/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "crypto/x509.h" #include #include struct X509_pubkey_st { X509_ALGOR *algor; ASN1_BIT_STRING *public_key; EVP_PKEY *pkey; }; static int x509_pubkey_decode(EVP_PKEY **pk, X509_PUBKEY *key); /* Minor tweak to operation: free up EVP_PKEY */ static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_FREE_POST) { X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; EVP_PKEY_free(pubkey->pkey); } else if (operation == ASN1_OP_D2I_POST) { /* Attempt to decode public key and cache in pubkey structure. */ X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; EVP_PKEY_free(pubkey->pkey); pubkey->pkey = NULL; /* * Opportunistically decode the key but remove any non fatal errors * from the queue. Subsequent explicit attempts to decode/use the key * will return an appropriate error. */ ERR_set_mark(); if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1) return 0; ERR_pop_to_mark(); } return 1; } ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = { ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY) IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) IMPLEMENT_ASN1_DUP_FUNCTION(X509_PUBKEY) /* TODO should better be called X509_PUBKEY_set1 */ int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) { X509_PUBKEY *pk = NULL; if (x == NULL) return 0; if ((pk = X509_PUBKEY_new()) == NULL) goto error; if (pkey != NULL && pkey->ameth) { if (pkey->ameth->pub_encode) { if (!pkey->ameth->pub_encode(pk, pkey)) { X509err(X509_F_X509_PUBKEY_SET, X509_R_PUBLIC_KEY_ENCODE_ERROR); goto error; } } else { X509err(X509_F_X509_PUBKEY_SET, X509_R_METHOD_NOT_SUPPORTED); goto error; } } else { X509err(X509_F_X509_PUBKEY_SET, X509_R_UNSUPPORTED_ALGORITHM); goto error; } X509_PUBKEY_free(*x); *x = pk; pk->pkey = pkey; return EVP_PKEY_up_ref(pkey); error: X509_PUBKEY_free(pk); return 0; } /* * Attempt to decode a public key. * Returns 1 on success, 0 for a decode failure and -1 for a fatal * error e.g. malloc failure. */ static int x509_pubkey_decode(EVP_PKEY **ppkey, X509_PUBKEY *key) { EVP_PKEY *pkey = EVP_PKEY_new(); if (pkey == NULL) { X509err(X509_F_X509_PUBKEY_DECODE, ERR_R_MALLOC_FAILURE); return -1; } if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) { X509err(X509_F_X509_PUBKEY_DECODE, X509_R_UNSUPPORTED_ALGORITHM); goto error; } if (pkey->ameth->pub_decode) { /* * Treat any failure of pub_decode as a decode error. In * future we could have different return codes for decode * errors and fatal errors such as malloc failure. */ if (!pkey->ameth->pub_decode(pkey, key)) { X509err(X509_F_X509_PUBKEY_DECODE, X509_R_PUBLIC_KEY_DECODE_ERROR); goto error; } } else { X509err(X509_F_X509_PUBKEY_DECODE, X509_R_METHOD_NOT_SUPPORTED); goto error; } *ppkey = pkey; return 1; error: EVP_PKEY_free(pkey); return 0; } EVP_PKEY *X509_PUBKEY_get0(X509_PUBKEY *key) { EVP_PKEY *ret = NULL; if (key == NULL || key->public_key == NULL) return NULL; if (key->pkey != NULL) return key->pkey; /* * When the key ASN.1 is initially parsed an attempt is made to * decode the public key and cache the EVP_PKEY structure. If this * operation fails the cached value will be NULL. Parsing continues * to allow parsing of unknown key types or unsupported forms. * We repeat the decode operation so the appropriate errors are left * in the queue. */ x509_pubkey_decode(&ret, key); /* If decode doesn't fail something bad happened */ if (ret != NULL) { X509err(X509_F_X509_PUBKEY_GET0, ERR_R_INTERNAL_ERROR); EVP_PKEY_free(ret); } return NULL; } EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key) { EVP_PKEY *ret = X509_PUBKEY_get0(key); if (ret != NULL) EVP_PKEY_up_ref(ret); return ret; } /* * Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or * decode as X509_PUBKEY */ EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) { X509_PUBKEY *xpk; EVP_PKEY *pktmp; const unsigned char *q; q = *pp; xpk = d2i_X509_PUBKEY(NULL, &q, length); if (xpk == NULL) return NULL; pktmp = X509_PUBKEY_get(xpk); X509_PUBKEY_free(xpk); if (pktmp == NULL) return NULL; *pp = q; if (a != NULL) { EVP_PKEY_free(*a); *a = pktmp; } return pktmp; } int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp) { X509_PUBKEY *xpk = NULL; int ret = -1; if (a == NULL) return 0; if ((xpk = X509_PUBKEY_new()) == NULL) return -1; if (a->ameth != NULL && a->ameth->pub_encode != NULL && !a->ameth->pub_encode(xpk, a)) goto error; xpk->pkey = (EVP_PKEY *)a; ret = i2d_X509_PUBKEY(xpk, pp); xpk->pkey = NULL; error: X509_PUBKEY_free(xpk); return ret; } /* * The following are equivalents but which return RSA and DSA keys */ #ifndef OPENSSL_NO_RSA RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; RSA *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_RSA(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { RSA_free(*a); *a = key; } return key; } int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ASN1err(ASN1_F_I2D_RSA_PUBKEY, ERR_R_MALLOC_FAILURE); return -1; } (void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_DSA DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DSA *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_DSA(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { DSA_free(*a); *a = key; } return key; } int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ASN1err(ASN1_F_I2D_DSA_PUBKEY, ERR_R_MALLOC_FAILURE); return -1; } (void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_EC EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; EC_KEY *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_EC_KEY(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { EC_KEY_free(*a); *a = key; } return key; } int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ASN1err(ASN1_F_I2D_EC_PUBKEY, ERR_R_MALLOC_FAILURE); return -1; } (void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, int ptype, void *pval, unsigned char *penc, int penclen) { if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) return 0; if (penc) { OPENSSL_free(pub->public_key->data); pub->public_key->data = penc; pub->public_key->length = penclen; /* Set number of unused bits to zero */ pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT; } return 1; } int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, const unsigned char **pk, int *ppklen, X509_ALGOR **pa, X509_PUBKEY *pub) { if (ppkalg) *ppkalg = pub->algor->algorithm; if (pk) { *pk = pub->public_key->data; *ppklen = pub->public_key->length; } if (pa) *pa = pub->algor; return 1; } ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) { if (x == NULL) return NULL; return x->cert_info.key->public_key; }