkey->pkey = EVP_PKEY_dup(a->pkey); if (pubkey->pkey == NULL) { pubkey->flag_force_legacy = 1; if (x509_pubkey_decode(&pubkey->pkey, pubkey) <= 0) { x509_pubkey_ex_free((ASN1_VALUE **)&pubkey, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); ERR_clear_last_mark(); return NULL; } } ERR_pop_to_mark(); } return pubkey; } int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) { X509_PUBKEY *pk = NULL; if (x == NULL || pkey == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (pkey->ameth != NULL) { if ((pk = X509_PUBKEY_new()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto error; } if (pkey->ameth->pub_encode != NULL) { if (!pkey->ameth->pub_encode(pk, pkey)) { ERR_raise(ERR_LIB_X509, X509_R_PUBLIC_KEY_ENCODE_ERROR); goto error; } } else { ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); goto error; } } else if (evp_pkey_is_provided(pkey)) { unsigned char *der = NULL; size_t derlen = 0; OSSL_ENCODER_CTX *ectx = OSSL_ENCODER_CTX_new_for_pkey(pkey, EVP_PKEY_PUBLIC_KEY, "DER", "SubjectPublicKeyInfo", NULL); if (OSSL_ENCODER_to_data(ectx, &der, &derlen)) { const unsigned char *pder = der; pk = d2i_X509_PUBKEY(NULL, &pder, (long)derlen); } OSSL_ENCODER_CTX_free(ectx); OPENSSL_free(der); } if (pk == NULL) { ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); goto error; } X509_PUBKEY_free(*x); if (!EVP_PKEY_up_ref(pkey)) { ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); goto error; } *x = pk; /* * pk->pkey is NULL when using the legacy routine, but is non-NULL when * going through the encoder, and for all intents and purposes, it's * a perfect copy of the public key portions of |pkey|, just not the same * instance. If that's all there was to pkey then we could simply return * early, right here. However, some application might very well depend on * the passed |pkey| being used and none other, so we spend a few more * cycles throwing away the newly created |pk->pkey| and replace it with * |pkey|. */ if (pk->pkey != NULL) EVP_PKEY_free(pk->pkey); pk->pkey = pkey; return 1; error: X509_PUBKEY_free(pk); return 0; } /* * Attempt to decode a public key. * Returns 1 on success, 0 for a decode failure and -1 for a fatal * error e.g. malloc failure. * * This function is #legacy. */ static int x509_pubkey_decode(EVP_PKEY **ppkey, const X509_PUBKEY *key) { EVP_PKEY *pkey; int nid; nid = OBJ_obj2nid(key->algor->algorithm); if (!key->flag_force_legacy) { #ifndef OPENSSL_NO_ENGINE ENGINE *e = NULL; e = ENGINE_get_pkey_meth_engine(nid); if (e == NULL) return 0; ENGINE_finish(e); #else return 0; #endif } pkey = EVP_PKEY_new(); if (pkey == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_EVP_LIB); return -1; } if (!EVP_PKEY_set_type(pkey, nid)) { ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); goto error; } if (pkey->ameth->pub_decode) { /* * Treat any failure of pub_decode as a decode error. In * future we could have different return codes for decode * errors and fatal errors such as malloc failure. */ if (!pkey->ameth->pub_decode(pkey, key)) goto error; } else { ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); goto error; } *ppkey = pkey; return 1; error: EVP_PKEY_free(pkey); return 0; } EVP_PKEY *X509_PUBKEY_get0(const X509_PUBKEY *key) { if (key == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (key->pkey == NULL) { /* We failed to decode the key when we loaded it, or it was never set */ ERR_raise(ERR_LIB_EVP, EVP_R_DECODE_ERROR); return NULL; } return key->pkey; } EVP_PKEY *X509_PUBKEY_get(const X509_PUBKEY *key) { EVP_PKEY *ret = X509_PUBKEY_get0(key); if (ret != NULL && !EVP_PKEY_up_ref(ret)) { ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); ret = NULL; } return ret; } /* * Now three pseudo ASN1 routines that take an EVP_PKEY structure and encode * or decode as X509_PUBKEY */ static EVP_PKEY *d2i_PUBKEY_int(EVP_PKEY **a, const unsigned char **pp, long length, OSSL_LIB_CTX *libctx, const char *propq, unsigned int force_legacy, X509_PUBKEY * (*d2i_x509_pubkey)(X509_PUBKEY **a, const unsigned char **in, long len)) { X509_PUBKEY *xpk, *xpk2 = NULL, **pxpk = NULL; EVP_PKEY *pktmp = NULL; const unsigned char *q; q = *pp; /* * If libctx or propq are non-NULL, we take advantage of the reuse * feature. It's not generally recommended, but is safe enough for * newly created structures. */ if (libctx != NULL || propq != NULL || force_legacy) { xpk2 = OPENSSL_zalloc(sizeof(*xpk2)); if (xpk2 == NULL) return NULL; if (!x509_pubkey_set0_libctx(xpk2, libctx, propq)) goto end; xpk2->flag_force_legacy = !!force_legacy; pxpk = &xpk2; } xpk = d2i_x509_pubkey(pxpk, &q, length); if (xpk == NULL) goto end; pktmp = X509_PUBKEY_get(xpk); X509_PUBKEY_free(xpk); xpk2 = NULL; /* We know that xpk == xpk2 */ if (pktmp == NULL) goto end; *pp = q; if (a != NULL) { EVP_PKEY_free(*a); *a = pktmp; } end: X509_PUBKEY_free(xpk2); return pktmp; } /* For the algorithm specific d2i functions further down */ EVP_PKEY *ossl_d2i_PUBKEY_legacy(EVP_PKEY **a, const unsigned char **pp, long length) { return d2i_PUBKEY_int(a, pp, length, NULL, NULL, 1, d2i_X509_PUBKEY); } EVP_PKEY *d2i_PUBKEY_ex(EVP_PKEY **a, const unsigned char **pp, long length, OSSL_LIB_CTX *libctx, const char *propq) { return d2i_PUBKEY_int(a, pp, length, libctx, propq, 0, d2i_X509_PUBKEY); } EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) { return d2i_PUBKEY_ex(a, pp, length, NULL, NULL); } int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp) { int ret = -1; if (a == NULL) return 0; if (a->ameth != NULL) { X509_PUBKEY *xpk = NULL; if ((xpk = X509_PUBKEY_new()) == NULL) return -1; /* pub_encode() only encode parameters, not the key itself */ if (a->ameth->pub_encode != NULL && a->ameth->pub_encode(xpk, a)) { xpk->pkey = (EVP_PKEY *)a; ret = i2d_X509_PUBKEY(xpk, pp); xpk->pkey = NULL; } X509_PUBKEY_free(xpk); } else if (a->keymgmt != NULL) { OSSL_ENCODER_CTX *ctx = OSSL_ENCODER_CTX_new_for_pkey(a, EVP_PKEY_PUBLIC_KEY, "DER", "SubjectPublicKeyInfo", NULL); BIO *out = BIO_new(BIO_s_mem()); BUF_MEM *buf = NULL; if (OSSL_ENCODER_CTX_get_num_encoders(ctx) != 0 && out != NULL && OSSL_ENCODER_to_bio(ctx, out) && BIO_get_mem_ptr(out, &buf) > 0) { ret = buf->length; if (pp != NULL) { if (*pp == NULL) { *pp = (unsigned char *)buf->data; buf->length = 0; buf->data = NULL; } else { memcpy(*pp, buf->data, ret); *pp += ret; } } } BIO_free(out); OSSL_ENCODER_CTX_free(ctx); } return ret; } /* * The following are equivalents but which return RSA and DSA keys */ RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; RSA *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_RSA(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { RSA_free(*a); *a = key; } return key; } int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #ifndef OPENSSL_NO_DH DH *ossl_d2i_DH_PUBKEY(DH **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DH *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_DH) key = EVP_PKEY_get1_DH(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { DH_free(*a); *a = key; } return key; } int ossl_i2d_DH_PUBKEY(const DH *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign_DH(pktmp, (DH *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } DH *ossl_d2i_DHx_PUBKEY(DH **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DH *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_DHX) key = EVP_PKEY_get1_DH(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { DH_free(*a); *a = key; } return key; } int ossl_i2d_DHx_PUBKEY(const DH *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_DHX, (DH *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_DSA DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DSA *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_DSA(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { DSA_free(*a); *a = key; } return key; } int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_EC EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; EC_KEY *key = NULL; const unsigned char *q; int type; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; type = EVP_PKEY_get_id(pkey); if (type == EVP_PKEY_EC || type == EVP_PKEY_SM2) key = EVP_PKEY_get1_EC_KEY(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { EC_KEY_free(*a); *a = key; } return key; } int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } ECX_KEY *ossl_d2i_ED25519_PUBKEY(ECX_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; ECX_KEY *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; key = ossl_evp_pkey_get1_ED25519(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { ossl_ecx_key_free(*a); *a = key; } return key; } int ossl_i2d_ED25519_PUBKEY(const ECX_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_ED25519, (ECX_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } ECX_KEY *ossl_d2i_ED448_PUBKEY(ECX_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; ECX_KEY *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_ED448) key = ossl_evp_pkey_get1_ED448(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { ossl_ecx_key_free(*a); *a = key; } return key; } int ossl_i2d_ED448_PUBKEY(const ECX_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_ED448, (ECX_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } ECX_KEY *ossl_d2i_X25519_PUBKEY(ECX_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; ECX_KEY *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_X25519) key = ossl_evp_pkey_get1_X25519(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { ossl_ecx_key_free(*a); *a = key; } return key; } int ossl_i2d_X25519_PUBKEY(const ECX_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_X25519, (ECX_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } ECX_KEY *ossl_d2i_X448_PUBKEY(ECX_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; ECX_KEY *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_X448) key = ossl_evp_pkey_get1_X448(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { ossl_ecx_key_free(*a); *a = key; } return key; } int ossl_i2d_X448_PUBKEY(const ECX_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_X448, (ECX_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif void X509_PUBKEY_set0_public_key(X509_PUBKEY *pub, unsigned char *penc, int penclen) { ASN1_STRING_set0(pub->public_key, penc, penclen); ossl_asn1_string_set_bits_left(pub->public_key, 0); } int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, int ptype, void *pval, unsigned char *penc, int penclen) { if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) return 0; if (penc != NULL) X509_PUBKEY_set0_public_key(pub, penc, penclen); return 1; } int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, const unsigned char **pk, int *ppklen, X509_ALGOR **pa, const X509_PUBKEY *pub) { if (ppkalg) *ppkalg = pub->algor->algorithm; if (pk) { *pk = pub->public_key->data; *ppklen = pub->public_key->length; } if (pa) *pa = pub->algor; return 1; } ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) { if (x == NULL) return NULL; return x->cert_info.key->public_key; } /* Returns 1 for equal, 0, for non-equal, < 0 on error */ int X509_PUBKEY_eq(const X509_PUBKEY *a, const X509_PUBKEY *b) { X509_ALGOR *algA, *algB; EVP_PKEY *pA, *pB; if (a == b) return 1; if (a == NULL || b == NULL) return 0; if (!X509_PUBKEY_get0_param(NULL, NULL, NULL, &algA, a) || algA == NULL || !X509_PUBKEY_get0_param(NULL, NULL, NULL, &algB, b) || algB == NULL) return -2; if (X509_ALGOR_cmp(algA, algB) != 0) return 0; if ((pA = X509_PUBKEY_get0(a)) == NULL || (pB = X509_PUBKEY_get0(b)) == NULL) return -2; return EVP_PKEY_eq(pA, pB); } int ossl_x509_PUBKEY_get0_libctx(OSSL_LIB_CTX **plibctx, const char **ppropq, const X509_PUBKEY *key) { if (plibctx) *plibctx = key->libctx; if (ppropq) *ppropq = key->propq; return 1; }