/* Written by Dr Stephen N Henson (shenson@bigfoot.com) for the OpenSSL * project 2005. */ /* ==================================================================== * Copyright (c) 2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* Support for PVK format keys and related structures (such a PUBLICKEYBLOB * and PRIVATEKEYBLOB). */ #include "cryptlib.h" #include #include /* Utility function: read a DWORD (4 byte unsigned integer) in little endian * format */ static unsigned int read_ledword(const unsigned char **in) { const unsigned char *p = *in; unsigned int ret; ret = *p++; ret |= (*p++ << 8); ret |= (*p++ << 16); ret |= (*p++ << 24); *in = p; return ret; } /* Read a BIGNUM in little endian format. The docs say that this should take up * bitlen/8 bytes. */ static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) { const unsigned char *p; unsigned char *tmpbuf, *q; unsigned int i; p = *in + nbyte - 1; tmpbuf = OPENSSL_malloc(nbyte); if (!tmpbuf) return 0; q = tmpbuf; for (i = 0; i < nbyte; i++) *q++ = *p--; *r = BN_bin2bn(tmpbuf, nbyte, NULL); OPENSSL_free(tmpbuf); if (*r) { *in += nbyte; return 1; } else return 0; } /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ #define MS_PUBLICKEYBLOB 0x6 #define MS_PRIVATEKEYBLOB 0x7 #define MS_RSA1MAGIC 0x31415352L #define MS_RSA2MAGIC 0x32415352L #define MS_DSS1MAGIC 0x31535344L #define MS_DSS2MAGIC 0x32535344L #define MS_KEYALG_RSA_KEYX 0xa400 #define MS_KEYALG_DSS_SIGN 0x2200 #define MS_KEYTYPE_KEYX 0x1 #define MS_KEYTYPE_SIGN 0x2 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */ #define MS_PVKMAGIC 0xb0b5f11eL /* Salt length for PVK files */ #define PVK_SALTLEN 0x10 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, unsigned int bitlen, int ispub); static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, unsigned int bitlen, int ispub); static int do_blob_header(const unsigned char **in, unsigned int length, unsigned int *pmagic, unsigned int *pbitlen, int *pisdss, int *pispub) { const unsigned char *p = *in; if (length < 16) return 0; /* bType */ if (*p == MS_PUBLICKEYBLOB) { if (*pispub == 0) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); return 0; } *pispub = 1; } else if (*p == MS_PRIVATEKEYBLOB) { if (*pispub == 1) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); return 0; } *pispub = 0; } else return 0; p++; /* Version */ if (*p++ != 0x2) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); return 0; } /* Ignore reserved, aiKeyAlg */ p+= 6; *pmagic = read_ledword(&p); *pbitlen = read_ledword(&p); *pisdss = 0; switch (*pmagic) { case MS_DSS1MAGIC: *pisdss = 1; case MS_RSA1MAGIC: if (*pispub == 0) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); return 0; } break; case MS_DSS2MAGIC: *pisdss = 1; case MS_RSA2MAGIC: if (*pispub == 1) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); return 0; } break; default: PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); return -1; } *in = p; return 1; } static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) { unsigned int nbyte, hnbyte; nbyte = (bitlen + 7) >> 3; hnbyte = (bitlen + 15) >> 4; if (isdss) { /* Expected length: 20 for q + 3 components bitlen each + 24 * for seed structure. */ if (ispub) return 44 + 3 * nbyte; /* Expected length: 20 for q, priv, 2 bitlen components + 24 * for seed structure. */ else return 64 + 2 * nbyte; } else { /* Expected length: 4 for 'e' + 'n' */ if (ispub) return 4 + nbyte; else /* Expected length: 4 for 'e' and 7 other components. * 2 components are bitlen size, 5 are bitlen/2 */ return 4 + 2*nbyte + 5*hnbyte; } } static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length, int ispub) { const unsigned char *p = *in; unsigned int bitlen, magic; int isdss; if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); return NULL; } length -= 16; if (length < blob_length(bitlen, isdss, ispub)) { PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); return NULL; } if (isdss) return b2i_dss(&p, length, bitlen, ispub); else return b2i_rsa(&p, length, bitlen, ispub); } static EVP_PKEY *do_b2i_bio(BIO *in, int ispub) { const unsigned char *p; unsigned char hdr_buf[16], *buf = NULL; unsigned int bitlen, magic, length; int isdss; EVP_PKEY *ret = NULL; if (BIO_read(in, hdr_buf, 16) != 16) { PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); return NULL; } p = hdr_buf; if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) return NULL; length = blob_length(bitlen, isdss, ispub); buf = OPENSSL_malloc(length); if (!buf) { PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); goto err; } p = buf; if (BIO_read(in, buf, length) != (int)length) { PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); goto err; } if (isdss) ret = b2i_dss(&p, length, bitlen, ispub); else ret = b2i_rsa(&p, length, bitlen, ispub); err: if (buf) OPENSSL_free(buf); return ret; } static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, unsigned int bitlen, int ispub) { const unsigned char *p = *in; EVP_PKEY *ret = NULL; DSA *dsa = NULL; BN_CTX *ctx = NULL; unsigned int nbyte; nbyte = (bitlen + 7) >> 3; dsa = DSA_new(); ret = EVP_PKEY_new(); if (!dsa || !ret) goto memerr; if (!read_lebn(&p, nbyte, &dsa->p)) goto memerr; if (!read_lebn(&p, 20, &dsa->q)) goto memerr; if (!read_lebn(&p, nbyte, &dsa->g)) goto memerr; if (ispub) { if (!read_lebn(&p, nbyte, &dsa->pub_key)) goto memerr; } else { if (!read_lebn(&p, 20, &dsa->priv_key)) goto memerr; /* Calculate public key */ if (!(dsa->pub_key = BN_new())) goto memerr; if (!(ctx = BN_CTX_new())) goto memerr; if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx)) goto memerr; BN_CTX_free(ctx); } EVP_PKEY_set1_DSA(ret, dsa); DSA_free(dsa); *in = p; return ret; memerr: PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); if (dsa) DSA_free(dsa); if (ret) EVP_PKEY_free(ret); if (ctx) BN_CTX_free(ctx); return NULL; } static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, unsigned int bitlen, int ispub) { const unsigned char *p = *in; EVP_PKEY *ret = NULL; RSA *rsa = NULL; unsigned int nbyte, hnbyte; nbyte = (bitlen + 7) >> 3; hnbyte = (bitlen + 15) >> 4; rsa = RSA_new(); ret = EVP_PKEY_new(); if (!rsa || !ret) goto memerr; rsa->e = BN_new(); if (!rsa->e) goto memerr; if (!BN_set_word(rsa->e, read_ledword(&p))) goto memerr; if (!read_lebn(&p, nbyte, &rsa->n)) goto memerr; if (!ispub) { if (!read_lebn(&p, hnbyte, &rsa->p)) goto memerr; if (!read_lebn(&p, hnbyte, &rsa->q)) goto memerr; if (!read_lebn(&p, hnbyte, &rsa->dmp1)) goto memerr; if (!read_lebn(&p, hnbyte, &rsa->dmq1)) goto memerr; if (!read_lebn(&p, hnbyte, &rsa->iqmp)) goto memerr; if (!read_lebn(&p, nbyte, &rsa->d)) goto memerr; } EVP_PKEY_set1_RSA(ret, rsa); RSA_free(rsa); *in = p; return ret; memerr: PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); if (rsa) RSA_free(rsa); if (ret) EVP_PKEY_free(ret); return NULL; } EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length) { return do_b2i(in, length, 0); } EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length) { return do_b2i(in, length, 1); } EVP_PKEY *b2i_PrivateKey_bio(BIO *in) { return do_b2i_bio(in, 0); } EVP_PKEY *b2i_PublicKey_bio(BIO *in) { return do_b2i_bio(in, 1); } static void write_ledword(unsigned char **out, unsigned int dw) { unsigned char *p = *out; *p++ = dw & 0xff; *p++ = (dw>>8) & 0xff; *p++ = (dw>>16) & 0xff; *p++ = (dw>>24) & 0xff; *out = p; } static void write_lebn(unsigned char **out, const BIGNUM *bn, int len) { int nb, i; unsigned char *p = *out, *q, c; nb = BN_num_bytes(bn); BN_bn2bin(bn, p); q = p + nb - 1; /* In place byte order reversal */ for (i = 0; i < nb/2; i++) { c = *p; *p++ = *q; *q-- = c; } *out += nb; /* Pad with zeroes if we have to */ if (len > 0) { len -= nb; if (len > 0) { memset(*out, 0, len); *out += len; } } } static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); static void write_rsa(unsigned char **out, RSA *rsa, int ispub); static void write_dsa(unsigned char **out, DSA *dsa, int ispub); static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) { unsigned char *p; unsigned int bitlen, magic, keyalg; int outlen, noinc = 0; if (pk->type == EVP_PKEY_DSA) { bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic); keyalg = MS_KEYALG_DSS_SIGN; } else if (pk->type == EVP_PKEY_RSA) { bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic); keyalg = MS_KEYALG_RSA_KEYX; } else return -1; if (bitlen == 0) return -1; outlen = 16 + blob_length(bitlen, keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); if (out == NULL) return outlen; if (*out) p = *out; else { p = OPENSSL_malloc(outlen); if (!p) return -1; *out = p; noinc = 1; } if (ispub) *p++ = MS_PUBLICKEYBLOB; else *p++ = MS_PRIVATEKEYBLOB; *p++ = 0x2; *p++ = 0; *p++ = 0; write_ledword(&p, keyalg); write_ledword(&p, magic); write_ledword(&p, bitlen); if (keyalg == MS_KEYALG_DSS_SIGN) write_dsa(&p, pk->pkey.dsa, ispub); else write_rsa(&p, pk->pkey.rsa, ispub); if (!noinc) *out += outlen; return outlen; } static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) { unsigned char *tmp = NULL; int outlen, wrlen; outlen = do_i2b(&tmp, pk, ispub); if (outlen < 0) return -1; wrlen = BIO_write(out, tmp, outlen); OPENSSL_free(tmp); if (wrlen == outlen) return outlen; return -1; } static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) { int bitlen; bitlen = BN_num_bits(dsa->p); if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) || (BN_num_bits(dsa->g) > bitlen)) goto badkey; if (ispub) { if (BN_num_bits(dsa->pub_key) > bitlen) goto badkey; *pmagic = MS_DSS1MAGIC; } else { if (BN_num_bits(dsa->priv_key) > 160) goto badkey; *pmagic = MS_DSS2MAGIC; } return bitlen; badkey: PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); return 0; } static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) { int nbyte, hnbyte, bitlen; if (BN_num_bits(rsa->e) > 32) goto badkey; bitlen = BN_num_bits(rsa->n); nbyte = BN_num_bytes(rsa->n); hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; if (ispub) { *pmagic = MS_RSA1MAGIC; return bitlen; } else { *pmagic = MS_RSA2MAGIC; /* For private key each component must fit within nbyte or * hnbyte. */ if (BN_num_bytes(rsa->d) > nbyte) goto badkey; if ((BN_num_bytes(rsa->iqmp) > hnbyte) || (BN_num_bytes(rsa->p) > hnbyte) || (BN_num_bytes(rsa->q) > hnbyte) || (BN_num_bytes(rsa->dmp1) > hnbyte) || (BN_num_bytes(rsa->dmq1) > hnbyte)) goto badkey; } return bitlen; badkey: PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); return 0; } static void write_rsa(unsigned char **out, RSA *rsa, int ispub) { int nbyte, hnbyte; nbyte = BN_num_bytes(rsa->n); hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; write_lebn(out, rsa->e, 4); write_lebn(out, rsa->n, -1); if (ispub) return; write_lebn(out, rsa->p, hnbyte); write_lebn(out, rsa->q, hnbyte); write_lebn(out, rsa->dmp1, hnbyte); write_lebn(out, rsa->dmq1, hnbyte); write_lebn(out, rsa->iqmp, hnbyte); write_lebn(out, rsa->d, nbyte); } static void write_dsa(unsigned char **out, DSA *dsa, int ispub) { int nbyte; nbyte = BN_num_bytes(dsa->p); write_lebn(out, dsa->p, nbyte); write_lebn(out, dsa->q, 20); write_lebn(out, dsa->g, nbyte); if (ispub) write_lebn(out, dsa->pub_key, nbyte); else write_lebn(out, dsa->priv_key, 20); /* Set "invalid" for seed structure values */ memset(*out, 0xff, 24); *out += 24; return; } int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) { return do_i2b_bio(out, pk, 0); } int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) { return do_i2b_bio(out, pk, 1); } static int do_PVK_header(const unsigned char **in, unsigned int length, int skip_magic, unsigned int *psaltlen, unsigned int *pkeylen) { const unsigned char *p = *in; unsigned int pvk_magic, keytype, is_encrypted; if (skip_magic) { if (length < 20) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); return 0; } length -= 20; } else { if (length < 24) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); return 0; } length -= 24; pvk_magic = read_ledword(&p); if (pvk_magic != MS_PVKMAGIC) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); return 0; } } /* Skip reserved */ p += 4; keytype = read_ledword(&p); is_encrypted = read_ledword(&p); *psaltlen = read_ledword(&p); *pkeylen = read_ledword(&p); if (is_encrypted && !*psaltlen) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); return 0; } *in = p; return 1; } static int derive_pvk_key(unsigned char *key, const unsigned char *salt, unsigned int saltlen, const unsigned char *pass, int passlen) { EVP_MD_CTX mctx; EVP_MD_CTX_init(&mctx); EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL); EVP_DigestUpdate(&mctx, salt, saltlen); EVP_DigestUpdate(&mctx, pass, passlen); EVP_DigestFinal_ex(&mctx, key, NULL); EVP_MD_CTX_cleanup(&mctx); return 1; } static EVP_PKEY *do_PVK_body(const unsigned char **in, unsigned int saltlen, unsigned int keylen, pem_password_cb *cb, void *u) { EVP_PKEY *ret = NULL; const unsigned char *p = *in; unsigned int magic; unsigned char *enctmp = NULL, *q; if (saltlen) { char psbuf[PEM_BUFSIZE]; unsigned char keybuf[20]; EVP_CIPHER_CTX cctx; int enctmplen, inlen; if (cb) inlen=cb(psbuf,PEM_BUFSIZE,0,u); else inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u); if (inlen <= 0) { PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ); return NULL; } enctmp = OPENSSL_malloc(keylen + 8); if (!enctmp) { PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); return NULL; } if (!derive_pvk_key(keybuf, p, saltlen, (unsigned char *)psbuf, inlen)) return NULL; p += saltlen; /* Copy BLOBHEADER across, decrypt rest */ memcpy(enctmp, p, 8); p += 8; inlen = keylen - 8; q = enctmp + 8; EVP_CIPHER_CTX_init(&cctx); EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL); EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen); EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen); magic = read_ledword((const unsigned char **)&q); if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { q = enctmp + 8; memset(keybuf + 5, 0, 11); EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL); OPENSSL_cleanse(keybuf, 20); EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen); EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen); magic = read_ledword((const unsigned char **)&q); if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { EVP_CIPHER_CTX_cleanup(&cctx); PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); goto err; } } else OPENSSL_cleanse(keybuf, 20); EVP_CIPHER_CTX_cleanup(&cctx); p = enctmp; } ret = b2i_PrivateKey(&p, keylen); err: if (enctmp && saltlen) OPENSSL_free(enctmp); return ret; } EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) { unsigned char pvk_hdr[24], *buf = NULL; const unsigned char *p; int buflen; EVP_PKEY *ret = NULL; unsigned int saltlen, keylen; if (BIO_read(in, pvk_hdr, 24) != 24) { PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); return NULL; } p = pvk_hdr; if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) return 0; buflen = (int) keylen + saltlen; buf = OPENSSL_malloc(buflen); if (!buf) { PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); return 0; } p = buf; if (BIO_read(in, buf, buflen) != buflen) { PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); goto err; } ret = do_PVK_body(&p, saltlen, keylen, cb, u); err: if (buf) { OPENSSL_cleanse(buf, buflen); OPENSSL_free(buf); } return ret; } static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, pem_password_cb *cb, void *u) { int outlen = 24, noinc, pklen; unsigned char *p, *salt = NULL; if (enclevel) outlen += PVK_SALTLEN; pklen = do_i2b(NULL, pk, 0); if (pklen < 0) return -1; outlen += pklen; if (!out) return outlen; if (*out) { p = *out; noinc = 0; } else { p = OPENSSL_malloc(outlen); if (!p) { PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE); return -1; } *out = p; noinc = 1; } write_ledword(&p, MS_PVKMAGIC); write_ledword(&p, 0); if (pk->type == EVP_PKEY_DSA) write_ledword(&p, MS_KEYTYPE_SIGN); else write_ledword(&p, MS_KEYTYPE_KEYX); write_ledword(&p, enclevel ? 1 : 0); write_ledword(&p, enclevel ? PVK_SALTLEN: 0); write_ledword(&p, pklen); if (enclevel) { if (RAND_bytes(p, PVK_SALTLEN) <= 0) goto error; salt = p; p += PVK_SALTLEN; } do_i2b(&p, pk, 0); if (enclevel == 0) return outlen; else { char psbuf[PEM_BUFSIZE]; unsigned char keybuf[20]; EVP_CIPHER_CTX cctx; int enctmplen, inlen; if (cb) inlen=cb(psbuf,PEM_BUFSIZE,1,u); else inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u); if (inlen <= 0) { PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ); goto error; } if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, (unsigned char *)psbuf, inlen)) goto error; if (enclevel == 1) memset(keybuf + 5, 0, 11); p = salt + PVK_SALTLEN + 8; EVP_CIPHER_CTX_init(&cctx); EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL); OPENSSL_cleanse(keybuf, 20); EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8); EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen); EVP_CIPHER_CTX_cleanup(&cctx); } return outlen; error: return -1; } int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) { unsigned char *tmp = NULL; int outlen, wrlen; outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); if (outlen < 0) return -1; wrlen = BIO_write(out, tmp, outlen); OPENSSL_free(tmp); if (wrlen == outlen) { PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); return outlen; } return -1; }